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Abstract: - This paper discusses the construction of a mathematical model for a planar seven-link bipedal model
which is comprised of an upper body and two legs (thigh, shank and feet in every leg) in the sagittal plane.
Procedures of kinematic model and dynamic model constructions are presented in this paper. The mathematical
model for dynamic equations of motion based on the absolute angle is obtained using Lagrange’s equations.
Then, a dimension transformation of mathematical model into relative angles was performed. New inertia
matrix of the transformed equations was verified to be symmetric. Periodic cubic spline is used to obtain
smooth walking trajectories of every joint in the biped model. Computed torque controller was applied in the
trajectory tracking control of the proposed bipedal robot model. To investigate the performance of motion
controller, a simulation study was conducted. The simulation results show that the performance of the purposed
motion controller is superior with very minimal tracking error. In future, the controller will be extended and
modified with various types of intelligent approaches to give continuous, automatic and online computation of
required inertia matrix with certain constraint while the system is in motion.
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1 Introduction link [5], five-link [6] and seven-link gait model [7]
In this modern time, many research groups are that constrained in sagittal plane.

actively involved in human bipedal robotics This research study focused on the development
research  including  humanoid robots  and of mathematical model for seven-link human
exoskeletons. These types of robots are required to bipedal model. Then, the mathematical model is
walk naturally to provide a sense of intimacy to applied in the MATLAB Simulink to observe the
human being. To achieve this, an accurate model of performances of the bipedal robot system. .
human gait has to be obtained to reflect natural This paper is structured as follows. Section 2

shows the kinetic model and dynamic equations of

human walking trajectories [1]. However, human . : :
motion model for seven-link biped robot system

walking pattern is a complex activity. It is hard for

human’s gait pattern to be directly incorporated into using Lagrange’s Equation. Analysis in Section 3 is

the bipedal robot model due to complex bipedal presented the coqtroller involved to obgerve jche

structure and excessive many degrees of freedom performances of bl.pedal .robot system. This section

(DOF) in human gait [2]. also shows thp 51mu1at10n. parameters setup and
There are 20 or more degrees of freedom (DOF) results from this s'tudy..Sectlo.n 4 will be carrled' out

involved in human walking motion [3]. The the results and discussion. Finally, the concluspns

inclusion of these high DOF into the mathematical of the study are made'and some rc.tcornmendatwns

model of human gait pattern could be problematic for future work is mentioned in Section 5.

and may greatly restrict the implication of this

model in the following engineering control tasks.

Thus, the human model for the gait analysis has to 2 Mathematical Modelling of

be as simple as possible. Many researgh effortsf have Seven-Link Biped Model

been devoted mto the solutlpn of this complicated In general, robot manipulators can be defined as a

control mechanism. They simplified the complex mechanical system that consists of links connected

human !alped model Into various types of biped by joints. The links are numbered sequentially from

locomotion model which include two-link [4], three- the base (link 0) and up to the end-effector (link n)
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[8]. The joints coincide to the contact points
between two links. An actuator is usually placed at
the joint. Therefore, every joint is controlled by an
actuator independently and the joint movements
give the relative movement of the links.

This section shows the kinematic model and
dynamic equations of motion of the seven-link
biped model briefly. To obtain the mathematical
model of the biped system in this study, Lagrange’s
equations of motion has been used. The procedure
of the derivation will be shown in this section
briefly.

2.1 Kinematic Model

The human biped is modeled as the seven serial
links mechanism in sagittal plane as shown in
Fig. 1. The seven links consists torso (link 4) and
three links in each leg which are thigh
(link 3 and 5), shank (link 2 and 6) and feet
(link 1 and 7). These links are connected via rotating
joints which are two hip joints, two knee joints and
two angle joints. The joints are assumed to be
frictionless and every of them are driven by an
independent DC motor. The derivation of
mathematical model in this study was similar to that
of S. Tzafestas et al. [3] [6] with the exception that
this study concentrated more on the seven-link
biped model instead of the initial simpler five-link
biped model.

Fig. 1: Seven link planar biped model
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To simplify the derivation, some assumptions
have been made for example both left and right
sides of the biped model are assumed to be
symmetric; the biped locomotion is constrained to
the sagittal plane only, and the friction of the ground
is assumed to be large enough to avoid slippage at
of the supporting end.

Walking dynamics usually takes place on the
sagittal plane [9] which is defined as a plane that
can be divided body parts into right and left sides
[10]. The sagittal plane analysis drives the human
biped gait pattern similar to the human gait pattern.

From Fig 1, the parameters of the biped model are
shown as follows:

m; : mass of link
L; :length of link
L;. : distance between the center of mass and the

lower joint of link
I; :moment of Inertia

0; : angle of link with respect to the horizontal axis
(absolute angle)
q; : relative angle deflections of the corresponding

joints

(xic, yic) are the coordinates of center of mass of
link i which is shown in (1) based from Fig. 1.

X1c = —Lq.c056;
Yic = Licsinby

Xy = —L,c088, + hsinf; + L, cos0,
Vo = Lysin6; + hcos6, + L, sinb,

X3. = —L;cos6; + hsinB; + L,cos0, + L3.cos6;
V3¢ = L1sin@; + hcos6, + L,sinf, + L3 Sinbs

X4c = —Lic0s6; + hsinB, + L,cos0, + L;cos6; + Ly.cosb,
V4e = L1Sin6; + hcosO, + L,sin6, + L3sinf; + L, sinf,

Xs. = —L;co0s6; + hsinB, + L,cos0, + L;cosb,
+(Lg — Ls.)cos0Os

Vs = Lysinf, 4+ hcos6; + L,sinf, + L3sinf;
—(Lg — Lg.)sinBs

Xgc = —Lic0s6; + hsinB, + L,cos0, + L;cos6; + LscosOg
+(Lg — Lgc)cosbg

Vec = L15in0; + hcosO; + L,sinb, + L3sinf; — Lgsinbg
—(Le — Loc)sinbs

X7c = —L;c0s6; + hsinB, + L,cos0, + L;cos6; + LscosOg
+LgcosOg + ksin@; + L,.cosb,
V7¢ = L1sinf, 4+ hcosO; + L,sinb, + L3sinf; — Lgsinbg
—Lgsinbg — kcos6; + L, sinb,
(1)
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2.2 Dynamic Model

The dynamic equations of a robot manipulator in
closed form can be acquired by using Lagrange’s
Equations. It is one of the most common approaches
used in the computation of robotic dynamic model.

