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Abstract: - The first objective of this research is to present an improved Direct Torque Control based on the 
Space Vector Modulation (DTC-SVM) and a Sliding Mode Observer (SMO). The disadvantages of the 
conventional Direct Torque Control (DTC) are the high ripples for the electromagnetic torque and the stator 
flux, as well as the distortions of the stator current. To solve these problems, we have used the approach of the 
(DTC) based on the space vector modulation. Also, one of the major problems for controlling induction 
machines is the lack of knowledge about the real values of some parameters, such as the stator resistance which 
is subjected to large variations during the operation. To follow the change in the internal state of the system and 
the stator resistance we use a technique based on the SMO. This technique overcomes the limitations of the 
open-loop estimator, like the adaptation of the variation of the stator resistance at a low speed, the correction of 
measurement errors of the stator currents, and the estimation errors of the stator flux. The second objective is to 
propose a novel method for implementing a DTC-SVM with an SMO on the Field Programmable Gate Array 
(FPGA). The advantages of this method are not only the simulation, control and testing of the correct operation, 
but also the development of a discrete algorithm and the generation of the Very-high-speed integrated circuits 
Hardware Description Language (VHDL) code which can be implemented on the FPGA. The performances of 
the DTC-SVM with an SMO are evaluated by digital simulation and developed to be implemented on Xilinx 
Virtex-V FPGA with an xc5vfx70t-3ff1136 package using the toolbox Xilinx system generator. 
 
 
Key-Words: - Direct Torque Control (DTC), predictive controller, Space Vector Modulation (SVM), induction 
motor, Sliding Mode Observer (SMO), Xilinx System Generator (XSG), Field Programmable Gate Array 
(FPGA). 
 
1 Introduction 
Nowadays, the competition on the market requires 
new industrial systems with higher performances. 
At the same time the cost must be acceptable. To 
reduce the cost, the time-to-market, the price of the 
controller device and its energy consumption must 
be reduced. It is too difficult to decrease the cost, 
given that the new industrial control system needs 
computing resources and reduced execution time. 
To solve this problem, two main families of control 
devices are used: the software solutions, like the 
Digital Signal Processor (DSP) controllers, and the 
microcontrollers and hardware solutions, like the 
Field Programmable Gate Array (FPGA). The 
microcontrollers and DSP controllers integrate a 
microprocessor core and several peripherals to 
communicate with the exterior environment. [1] and 
[2] present the difference between the 

microcontrollers and the DSP controllers. The main 
limitation of these solutions is the difficulty to take 
advantage of the parallel processing. To overcome 
this limitation, an alternative family of available 
digital devices for the digital control of industrial 
systems is the FPGA [3]. An FPGA consists in an 
array of logic blocks interconnected by a general 
interconnection network. The main advantage of the 
FPGA, relative to the software solutions, is parallel 
processing. So due to its massive computation 
capability, the FPGA is the most used component to 
overcome the real-time constraints, mostly for the 
complex algorithms. 