In the past, Lagrange formulation has been used
to derive the mathematical model of dynamic
motion equations for the human biped model. The
human biped model that can be generated from
Lagrange’s Equations [2] which are two-link [4],
three-link [5], five-link [6] and seven-link gait
model [7]. S. Tzafestas et al. [6] shown the
calculations of five-link biped model using relative
angles term. However, up to this date, the derivation
of mathematical model for a seven-link biped model
has still not been fully covered. The mathematical
model as proposed by D. J. Braun et al. was
considerably crude, and it lacked out of the essential
information clarity needed in the comprehensive
study of the biped robot dynamics [7][11].

In this study, the biped dynamic model is further
simplified by considering only the single-leg
support phase. During the single-leg support phase,
one of the biped is in contact with the surface
(support leg) carrying all of the biped weight, whilst
the other leg which is freely swinging in the mid air
in the forward walking direction [12] as shown in
Fig. 1. The Lagrange’s equation of motion can be
written in the following form:

d(ﬂ)
dt\de,

where L=K — P

dL _
Tdp, "
@)

L : Lagrangian of n-DOF robot manipulator
K: kinetic energy
P: potential energy

The procedure of Lagrange’s equations of motion
formulation can be found in Appendix A and B.
These equations can be arranged in the general form
(The full equations can be referred in Appendix C)
as

D(©)6+H(6,0)+G() =T, (3)
where

0 = [61,0;,03,04,05, 06, 97]T

Ty = [To1, Toz, To3, Toa Tos, Toe Tor]"

7
H(Q,G) = col (h”(QJ)Z
Jj=1(#1)
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G(6) = col[G;(0)]

D) =[D;(®)] ij=1,..,7

with

0 : joint angle vector
Ty : generalized torque corresponds to 6;

D(@) : 7x7 symmetric, positive-definite inertia
matrix

H (6,9) : 7X1 vector of Coriolis and Centripetal
torques

G(8) :7xI vector of gravitational torques

However, only six of seven DOF can be
controlled directly by the driving torques at every
joint. The angle 6; at the contact point with the
walking surface which is known as hypothetical
joint 0 is controlled indirectly using the gravitational
effects [12]. The model in Equation (3) is
transformed model using the relative angle for the
control purpose.

The dynamic motions of the biped model are
calculated in the terms of relative angles the link for
the control purpose which is
D(q)§+H(q,q) +G(q) =T, 4
Based on Fig. 1, g1, 92,93, 94,95, q9¢ and g are the
relative angle deflections of the corresponding joints
and can be calculated as follows:

()
where
: driving torque at toes of the supporting leg
: driving torque at the ankle of the supporting leg
: driving torque at knee of the supporting leg
: driving torque at hip of the supporting leg
: driving torque at hip of the free leg
: driving torque at knee of the free leg
: driving torque at ankle of the free leg

T
(%)
T3
Ty
Ts
Te

The seven-link model is using the g; (i = 0,1, ...,6)
instead of 0; (i = 1,2, ...,7) of where corresponds to
the hypothetical joint 0 at the contact point with

qo = 01.
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The relationship between 6 and q as follows:

T9i :ZTja—ei, 1= 1,2,...,7
j=1
(6)
which gives
TGL' =E.1 (7)
where E is a 7X6 matrix and 7 is a 6X1 matrix.
Therefore, the relation is formed as below:
—1 0 0 0 0 07+ .
-1 -1 0 0 0 0 [qu]
0 1 -1 0 0 0|,
T,=[0 0 1 -1 0 ol
0 0 0 =1 -1 0|
0 0 0 0 1 1]
Lo 0 0o o o 1177
(@)

The generalized torques T,; corresponds to the
relative angle displacements which are:

Too=0and Ty =1; 9)

where 7; is the actual driving torques at the joints of
the model. Tyo = 0 shows that the angle q, of the
hypothetical joint 0 is not directly controlled by a
driving torque.

The angular displacement of every link can be
written in terms of q; which are:

01 = qo
T
0, =E—CI0—CI1
T
63=E_QO_Q1+QZ
T
94=E—CI0—Q1+CI2+CI3
T
95=E+QO+QI_QZ_Q3_Q4
n
96=§+%+q1—q2—q3—q4+q5
07=—=qQo—q1+q2+q3+ 91— qs + g5
(10)
From the relationship follows:
7 d
q]- ]
Tqi :ZTGJ%, l:O,l, ,6
j=1 L
(11)

E-ISSN: 2224-2856

Nurfarahin Onn, Mohamed Hussein, Collin Howe Hing Tang,
Mohd Zarhamdy Md Zain, Maziah Mohamad, Wei Ying Lai

Thus, the generalized torques Tg; can be obtained as

Tqo = —To1 + Toz + Toz + Toga — Tos — Toe + To7
Tq1 = —Toz — Toz — Toa + Tos + Toe — To7

Tqo = Toz + Tosa — Tos — Tge + To7

Tq3 = Tos — Tgs — Toe + To

Tqs = —Tgs — Tge + T

qu = Tge — To7

qu =Toy (12)

Using the relationship in Equation (9), (10) and
(12), the equations of motion are transformed into
the following forms which are:

A116; + A8y + ArgBs + AraBy + A1s0s + Arels + A1767 + Hoo + Ggo = Tgo = 0

where Ayj = =Dyj + Dyj + Dsj + Dyj — Dsj — D + Dy;, j =1,2,345,6,7
Hgo = —Hy + H, + Hy + H, — Hs — Hg + Hy
Gqo=—G1 + Gy + G3 + Gy — G5 — G + Gy

A8y + ApyBy + Agals + AssBy + ApsBs + Apelg + Aprf7 + Hot + G = Ty

where Azj = —Dyj — D3j — D4j + Dsj + Dgj — Dy
Hg = —H, — Hy — Hy + Hs + Hg — Hy
Gqr = —Gy, — G3 — Gy + Gs + Gg — Gy

i J=1234567

A3101 + AgyBy + Agals + AgaBy + AgsOs + Agelg + Agrf7 + Hop + Goo = Tya
where Azj = Dyj+ Dyj — Dsj — Dg; + D7j,  j = 1,234,567

Hgo = Ha + Hy — Hs — Ho + Hy
Ggo = Gs+ Gy — Gs — Go + G;

Ag101 + AgpBy + AggBs + AgaBy + AssOs + Asels + Arf7 + Hg + Goz = Tya
where Ay; =Dyj— Ds; — Dj+ Dqj, j =1,2,34567

Hgs = Hq — Hs — Hg + Hy
Goz = Gy — Gs — Go + G7

Ag101 + AsyB; + AsgBs + AsaBy + AssOs + Asels + As707 + Hga + Gga = Tga
where As; = —Ds; — Dgj + D7, j =1,23,456,7

Hgs = —Hs — He + Hy
Ggs = —Gs— Gg + G7

Ag101 + AgyB; + AgaBs + Agals + AesBs + Asols + Aer07 + Hys + Ggs = Tys
where Agj=Dgj—Dyj, j=1234567

Hgs = Hg — Hy
Ggs = Go — Gy

A0y + AgyBy + AggBs + Aza0y + AzsBs + Azels + Arrf7 + Hyg + G = Tys
where A7;=Dq;, j=1234567

Hge = Hy
Gge = G

(13)
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The equation of motion is further modified and
transformed into the equation using the relative
angle (The full equations can be found in Appendix
D) which is

Da(@)d + Hy(q,q) + Gy(q) =T, (14)
where

D (] 2) ]2 A'3 _A]4+A]5 +A]6_A]7
D(]3) A]3+AJ4 Ajs — Aje + Aj7

Dy, 4) = ,4 AJ6 + 4,

Dq(j,5) = A]6 + Aj;

D (] 6) ]6 ]7

D,(,7) = with j = 1,2,3,4,5,6, 7

) T
Hy(q,9) = [qu' Hg1,Hgz, Hys, Hya, HqS'HqB]
T
G (CI) = [qu, qu; qu; Gq3’ Gq4; GqS' Gq6]
T - [qu' ql'TqZ'Tq3: Tq4—; qS; ]

D4(q) is 7X7 symmetric, positive definite inertia
matrix, Hy (g, q) is the 7x1 vector of centripetal and
Coriolis torques, Gg(q) is the 7X 1 vector of
gravitational torques and Ty is the vector of control
torques applied at each joint. This mathematical
model of human biped will be carried out using
relative angles in term of absolute angles 6;
(i=1,2,3,4,5,6,7). To verify the new inertia matrix
Dy (q) from the obtained transformed human biped
model, this matrix is symmetric.

3 Analysis

The performance of the proposed seven-link bipedal
robot model with computed torque motion control
scheme was investigated and verified in this study
through simulation analysis. All simulation studies
were performed using computation platform by
Simulink®, MATLAB®. The following sections
will be provide detailed descriptions on computed
torque control scheme, trajectory planning, and the
simulation setup.

3.1 Computed Torque Control

In this study, a computed torque control scheme
with additional proportional-derivative (PD) control
is used in trajectory tracking of the proposed biped
model. Based on Fig. 2, the generalised computed
torque equation is:

Tq = Da(@u + Hq(q,q) + G4(q) (15)
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l 1 H(g.4) +6(q) |['

‘—b-’_ r——b- D(q} I—-r —>| Robot S}\Icm I :(f

/ \

ar TN

Fig. 2: PD—t;ased computed torque control scheme

(8]

The trajectory error, e is:

e=4q-—q (16)

where

q : actual joint trajectory
qr : reference joint trajectory

The control law based from PD control law is:

u =g, +Kpé + Kpe (17)

where

Kp = df'ag[km]
Kp = diaglkp]
u: computed angular acceleration control signal

In order to attain the critical damped closed loop
performance, the value of K, and Kp are:

Kp = diag[24]
Kp = diag[4?]

where A is the desired natural frequency of the
closed-loop system

Due to the existence of leg contact with ground, the
component uy cannot be computed with Equation
(18) because it is chosen that T,(1) = 0, and the
biped model has pre-determined non-controllable
joint qq. Therefore, u, and u;,; can be computed as
follows:

6
1
W= 5Ty {;[un,j + 1) wipq] + Hg (D) + Gq(l)}
(18)
Uir1 = Gri T Kpié; + Kpie; (19)

where i = 0,1,2,3,4,5
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3.2 Trajectory Planning
The trajectory of revolute joints is divided into 100
segments throughout one gait cycle. There are many
approaches that have been used in the interpolation
and approximation in the trajectory planning. A
good approach for linking the segments is required.
The gait cycle has to be continuous and
periodically linked together in order to achieve a
normal continuous motion. Therefore, Equation (20)
generates the reference trajectory for link k [13]:

0k (t) = a; + b (t — ty) + ¢;(t — t,)* +d;(t — t,)*  (20)

Human walking motion is in periodic function.
Thus, a periodic cubic spline function can give the
smoothness of velocity and acceleration of the biped
model. The periodic boundary conditions have to be
followed so that the trajectory will be continuous
periodically. The boundary conditions are:

0_0 = B_n (21)
o = b (22)
6o = 6 (23)

From Equation (22), the coefficients of cubic spline
are computed as follows:

a; = 01' (24)
c=A"1z (25)
where
A
2(hn_1 + ho) ho 0 0 by
ho 2(ho + hy) h 0 : 0
B 0 hy 2(hy +hy) hy 0 :
- H 0 0
0 i “ 2(hp-3 + hn-3) hn—y
Ry 0 0 h—y 2(hp—z + hy—1)
— CO -
€1
C
c=| .
Cn-2
LCn—1
— ZO -
Zq
)
Z = .
Zn-2
| Z 1

Wlth hi = ti+1 - ti

Oiv2—0it1 9i+1_9i]

and z;., = 3 [
i+l hitq h;
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Then, the value c; is substituted into Equation (26)
and Equation (27) to obtained the value of b; and d;.

i1 — 6 Qe+ v

bi=—p 3
l
(26)
di _ Ci+31h_ Ci
i
(27)

Finally, all the values of a;, b;, ¢; and d; are
substituted back into Equation (22) to obtain smooth
walking trajectories of the joints. Fig. 3 shows the
walking trajectories of every joint for biped robot
model which are carried out by J. Perry and J. M.
Burnfield [14].
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Fig. 3: Walking trajectories of every joint

3.3 Simulation Parameters Setup
The parameters of the biped robot model used in
this study are shown in Table 1:

Table 1: Parameters of human biped model [15][16]

Loccation Moment
. Link Length, of Centre of
LTt Number Mass, m (kg) L (m) of Mass, Inertia, I
L. (m) (kgm?)