Induction machines are currently the most used 
machines in the industrial field thanks to their low 
cost, robustness, good performance and simple 
control [4]. They are used in multiple applications 
that require speed variation. The conventional Direct 
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Torque Control (DTC) is a new control technique 
developed and presented by [5], [6] and [7]. It is 
based on the orientation of the stator flux by a direct 
action on the states of the switches of the inverter 
[8], [9]. This technique is characterized by very fast 
dynamics [10]. On the one hand, the conventional 
DTC has some advantages: 
• It does not require calculations in the reference 
(d, q) 
• There is no calculation block voltage modulation 
(pulse width modulation). 
• It is not necessary to make a current decoupling 
relative to voltages, as in the case of the Field 
Oriented Control (FOC) 
On the other hand, it has some disadvantages as: 
• The existence of the electromagnetic torque 
ripples 
• The existence of the stator flux ripples 
• The existence of a high distortion of the  current 
• The variation of the switching frequency. 
To improve the performance of the conventional 
DTC in terms of ripples and variation in the 
switching frequency, the Direct Torque Control 
based on the Space Vector Modulation (DTC-SVM) 
technique was suggested in [11], [12]. The DTC-
SVM utilizes a pure open loop integration having 
well-known problems of integration effects on 
digital systems, especially at a low speed operation 
range [13], [14], and it is sensitive to the variation of 
the stator resistance [15]. Therefore, many 
observation methods, like the high gain observer, 
the backstepping observer, the model reference-
adaptive system and the extended kalman filter [16], 
are used to overcome these limitations. In this work, 
we propose to use the adaptive sliding mode 
observer (SMO) for the observation of the stator 
flux and the adaptation of the variation of the stator 
resistance. The observer has been introduced to 
replace the open-loop estimator of the stator flux. 
Furthermore, it has been provided with an 
adaptation mechanism of the stator resistance. Thus, 
the first objective of this research is, to give a fair 
comparison between the two techniques 
(conventional DTC and DTC-SVM) in terms of 
ripples of the stator flux and torque and in terms of 
high distortion at the waveform of the stator current. 
The second objective is, to give a fair comparison 
between a DTC-SVM with an open loop estimator 
and a DTC-SVM with a sliding mode observer at 
the adjustment stage of the stator resistance. Finally, 
the third objective is to implement the proposed 
model on the Xilinx Virtex-V FPGA, to enjoy the 
performances of the FPGAs in the field of digital 

control of electrical machines in real time. The 
performance of the suggested model is proved by 
simulation and implementation results. 

The organization of this paper is given as 
follows: In Section II, an overview of the hardware 
implementation method is presented. In Section III, 
the induction motor model and the conventional 
DTC principle are presented. In Section IV, the 
space vector modulation and the SMO are decribed. 
In Section V, the design of the SMO in XSG is 
presented. In Section VI, the simulation results of 
the predictive DTC-SVM with SMO using the XSG 
are presented and discussed. In Section VII the 
implementation results using the FPGA Virtex 5 are 
presented and discussed. Section VIII concludes this 
paper by discussing the overall results of the 
proposed control technique. 
     
 
2 Description of the hardware 
implementation method 
The objective of this study is to implement an 
algorithm of predictive DTC-SVM based on the 
Sliding Mode Observer (SMO) using the XSG 
blocks. It is a toolbox developed by Xilinx to be 
integrated into the Matlab-Simulink and it lets the 
user create parallel systems for the FPGA [17]. The 
created models are displayed in blocks and can be 
connected to other Matlab-Simulink blocks. Once 
the system is completed, the VHDL code generated 
by the XSG tool exactly reproduces the behavior 
observed in Matlab. The realized system must be 
simulated and verified quickly and often throughout 
the system development. So it is much easier to 
analyze the results with Matlab than with tools 
associated with Very-high-speed integrated circuits 
Hardware Description Language (VHDL), such as 
Modelsim. The XSG tool is used to produce a model 
that will immediately run on the hardware once 
completed and validated [18]. Fig.1 shows the broad 
flow design of the XSG. As already mentioned, you 
can then move to the configuration file to program 
the FPGA [19]. 

Matlab environnent Simulink. Mdl System Generator 

 Xilinx ISE 

Synthesis 
Bitsteam 

Download into 
FPGA 

Create 
Testbench 

Modelsim 

  

 

0101110101
1100110111
00 

 

 

 
Fig. 1.  XSG design flow 
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3 Conventional DTC of an induction 
motor 
3.1 Induction machine model     
The dynamic model of the induction machine can be 
represented in the (α, β) frame as: 
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with: 
2

1 m

s r

L

L L
σ = −   

The state model of an induction machine is given 
below: 

[ ] [ ]A X B UX
•

= +                                              (2) 

The state vector X is composed by a stator 
current and flux components. The vector command 
U is constituted by the stator voltage components. X 
and U are given as in the form of 

[ ] [ ]TSSS
T

SSSS vvviiX βαβαβα φφ == ,  
 
 
3.2 Conventional DTC principle     
The structure of the conventional DTC of the 
induction motor was introduced in 1986 by 
Takahashi.I. Depending on the position of the flux 
vector in one of the six sectors of the plane (α, β), a 
truth table is used to define the optimum stator 
voltage vector to be applied to the motor. The 
components of the stator voltage vector 

),( βα SSS VVV  are based on three control variables 
),,( cba SSS  of the switches of the inverter and the 

DC supply voltage E by applying the transformation 
Concordia: 

2 1( ( ))
3 2
2 ( )
3

S

S

V U Sa Sb Sc

V U Sb Sc

α

β


= − +



 = −

                          (3) 

s s sv =v vjα β+                                                       (4) 

The magnitude of the stator flux is determined by 
calculating its components in the stationary 
reference, as shown by Eqs.(5) and (6):  

0
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s

arctg
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α

ϕ ϕ ϕ
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ϕ
ϕ

 = +


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                                             (6) 

The electromagnetic torque can be estimated 
from the components of the stator flux and the 
current in the fixed coordinate system (α, β). 

3 ( )
2e s s s sC p i iα β β αϕ ϕ= −                                     (7)  

The choice of the control sequence applied to the 
switches of a three-phase voltage inverter is based 
essentially on the use of hysteresis comparators. The 
hysteresis bands allow avoiding unnecessary 
switching when the calculated error is very small. 
Thus, the stator flux vector is kept in a circular 
crown. The control sequence of the inverter switch 
voltage were then defined by [20], where the 
outputs of the hysteresis comparators Eϕ  and CE  

and the sector number iN  presented the inputs of 
the switching table. 

Table 1. Switching Table 

Eϕ  Ec  N1 N2 N3 N4 N5 N6 
1 1 V2 V3 V4 V5 V6 V1 

0 V7 V0 V7 V0 V7 V0 
-1 V6 V1 V2 V3 V4 V5 

0 1 V3 V4 V5 V6 V1 V2 
0 V0 V7 V0 V7 V0 V7 
-1 V5 V6 V1 V2 V3 V4 

 

The structure of the conventional DTC of an 
induction motor is given, as shown by Fig. 2:
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Fig. 2.  Schematic of the conventional DTC

 
4 Predictive DTC-SVM of an 
induction motor        
This control technique differs from the conventional 
DTC by using a Space Vector Modulation also 
which ensures operation at a constant modulation 
frequency to the converter. In this case, the torque is 

controlled by a predictive controller where the 
switching table and the hysteresis comparators are 
eliminated. This method, we called a DTC with a 
constant frequency, reduces of torque and flux 
oscillations. The structure of the predictive DTC-
SVM of an induction motor is given in Fig. 3.
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Fig. 3.  Schematic of the predictive DTC-SVM 

The relationship between the electromagnetic 
torque pulsation ∆Tem and the deviation of the stator 
flux φs from it reference φsref is given by Eq.(8) [21]: 

se

e ref s ref

T
K K

T ϕ θ
ϕ

θ
ϕ
∆∆ = + ∆                                    (8) 

s sref sϕ ϕ ϕ∆ = −                                                 (9) 

sref sθ ϕ ϕ∆ = ∠ − ∠                                           (10) 

where Kφ and Kϴ are the constants derived from the 
induction motor specifications. Teref is the reference 
of the electromagnetic torque. 

The electromagnetic torque ripples are actually 
caused by ∆φs and ∆ϴs, but the influences of the ∆φs 
is smaller than that of the ∆ϴs. As a consequence the 
electromagnetic torque ripples can be almost 
removed if ∆ϴ is kept close to zero. 

We can notice in Eq.(8) that the relation between 
error of the electromagnetic torque and increment 
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angle ∆ϴ is linear.  Therefore a predictive controller 
is used to generate the load angle changes in order 
to reduce the error between the reference and the 
real electromagnetic torque. The diagram of the 
predictive controller is shown in Fig.3. The 
evolution of the stator flux vectors is given in Fig. 4.      