Torso 4 0.678M=44.07 0.75 0.375 0.990776

Thigh 3,5 0.1M=6.5 0.52 0.260 0.138952

Shank 2,6 0.046M=3.0225 0.37 0.185 0.065435
1 0.27 0.180

Foot 0.0145M=0.9425 with 0.008774
7 kh=0.07 0.009
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The sampling time in this study is 0.001s.
Through Heuristic Method, the 4 was found to be
28rad/s. Therefore the controller gains for PD
controller are:

kp:784/52
kD:56/S

4 Results and Discussion

This section will be presenting the results and
discussion of this study. Fig. 4 until Fig. 9 show the
tracking errors for each joints of the bipedal system.
These results show that the system performs very
well with considerably low trajectory tracking error.
Therefore, the system is considerably stable and
controllable.

0.2

0.1+

ol

0.1

-0.2

-0.3

Tracking Ermor (deg)

-0.4

-0.5F

06 . . . I . . .
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

Fig. 4: Tracking error of joint 1

Tracking Error (deg)

-0.4

-0.51

0.6

0.7 I I I I I I I
0 0.5 1 1.5 2 25 3 35 4
Time (s)

Fig. 5: Tracking error of joint 2

0.6

0.5F

0.4

Tracking Error (deg)

. . . . . . .
0 0.5 1 1.5 2 25 3 35 4
Time (s)

Fig. 6: Tracking error of joint 3
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5 ¢
®
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0 0.5 1 15 2 25 3 3.5 4
Time (s)

Fig. 7: Tracking error of joint 4

Tracking Error (deg)

. . . . . . .
0.5 1 15 2 25 3 3.5 4
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Fig. 8: Tracking error of joint 5

0.15

0.1

0.05

Tracking Error (deg)

-0.05

0.1 . 1 . 1 . . .
0 0.5 1 15 2 25 3 3.5 4
Time (s)

Fig. 9: Tracking error of joint 6

Table 2 summarizes the averaged tracking errors
of each joints achieved in the bipedal robot model
using PD-based computed torque control.

Table 2: Averaged tracking error of every joint
obtained using computed torque control

. Averaged Trackin
O Ergror (deg) i
1 0.0261
2 0.0377
3 0.0190
4 0.0295
5 0.0347
6 0.0219
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5 Conclusion
This paper presents a complete mathematical
derivation workout for a generalized seven-link
biped robot model walking on a flat horizontal
surface. The equations of motion for the single
support phase were constructed by using the biped
model with one support leg is in contact with the
surface carrying all of the biped weight, while the
other leg which is freely swinging in the mid air in
the forward walking direction. These equations were
also developed using Lagrange’s Equations using
relative angles. The symmetrical matrix of new
inertia matrix D,(q) shows that the obtained
transformed human biped model is verified.
Trajectory planning is conducted by using
periodic cubic spline to get smooth walking
trajectories of every joint in the human biped model.
Simulation study is done to explore the motion
control performances of the seven-link biped robot
using the obtained mathematical model using
Simulink®, MATLAB® is successful in tracking
the reference trajectories by giving small error value
of every joint in the human bipedal model. For the
future time, the controller of the human biped model
will be extended and modified with different types
of intelligent techniques to provide continuous,
automatic and online computation of required inertia
matrix under constraint while the system is in
motion.
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APPENDIX

APPENDIX A

A. Kinetic Energy

1 . 1 .
Ky = >my 1367 "'51191z

L

K.

Ky

1 R 1 R 1 R
==m,L30% + =m,h?02 + =m,13.62

2

5 5 5 —myhLy.6,6, sin(6, + 6,)
41y Ly Ly 010, cos (6 + 02) +5 1,63

1 R 1 X 1 X 1 X
3 ==-m3l20% + —mzh%02 + =m31302 + -myl3 62

2 2 2 32T

» +m3LiL,60,6;c05(0, +6,)
+m3L,L3.0,05c05(6, + 03) — mzhL,0,0, sin(6, + 6,)
—mghls.0,05 sin(6; + 03) + myL, Ly 0,05c0 s(0, — 63) + §l3932

1 R 1 R 1 . 1 R 1 .
=-m,L207 + §m4h2912 + §m4L22922 + Em4L236§ + Em@ﬁﬂf

2

+myL1L,6,60, cos(8; + 6,) +myL,L36,65 cos(6; + 63)
+ MyLy L4104 cos(6; + 6,) — myhlL,60,0, sin(8; +6,)
— myhL30,0; sin(6; + 63) — myhL,.0,6, sin(6; +6,)
+mMyLyL360,05 cos(8; — 03) + myuLyLac6,0, cos(6, — 6,)
+ My LsLacB30, c05(65 — 6,) +3 1,63
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K = 3mgl36F + 2 meh?0} + 2 mal303 + T msl363 + 2 mel262 +2mal?, 03
+mgLyL,6,6, cos(8; + 6;) + msLy L30,0; cos(6; + 65)
—mgLy L6, 05 cos(8y — 0s) + msLyLs 0,05 cos(6; —O5)
—mshL,6: 6, sin(8; + 0;) — mshLs6; 65 sin(6; + 63)
+mghLs6;0s sin(8; — 0s)—mshLs 6,65 sin(6; — 65)
+m5L2L39293 cos(f, —63) — m5L2L59265 cos(6, +65)
+mgLyLsc0,05 cos(8, + 05) — mgLsLsf365 cos(03 +6s)
+msLsLs. 0305 cos(8s + 05) — mgLsLs 62 + 21595

Ko = 3mgl207 +3mgh?67 +-mgl363 +>mgl363 + 2mgL302 +>mgl202
+ 1maL2 62 + mgL1L,6,6, cos(8; + 6,) + mgLyL36,65 cos(6; + 65)
—mgL, L59195 cos(6, —6s) —mgL,Lg 9196 cos(6, —6¢)
+mgL, Lsc9195 cos(6, —0g) — mﬁhLzﬁlﬁz sin(6; +6,)

—mghL36,65 sin(6; + 63) + mghLs8,65 sin(6; — 05)
+m5hL66166 sin(0; —6¢) — méthc(?lBs sin(6; —6¢)
+mgL,L 9263 cos(6, —63) — m5L2L56295 cos(6, +6s)
—mgLyLe0,06 cos (8, + 66) + mgLyLe 6,60 cos(8, + 65)
—m5L3L56365 cos(6; +65) —mglLs L66396 cos(0; +6¢)
+mgL3Le036 cos(05 + 0g) + mgLsLeOs 0 cos(95 —0¢)
—mgLgLeO56 cos(0s — 0g) — mgLgLecH2 + = p 15‘95