θ  

θ∆  
sϕ  

srefϕ  

α 

β 
q 

d 

 
Fig. 4.  Stator flux vectors sϕ and srefϕ  

 
From the (α, β) axis, the components of the 

reference stator voltage are calculated as:
cos( ) cos( )s ref s

S ref s S
S

V R i
Tα α

ϕ θ θ ϕ θ+ ∆ −
= + (11) 

sin( ) sin( )s ref s
S ref s S

S

V R i
Tβ β

ϕ θ θ ϕ θ+ ∆ −
= +   (12)   

2 2
sref s ref s refV V Vα β= +                                      (13)                                                                                                                                 

 ( )s

S

arctg β

α

ϕ
θ

ϕ
=                                                  (14)  

 
 
4.1 SVM principle  
For each modulation period of the inverter, the 
three-phase voltages provided by the control 
algorithm can be expressed in a stationary reference 
frame linked to the stator by using their projections 
VSα and VSβ. A three-phase inverter with two 
voltage levels has six switching cells, giving eight 
possible switching configurations (V0, V1, V2, V3, 
V4, V5, V6 and V7). These latter configurations can 
be expressed in (α, β) by eight voltage vectors. In 
Fig. 5, it can be seen that the six active voltage 
vectors form the axes of a hexagon and two the zero 
voltage vectors are at the origin (center).  
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Fig. 5.  Representation of voltage vectors in the 

coordinate (α, β) 
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Fig. 6.  Projection of a reference voltage vector 

sector 1 (i=1) 

The sector is determined using the components 
of the voltage vector ( ,s sV Vα β ) by the following 
equation: 

( )S
s

S

V
arctg

V
β

α

θ =                                                  (15) 

The SVM is shown in Fig. 6, where the desired 
voltage vector srefV is projected on the two adjacent 

voltage vectors iV and 1iV + . The values of these 
projections provide the determination of the desired 
commutation times iT  and 1iT +  and correspond to 
two nonzero switching states of the inverter. The 
reference voltage vector in sector 1 can be expressed 
in the reference (α, β) by the following expression: 
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1 2
1 2

mod mod

Sref S S

T T
V V jV V V

T Tα β= + = +
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            (16) 

where mod 1 2 0T T T T= + +                                    (17) 

In sector 1, the expression of the voltage in the 
stator reference is:  

      

1
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3 33
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Using Eq.(15) the expressions of the times 1T and

2T are given below: 

mod
1

3 1( )
2 2S S

T
T V V

Eα β= −                              (19) 

mod
2 2 S

T
T V

Eβ=                                                 (20) 

The calculation of the switching will be 
determined from the following cyclic reports: 

mod

i
i

T

T
ρ =                                                             (21) 

For sector 1, the cyclic reports 1ρ  and 2ρ  can be 
represented as 

1
3 1
2 2

SS
VV

E E
βαρ = −                                      (22)               

2 2 SV

E
βρ =                                                       (23) 

Fig. 7 shows the Space Vector pulse width 
modulation switching patterns in sector N1. The 
time duration of each nonzero vector is divided 
equally into two parts. The time duration of the zero 
vectors is distributed equally from V0 to V7, and 
thus the switching sequence of the space vector is 
V0, V1, V2, V7, V7, V2, V1, and V0 during the 
modulation period. This sequence can ensure that 
there is only one phase switch when the switching 
pattern switches, hence the ability to reduce the loss 
of switching devices and the harmonic component 
of the output current of the 3-phase inverter. 
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Fig. 7.  Sequences of the switch states in sector N1 

For each phase of the inverter, the control 
sequences are given as follows:  

1 2 0

2 0

0

1
2

1
2

1
2

a

b

c

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ

 = + +

 = +

 =


                                       (24) 

As 1 2 0 1ρ ρ ρ+ + =  

Using the Eqs.(22) and (23). Eq.(24) can be 
rewritten as  

0 0

0 0

0 0

1 3 1(1 )
2 2 2

1 3 1(1 )
2 2 2

1 3 1(1 )
2 2 2

SS
a

SS
b

SS
c

VV

E E

VV

E E

VV

E E

βα

βα

βα

ρ

ρ

ρ


= + +


 = − +


 = − −


                      (25) 

 
4.2 Predictive DTC-SVM of an induction 
motor with an SMO 
The objective of the SMO is to construct the 
components of the stator flux vector and to provide 
the adaptation of the stator resistance. The principle 
of the SMO is given in Fig. 8. 
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Fig. 8.  SMO principle  

The observation model of the induction motor 
can be represented in the (α, β) frame as follows: 
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The sign vector is given by Eq.(27).                                                                        
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4.2.1 Determining the sliding surface     
The sliding surface is a function of the current 
observation errors. Accordingly, 
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The switching of the sliding surface S creates an 

oscillation phenomenon. To decrease the oscillation 
a saturation function can be introduced to replace 
the sign function. The saturation function is given in 
Fig. 9. 

 
Fig. 9.  Saturation function 
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where λ  is a positive constant with a low value. 

4.2.2 Determining the gain matrices     
The matrix of gains related to the current 

observer is as follows:  

 1 2 1

3 4 2

0
0

i i
i

i i

A A
A

A A

δ
δ

   
= = Γ   

  
                         (30)  

where 21 δδ and  are two positive constants, which  
are determined by applying the stability conditions 
defined by the Lyapunov approach. 
The correction gains of the stator flux are 
determined by applying the condition of 
convergence towards the sliding surface (S = 0).The 
gain matrix of the stator flux is as follows: 





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21
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δ
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ω
σ

ωδ

ϕϕ

ϕϕ
ϕ

q
L

L
q

AA

AA
A

S

S
             (31) 

  

where 21 qandq  are two positive constants. 
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4.2.3 Mechanism of adaptation of the stator 
resistance   
The sliding mode observer is sensitive to the 
variations in the machine parameters. It is necessary 
to adjust the stator resistance of the machine by 
adding an adaptation mechanism. To determine the 
estimated stator resistance we have used the 
Lyapunov approach which is given by Eq.(32).

 21
2 2

T
S SV S S R R

λ ∧ = + − 
 

                              (32) 

0T
S SSV S S R R Rλ

•
• • ∧ ∧ = + − 

 
≺                        (33) 

To satisfy the condition defined by Eq.(33), 
the estimate of the stator resistance is given by 
Eq.(34): 

 
*( ) *( )S S S S SS SR i i i i i i dtα α β βα βγ

∧ ∧ ∧ ∧ ∧ = − − + − 
 ∫

      
(34) 

with γ being a positive constant. 
The structure of the predictive DTC-SVM with 

the adaptative SMO of an induction motor is shown 
in Fig. 10. 
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Fig. 10.  Schematic of DTC-SVM with an SMO 

5 Design of the SMO using the XSG     
The components of the observed stator current 
vector for the system in equation (26) are illustrated 
using the XSG, as shown in Fig. 11. 

 

 

  

Fig. 11.  Design of the Component αSi
∧

from the XSG 
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The sliding surface and saturation function, 
given in Eqs.(28) and (29) respectively, are 

illustrated using the XSG, as shown in Fig. 12. 

  

Fig. 12.  Design of the sliding surface and sign function from the XSG 

The gain matrix given in Eqs.(30) and (31),  respectively, are illustrated using the XSG, as 
shown in Fig. 13. 