K = 3myL36F + Zmoh?67 +3my1303 + 2 my 1363 + 2mol262 + 2 mol302
1 X
+ Em7k297z
+%m7L27C0'72 +myL1Ly6,0, cos(0y + 6,) + m;LL36,65 cos(6; + 63)
—m7L1L5'91'95 cos(6; —0s) — m7L1L5(?1(?5 cos(61 — 6s)
+m;L1k6,6; sin(0; + 0;) + m;L1L,.0,6; cos(0; + 6;)
—myhL,6,0, sin(6, +6,) — m,hL36,8; sin(8; + 65)
+m7hL59195 sin(6, —6s) + m7hL59196 sin(6; — 6¢)
+m7hk0107 cos(¢91 +6;)— m7hL7C9197 sm(G1 +6,)
+m,L,L 9293 cos(0, —63) —m,L, L59265 cos (6, + 6s)
—m,L,L 9296 cos(6, +0g) —m,L, k6,6, sin(6, —6;)
+m,L, L7C9297 cos(8, — 0;) — m;L3Ls0365 cos(65 + 65)
—m7L3L59396 cos(63 +6¢) — m7L3k9397 sin(6; —6;)
+myL3L; 036, cos(8; — 6,) +myLsL 9565 cos(fs —6¢)
—m,Lsk856, sin(0s + 6;) — m,LsL;.056, cos(6s + 6)
—m;LgkB68; 5in(65 +6,) = m;LeLyc8s0; cos(8s +67) + 1,02

B. Potential Energy

P, =mygL,.sinf;

P, = mygLysinf; + myghcosf; + mygL, sinf,

P; = mygLysinf; + mzghcosf; + mygL,sind, + mygL;.sinfs
P, = mygL,sin6; + myghcos6, + mygL,sinf, + mygL;sinb;

+mygLy.sinb,

Ps = msgL,sinB; + msghcosb; + msglL,sinf, + msgLssin; — msgLssinbs
+msgLs,sinbs

Pg = mggLysinf; + mgghcosf; + mggL,sind, + mggLssinf; — mggLssinbs
—mMggLgSinbg + mggLe Sinbg

P; = mygL,sinB; + m,ghcosb, + m,gL,sinf, + m,gLssin; — m;gLssinbs

—m;gLgsinBs — m,gkcosé, + m;gL,.sinb,
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APPENDIX B
Link 1
d (dL aL miL%. + I + myl2 + myh? + myl? + myh? + m,l3
E(d_f)) Tde, ! [+m4hz +mgl? + mgh? + mgl2 + mgh? + m, 13 + m7h2]
myLy Ly, —myhlye
+myL,L, —mzhL, \
. | —myhL, |
+8, :’;‘;LLllLLZZ cos(6, +6,) +|  * Lzz I'sin(6, + 6,)
+mglLyL, \—m6hL2)
| \+m7LyL, —m;hL, ]
maLy L. —mzhLs,
+mylLqLs —myhls
+05|| +msLyLs [cos(6, +65) + | —mghLs |sin(6; + 65)
+mgLqLs —mghLs
L\+m;L L3 —myhLs
+04[myLyLyc cos(0; + 6,) — myhLy, sin(6; + 6,)]
—msLyLg mshLg
+85 tr::ls:]:lllf; cos(8; — 05) + .;::f;;is; sin(6; — 6s)
—myL,Ls +myhLg
—mgLiLg meghLg
+8 <+m6L1L66) cos(8; — 6g) + (—mshLac) sin(f; — 96)]
—myL,Lg +m,hLg
+8, [(T_":Tiiz;:) cos(6y +6,) + (_Tn:ﬁi C) sin(; + 97)]
myLy Ly, —myhly,
+m3LqL, —mgzhL, \
X —myhL
+62|- :’;‘;LLllLLZZ sin(0; + 6,) + _m‘; . L22 cos(8; + 6,)
+mglLyL, —mghL,
+m;LyL, —myhL, ]
malyLac —mzhLs.
+mylLqLs —myhls
+6%|—| +msLyLs | sin(8; + 65) + | —mshLs |cos(6; + 63)
+mgLqL3 —mghLy
+myLyLs —myhls ]
+02[~myLq Ly sin(0; + 6,) — myhL,, cos(6; + 6,)]
—msLyLs mshLs
+62 tr::liLLllLLs; sin(6; — 6s) — +17nn5!;zLLs; cos(6;, — 0s)
—m;LqLsg +m,hLg
—mgLLe mehLe
+62 (+m5L1L(,C> sin(6;, — 0g) — (—mahLac) cos(0; — 95)]
—myL,Lg +m,hLg

g2 [( Molak ) _ (m7L1L7C) . ]
+65 [(—m7hL7C cos(6; + 6;) +myhk sin(6, + ;)