 
 

Fig. 13.  Design of gains matrix

6 Simulation result 
6.1 Testing the effectiveness and 
performance of the predictive DTC-SVM 
The simulation of the conventional DTC and the 
predictive DTC-SVM is achieved using the XSG. 
The speed, torque and flux references, used in the 
simulation results of the direct torque control 
strategy, are Ωref=150rad/s and )(91.0 bref ωϕ = , 
respectively. At the time t = 1sec, a load torque of 
10 Nm is applied. The induction motor parameters 
are in the Appendix. 
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       (a)                                (b) 

Fig. 14.  Evolution rotor speed for: 
(a) Conventional DTC   (b) Predictive DTC-SVM 
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(a)                                  (b) 

Fig. 15.  Evolution of the real stator flux for: 
(a) Conventional DTC   (b) Predictive DTC-SVM 

           
(a)                                   (b) 

Fig. 16.  Trajectory of the extremity of the stator 
flux vector for: (a) Conventional DTC, (b) 

Predictive DTC-SVM 
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(a)                          (b) 
Fig. 17.  Electromagnetic torque for: 

(a) Conventional DTC (b) Predictive DTC-SVM 

  0 0.5 1 1.5 2
-20

-15

-10

-5

0

5

10

15

20

t(s)

S
ta

to
r 
cu

rr
en

t 
(A

)

  0 0.5 1 1.5 2
-20

-15

-10

-5

0

5

10

15

20

t(s)

S
ta

to
r 

cu
rr
en

t 
(A

)

 

  1.23 1.235 1.24 1.245 1.25
-4

-3

-2

-1

0

1

2

3

4

    1.23 1.235 1.24 1.245 1.25 1.255 1.26

-4

-3

-2

-1

0

1

2

3

4

 
(a)                                     (b) 

Fig. 18.  Evolution of the stator current for:  
(a) Conventional DTC (b) Predictive DTC-

SVM 
 6.2 Testing the effectiveness and 
performance of the predictive DTC-SVM 
with an SMO 
The simulation of the predictive DTC-SVM with an 
open loop estimator and the predictive DTC-SVM 

with an SMO is achieved using the XSG at a low 
speed. The speed and flux references used in the 
simulation results are 15 rad/s and 0.91 wb, 
respectively. At the time t = 0.5sec, a load torque of 
5 Nm is applied. At t =1sec, the stator resistance 
increases by 100%. 
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(a)                                    (b)      

Fig. 19.  Variation of Rs for Predictive DTC-SVM 
with: (a) an open loop estimator, (b) an SMO 
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(a)                                    (b) 

Fig. 20.  Evolution of the stator flux for Predictive 
DTC-SVM with: (a) an open loop estimator, (b) an 

SMO 
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(a)                                  (b) 

Fig. 21.  Trajectory of the extremity of the stator 
flux vector for predictive DTC-SVM with: (a) an 

open loop estimator, (b) an SMO 
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Fig. 22.  Estimated electromagnetic torque for 
predictive DTC with: (a) an open loop estimator 

(b) an SMO 
We obtain in Fig. 14, Fig. 15, Fig. 16, Fig. 17 

and Fig. 18 the evolution of the mechanical speed, 
the stator flux magnitude, the stator flux vector 
trajectory, the electromagnetic torque and the stator 
current, respectively, for both conventional DTC 
and predictive DTC-SVM. These results show the 
effectiveness of the predictive DTC-SVM control 
relative to the conventional DTC control in terms of 
ripples in the stator flux and electromagnetic torque 
and in terms of distortion in the stator current.  

In Fig. 19, the real stator resistance increases by 
100%. In Fig. 19a, we can see that for the predictive 
DTC-SVM with the open loop estimator the stator 
resistance keeps constant; whereas, in Fig. 19b for 
the predictive DTC-SVM with an SMO, the 
observed stator resistance increases gradually to 
reach the resistance of the machine. Therefore, the 
SMO can compensate the variation of the stator 
resistance thanks to it good performance and 
robustness. 

In Fig. 20a, at t = 1sec, the real stator flux 
decreases and the error between the real flux and the 
reference flux remains constant. Yet, in Fig.20b, for 
the predictive DTC-SVM with an SMO, this error 
gradually vanishes.   

In Fig. 21a, we can notice that the stator flux 
vector trajectory increases due to the variation of the 
stator resistance at t=1sec. By contrast, in Fig. 21b 
the stator flux trajectory remains constant thanks to 
the presence of the adaptive online mechanism of 
the stator resistance using the SMO. 

In Fig. 22a, at t = 1sec, the electromagnetic 
torque increases and the error between the 
electromagnetic torque and the load torque remains 
constant. However, in Fig. 22b, for the SMO, this 
error vanishes quickly. 

Fig. 23 illustrates the complete model of the 
DTC-SVM, which consists of an induction machine, 
an SMO, a torque controller, a proportional integral 
controller of speed, a calculator of the angle ϴ, a 
predictive controller, an SVM block and a voltage 
source inverter. 

  
Fig. 23.  Design of the predictive DTC-SVM with an SMO from the XSG

7 Implementation Results 
The register transfer level (RTL) schematic of the 
predictive DTC-SVM with an SMO in the Xilinx 

Integrated Synthesis Environment (ISE) 12.4 is 
given in Fig. 24. 
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Fig. 24.  The schematic RTL of the predictive DTC SVM 

Table 2. Used resources 

 Used 

 DTC Predictive DTC 

Number of bonded IOBs 68 68 

Number of Slices 259 473 

Number of Slice LUTs 1344 1601 

Number of DSP48Es 12 14 

The performance of the hardware solution based 
on the FPGA in terms of execution time is shown in 
Fig. 25. Table 3 presents the performance time of 
the predictive DTC-SVM with an SMO.  

ADCt  : Analogue to digital conversion time. 

Table 3. Execution time exT  

Module Execution time (µs) 
Concordia 0.17 

Sliding Mode Observer 
(SMO) 0.34 

Predictive controller 0.12 
SVM 0.14 

PI controller 0.16 
_ 0.17 0.34

0.12 0.14 0.16 0.93
predictive DTC SMOt

sµ
− = +

+ + + =
 0.93 µs 

Total Time: _total predictive DTC SMO ADCT t t−= +  

 
 
 
 
 

T (k+2) T(k) T (k+1) 

ADCT  
exT  

50µs 

 
Fig. 25.  Timing diagram for the implementation of 

the predictive DTC-SVM with an SMO using Xilinx 
Virtex-V FPGA with an xc5vfx70t-3ff1136 package 

Papers [22],[23] and [24] present the digital 
control of induction motor using the dSPACE 1104, 
in these papers the sampling time is to 100µs, due to 
the sequential processing of the dSPACE. In paper 
[25], the execution time is of 300µs using dSPACE 
1102. Using the FPGA the execution time of the 
control algorithm of induction motor is (1 to 2µs). 
Therefore, the obtained execution time using the 
FPGA is far lower compared to the software 
solutions. In this paper the execution time of the 
predictive DTC-SVM with the SMO algorithm is of 
0.93µs using the Xilinx Virtex-V FPGA with an 
xc5vfx70t-3ff1136 package. 
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8 Conclusion 
In this paper, the direct torque control of an 
induction motor based on the Space vector 
modulation, the predictive controller and the sliding 
mode observer has been developed. The hardware 
architectures of the predictive DTC-SVM and the 
sliding mode observer using the Xilinx system 
generator are presented. The simulation results show 
the performances of the proposed control strategy in 
terms of ripples of the electromagnetic torque and 
the stator flux, distortion of the stator current, and 
variation of the machine parameters. The VHDL 
code is generated and synthesized. The 
implementation results show the performances of 
the hardware implementation in terms of design 
time which is reduced, minimal resources 
utilization, and low execution time. 

APPENDIX 
Table 4. Motor parameters 

Parameter Value 

RS 5.717 Ω 
Rr 4.282 Ω 
LS 464  mH 
Lr 464  mH 
M 441.7  mH 
J 0.0049  Kg.m² 
P 1.5 KW 

V/U 230/400 V 
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