+gcosO,[my L. + myLy + mzLy + myLy + mgLy + mgLy + m,Lq]
—gsinfi[myh + mzh + myh + mgh + mgh + m;h]
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Link 2
myLyLye —myhly,
+m3L1L2\ —mgzhl,
dfdL\ dL || +myll, —muhL, |
a (déz> a8, = || +mglyL, cos(6, +6,) + —mghL, sin(6, + 0,)
+mglL,L, —mghlL,
+myL,L, —m;hL,
+0,[myL3, + I, + maL3 + myL3 + msL3 + mgl3 + myL3]
mszL,yLa. +mylyLs
+65 (+m5L2L3 + maLng) cos(8; — 03)
+m,L,L3
+04[m4L2Lic 205(62 —L 05)]
5 [(—msLlzLs + msLlyLsc
+bs [( —mgLyLs —myLyLg ) cos(6z + 65)]
. [(—meL,Le + maLzL(,c)
+0, [( —myLyLe cos(6, + 05)]
+0,[m;L,L,. cos(0, — 6;) —m,Lyk sin(6, — 6;)]
myL Ly —myhlye
+m3LiL, —mzhL,
. +myL,L. . —m4hL,
2| _ 4l Ly
+67 +mgliL, sin(6, + 6,) + —mghL, cos(0; +6,)
l +mglyL, —mghL, J
+m;LyL, —m,hL,
mgLyLac +myl,Ls
+62 <+m5L2L3 + m6L2L3> sin(6, — 93)]
+m,L,L3
+62 [m4L2L4C£i21(62 - ef)},
g2 [_ (~MslaLls + mslyLsc) .
65 [ (‘mstLs —myLyLg )sm(02 * 05)]
q2 [ (—MelaLe + mstLec) . ]
+6¢ [ ( ZmoLyLe sin(8; + 6¢)
+65[m;Ly Lo sin(8, — 6;) — (—myLyk) cos(6; — 6;)]
+gcos8,[myL,. + msly, + mylL, + mgL, + mgL, + mL,)
Link 3
[ /malilsc —mzhls, 1
d /dL dL B +myLiLs —myhL;
d_(—> 3= 6,|| +msLiLs |cos(6, + 03) + | —mshLlz |sin(6; + 65)
t\d0s 3 +mgLyLy —mghLs
+m,L{Ls —myhLs
mgLyLac + myLyLs
+6, (+m5L2L3 + m6L2L3) cos(6, — 63)
+m,L,Ls
+03[msL3. + I3 + my L3 + mgl% + mgl? + m,L3]
+64[m4L3LiC 205(93 _L Bf)]
5 [(—mslals + mglzlsc
65 [( —mgLsLs —m;LsLg ) cos(65 + 65)]
. [(—mgL3Le + mgLsLe,
+6¢ [( ZmyLsL, ) cos(0; + 66)]
+6,[m,L3L,. cos(03 — 0,) —m,Lzk sin(6; — 6,)]
msLqLs. —mghLs.
+myLiLs —myhL;
+62|—| +msLiLs |sin(6, + 6;) + | —mshLs |cos(8; + 63)
+mgLiLs —mghL;
[ \4m,L,L, —m,hL, ]
mzLyLa. +myl,Ls
+62 |- (+m5L2L3 + m6L2L3> sin(6, — 03)]
+m,L,L;
+605[myLsLyc sin(0s — 6,)]
g2 [_ (—MsLsls + m5L3L56) . ]
+62 [ ( R sin(; + 6s)
q2 [ (—Melsle + msLsLec) . ]
+6¢ [ ( ZmoLaLg sin(63 + )
+65[m;Ls Lo sin(8 — 6;) — (—myL3k) cos(63 — 6,)]
+gcosOs[msLs. + myls + msLy + mgLy + m;Ls)]
Link 4
d (dL dL .. .
T d_94 - d_€4 = 0,[myLLyc cos(B, + 0,) — myhL,, sin(6; + 6,)]

+€2 [myLyLac cos(8; — 6,)] + G3[myLaLyc cos(63 — 6,)]
+6,myLhc + 1]

+02[—myLy Ly sin(8; + 6,) — myhLy, cos(6; + 6,)]

+é22 [=myLyLyc sin(8; — 6,)] + 932 [-maLsLyc sin(8; — 6,)]
+gcosO,[myLyc]
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Link 5
—msL,Lg mghLg
d (dL dL . |[ +msLLs, —mghLs. | .
T <d95) o, = 6, —mglyLs cos(6; — 6s) + +mghLy sin(0; — 0s)
—m,L,Lg +m,hLg
—msL,Ls
5 || tmslalsc
+0, gLyl cos(6, + 05)
—myL,Ls

. [(—mgLl3Ls + m5L3L55> ]
+6; [( —mylLals — myLaLs cos(63 + 05)
+85[msL% + mgL%. — 2mgLgLs, + Is + mgL% + m;,L2]
+06[(meLsLe — mgLsLec +myLsLe) cos(6s — 66)]
+6,[(—m;LsL,.) cos(0s + 6;) + (—m,Lsk) sin(6s + 6,)]

—msLqLs mshlg
. +msLiL —mghL
2| sLakse : _ 55c —
+651 —mglyLy sin(6; — 6s) + +mghL, cos(6, — 0s)
—myLqLsg +myhLs
—msL,Ls
. L,L
+02 |- tTnsGLZZLS; sin(0, + 65)
—myL,Ls

i2 [ (—MsLlsls + m5L3L55> . ]
+6% [ ( —mylLals — myLsls sin(03 + 0s)
+62[(meLsLe — MelsLec +myLsLe) sin(ds — 65)]
+62[—(—myLgL,.) sin(Bs + 6;) — m,Lsk cos(8s + 6,)]
—gcosOs[msLs — mgLs, + mgLs + m,Ls]

Link 6

d/dL\ dr , [ "™Melile mehle \
d_ — |- ﬁ =0, || tmeLiLe. |cos(6, — 0¢) + | —mghLe. | sin(6; — 6¢)
t\dbs 6 —myLyLg +myhLg

+€2 [(=mgLyLg + mgLyLge —MyLyLe) cos(; + 66)]

+63 [(—meL3Lg + mgLsLg. — myL3Le) cos(83 + 65)]

+€5 [(mgLsLe — MeLsLec +m7LsLg) cos(0s — 6]

+0g[mgl2 + mgl2. — 2mgLgLe, + Ig + m;L2]

+8,[—m;LgLy cos(8g + 67) — m,Lek sin(fg + 6,)]
—mglLyLe mghLg

- <+m5L1L(,C> sin(6, — 6¢) + (—mahL66> cos(6, — 95)]

—myLqLg +m,hLg

+62

+63[—(—meL,Le + MeLyLec — M7LyLe) Sin(B + 66)]

+9§ [—(—=meLsLe + mgLsLec — M7L3Le) sin(63 + 66)]
+62[—(mgLsLe — meLsLec +mMyLsLe) sin(ds — 66)]
+62[—(—myLeLyc) sin(8e + 0;) + (—m;Lgk) cos(66 + 6;)]

—gcosOg[meLg — mgLg. + m;Lg]

Link 7

d (dL dL ..
@ d_67 - d_97 = 0,[(m;L,L;. + m;hk) cos(6; + 6,)

+ (m;L k — myhL,.) sin(6, + 6,)]
+0,[my Ly Ly cos(8, — 87) — m, Lok sin(6, — 6,)]
+63[m,L3L, cos(8; — 6;) — m,Lsk sin(65 — 6,)
+85[—m,LsL,. cos(8s + 68,) — m,Lsk sin(6s — 6,)]
+8¢[-m;LgLy cos(8g + 67) — m,Lek sin(8g + 6,)]
+6,[m,k? + m,L2, + I,]

(m;Lik —m,hL,.) cos(6; + 6;)

—(m,L,L,. + m;hk) sin(6; + 6;)
+602[—m, L,k cos(8, — 0;) — m;L,L,. sin(8, — 6,)]
+62[—m,Lsk cos(8; — 6;) — m,LyL, sin(85 — 6,)]
+62[—m,Lsk cos(8s — 67) + m,LgL, sin(8s + 6)]
+62[—m;Lgk cos(8g + 67) + m,LgL, sin(8 + 6,)]
+gcos8;[m;L,.] + gsind;[m,k]

APPENDIX C

Dyy = myL%. + I, + myl? + myh? + m3l2 + mgh? + myL2 + myh? + mgl?
+mgh? + mgl? + mgh? + m, L2 + m,h?
myLiLye + malLy + myLiL,
Dio = (+m5L1L2 +mglyl, + m7L1L2) cos(By +62)
—myhL,. — mszhL, — myhL,\ .
( —mghL, — mghL, — m,hL, )sm(91 +62)
Dy3 = (mgLyLsc + myLyLs + mgLy Ly + mgLy Ly + m;L,L3) cos(6, + 653)
+(—m3zhLz. — myhLy — mghLz — mghLz — m;hL3) sin(6; + 63)
Dy4 = myLy Ly cos(0; + 0,) — myhL,. sin(6, + 6,)
Dys = (=msLyLs + mslyLs; — mgLyLs — m;LyLs) cos(6; — 65)
+(mghLs — mghLg. + mghLg + m,hLs)sin(6; — 05)
Dy = (=mglLyLg + MgLyLec — M7L1Le) cos(6; — 6)
+(mghLg — mghLg, + m,hLg)sin(6; — 0¢)
Dy; = (m;L k — m;hL;.) sin(6, + 0;) + (m,L,L,. + m;hk)cos(6, + 0)

+62
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Dy1 = Dy

Dyy = myl3, + I + mgl3 + myL3 + mgl3 + mgl% + m, 13

D,5 = (m3LyLse + myLyLs + mglyLy + mgLyLs + myLyLs)cos(6, — 63)
Da4 = MyLyLyc cos(6; — 6,)

Dy5 = (—msLyLs + msLyLse —mgLyLs — myLyLs) cos(6; + 65)

Dy6 = (—meLyLe + MgLyLec — M7LyLe)cos(0; + 66)

D,; = —m;L,ksin(6, — 0,) + m;L,L,.cos(6, — 6;)

31 = Di3
D3; = Dy3
D33 = mgl3, + I + myl% + msl? + mgl3 + m, L3
D34 = myLzLyc cos(8; — 6,)
D35 = (—msLsLs + msLsLs, —mgLsLs — myLsLs) cos(63 + 65)
D36 = (—mgL3Le + mgLzLec — m;yL3Le) cos(83 + 65)
D3y, = —my,Lzksin(03 — 0,) + m;LzL,. cos(6;3 — 60)

Dyy =Diy
D4z = Dy
Dyz = D34
Dyy =mylic + 1,
Dys =
Dy =
Dy; =0
D5y = Dy
D5z = D5
Ds3 = D35
Dsy = Dys

Dgs = mgl2 + msL%. — 2mgLgLs. + I5 + mgL% + m, L2
Dy = (mgLsLg — mgLeLge + myLsLg)cos(8s — )
Ds; = —myLsk sin(05 + 6,) — m;LsL,.cos(0s + 6;)

Dg1 = Dy
Dsz = Dae
De3 = D3¢
Deq = Dy
Des = Dse

Dgg = mgl? + myL2. — 2mgLgLg, + Ig + m;L2
Dg7 = —myLgksin(0¢ + 6,) — myLgL,. cos(0¢ + 67)

D7y =Dy
D7y = Day
D73 = D35
D74 = Dy
Dys = Ds;
D76 = Doz

D,y = myk? + myL23. + 1,

APPENDIX D

A. Inertia Matrix

Dy(1,1) = Dyy — 2Dy, — 2Dy3 — 2Dy 4 + 2Dy5 + 2Dy — 2Dy + Dy + 2Dy
+2D,4 — 2Dy5 — 2D, + 2Dy7 + D33 + 2D34 — 2D35 — 2D34 + 2D35
+Dy4 — 2Dy5 — 2Dy + 2Dy7 + D55 + 2Ds5g — 2Ds7 + Dgg — 2Dg
+D;y

Dy(1,2) = D1z + D13 + D1y — Dy5 — D16 + D17 — Doy — 2Dp3 — 2Dy + 2D55
+2D,¢ — 2Dy — D33 — 2D34 + 2D35 + 2D3¢ — 2D37 — Dyy + 2Dys
+2D46 — 2D47 — D55 — 2Ds6 + 2Ds57 — Dgg + 2Dg7 — Dy

Dq(1,3) = =Dy3 — D14 + D15 + Dig — D17 + Dag + Day — Das — Dy + Dy7
+D33 + 2D34 — 2D35 — 2D36 + 2D37 + Dyy — 2Dys — 2Dy + 2Dy7
+Dss + 2Ds6 — 2D57 + Dgg — 2Dg7 + D77

Dq(1,4) = =Dy14 + D15 + D1g — D17 + Day — Dps — Dyg + Dp7 + D34 — D3
—D3¢ + D37 + Dyy — 2Dys — 2Dy + 2Dy7 + D5 + 2Dsg — 2Ds55
+Dgs — 2Dg7 + D7

Dy(1,5) = D15 + D1 — D17 = Das — Dag + Da7 — D35 — D36 + D37 — Das — Das
+Dy7 + Dss + 2Dsg — 2Ds7 + Dgg — 2Dg7 + D77

D4(1,6) = =Dy + D17 + Dag — Dy7 + D3g — D37 + Dyg — Dy7 — Dse + Ds7
—Dge + 2Dg7 — D77

D4(1,7) = =Dy7 + Dy7 + D37 + D47 — Ds; — Dg7 + D77

170 Volume 10, 2015



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Dq(2,1) = Dq(l,z)

Dq(Z,Z) =D,y + 2Dy3 + 2Dyy — 2Dy5 — 2Dy + 2Dy7 + D33 + 2D34 — 2D35
—2D36 + 2D35 + Dyy — 2D45 — 2Dy + 2D 47 + D55 + 2D56 — 2D5
+Dgs — 2Dg7 + Dy

Dq(2r3) = _D23 _D24 +DZS +D26 _DZ7 _D33 - 2D34 + 2D35 + 2D36
—2D37 — Dyy + 2Dy5 + 2Dy — 2Dy7 — D55 — 2Ds6 + 2D57 — Dege
+2Dg7; — D57

Dq(2r4) = _D24 +D25 +DZG _D27 _D34 +D35 +D36 - D37 _D44 + ZD45
+2D4g — 2Dy7 — Dss — 2Ds6 + 2D57 — Dgg + 2Dg7 — D77

Dq(275) = DZS +D26 _DZ7 + D35 +D36 - D37 +D45 +D46 _D47 _DSS
—2Ds¢ + 2Ds57 — Dgg + 2Dg7 — D4,

D¢(2,6) = =Dy6 + Dp7 — D36 + D37 — Dy + D47 + Dsg — D57 + Dge — 2Dg7
+Dy;

D¢(2,7) = =Dy7 — D37 — Dy7 + Ds7 + D7 — Dy7

Dy(31) = Dy(1,3)

D,(3,2) = Dy(2.3)

Dy (3,3) = D33 + 2D34 — 2D35 — 2D36 + 2D37 + Dyy — 2D45 — 2Dy + 2D,
+Dss + 2D56 — 2Ds7 + Dgg — 2Dg7 + D77

Dy(3,4) = D3y — D35 — D3g + D37 + Dyy — 2Dys — 2Dy + 2D47 + Dss + 2Ds
—2D57 + Dgg — 2Dg7 + Dy

D¢(3,5) = —D35 — D36 + D37 — Das — Dyg + Da7 + Dss + 2Dsg — 2Ds7 + Deg
—2Dg7 + D55

Dg(3,6) = D3g — D37 + Dy — D47 — Dsg + Ds; — Deg + 2Ds7 — D77

Dq (3,7) = D37 + D47 — Ds7 — Dg7 + Dy

Dy(4,1) = Dy (1,4)

Dy(4,2) = Dy (2,4)

Dq(4,3) = D;(3,4)

Dy (4,4) = Dyy — 2Dy — 2D 46 + 2D47 + Dgs + 2Dsg — 2Dg7 + Dgg — 2Dy,
+D7;

Dy (4,5) = —Dy5 — Dy + Dy7 + Dss + 2Dsg — 2Dg7 + Dgg — 2Dg; + D5

Dg(4,6) = D46 — D47 — Dsg + D57 — Dgg + 2Dg7 — D77

Dq 47) = Dy7 — Ds; — De7 + D77

Dy(5,1) = Dy (1,5)

Dq(5,2) = Dg(2,5)

Dq(5,3) = Dg(3,5)

Dy(5,4) = Dy (4,5)

Dq(5,5) = D55 + 2D56 — 2D57 + Dgg — 2Dg7 + D5
D¢(5,6) = —Ds¢ + D57 — Dgg + 2Dg7 — D77

Dq (57) = —Dgs; — Dg7 + D77

D, (61) = Dq(1,6)

Dy (6,2) = Dy (2,6)

Dq(6,3) = D4(3,6)

Dy (64) = D, (4,6)

Dq(6,5) = D4(5,6)

Dy (6,6) = Dgg — 2Dg; + D,
Dq (6,7) = Dg; — D77

Dy (71) = Dq(1,7)
Dq(7,2) = Da(2,7)
Dy (7,3) = Dq(3,7)
Dq(7,4) = Dg(4,7)
Dq(7,5) = Dg(5,7)
Dy (7,6) = D, 6,7)
Dq (7,7) = D,

B. Coriolis and Centripetal Torques Matrix

Hj; =0
_ (—mghLlyc —mghL, — m4hL2)
iz = (—mShL2 —mghL, —m;hL, cos (6, +62)
myLiLye + maLiLy + myLqLy Y\ .
- (+m5L1LZ +mglyLy + m7L1L2> sin(6y +6)
H3 = (—mgzhLs. — myhL; — mghLs — mghLs; — m,hL3) cos(0; + 63)

—(mgLyLy. + myLyLs + mgLy Ly + mgLy Ly + m;L,Ls) sin(6, + 03)
Hyy = (—myhLyc) cos(6y + 0,4) — (myliLyc) sin(6; + 60,)
H;s = —(mghLs — mghLg. + mghLg + m;hLg) cos(6; — 65)
+(=msLyLs + msLyLs — mgLyLs —myLyLs) sin(6; — 0s)
Hyg = —(mghLg — mghLg. + m;hLg) cos(6; — 05)
+(=mgLyiLg + mgLyLgc — Myl Lec) sin(6y — 66)
Hy; = (m;L ik —m,hL,.) cos(6; + 6,) — (m;L,L,. + m,hk) sin(6, + 6,)
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Hy = Hyp

H,, =0

Hys = (mslyLse + mylyLs + mglyLs + mgLyLs + m;LyLsg)sin(6, — 65)
Hyy = myLyLycsin(8; — 64)

—(=msLyLs + msLyLse — mgLyLs — myLaLs)sin(0; + 6s)

Hye = —(=mgLyLe + MeLyLec — M7LyLe)sin(8, + 66)

Hy; = —(—m,L,k) cos(8, — 0;) + m,L,L,.sin(6, — 6;)

=
&
1

H3y = Hyz
H3p = —Hys
H33 =0

Hzq =myLzLycsin(0s; — 0,)

Hzs = —(=msLsLls + msLlsLls, — mgLgls — m;L3Ls)sin(63 + 05)
Hze = —(=mgL3Lle + mglsle, — M7L3Le)sin(8s + 0c)

Hz, = —(—m;Lsk) cos(0; — 0;) + m,LsL,.sin(6; — 6;)

Hyy = Hyy
Hyp = —Hzaa
Hyz = —Hzy
Hyy =

Hys =
Hy=0

Hy7 =0

Hsy = —Hs
Hs; = Hys
Hsz = H3s
Hsy = Hys =
Hs5 =0

Hge = (MgLsLs — MeLsLec + MyLsLe)sin(fs — 6s)
Hs; = (=m;Lsk) cos(0s + 67) — (—=m;LsL;)sin(6s + 0;)

Hey = —Hye
Hgp = Hag
Hez = H3e
Heq = Hyg =
Hes = —Hse
Hee =0

He7 = (=m;Lgk) cos(0 + 67) — (—=m;LeL;c)sin(8s + 07)
Hzy = Hyz
H7, = —Ha;
Hz3 = —Hs;
Hyy = Hy7 =
H7s = Hsy
H7¢ = Hey
Hy7 =

H; = Hyy + Hjy + Hiz + Hyy + His + Hig + Hi;  where i = 1,2,...,7
Hqo=—-Hy+H, + H; + Hy — Hs — Hg + H;

Hgq1 = —H, —H3; —H, + Hg + Hg — H;

Hg, = H3 + Hy — Hs — Hg + H;

Hy3 = Hy — Hs — Hg + H

Hgq = —Hs — Hg + H;

Hq5=Hs_H7

Hq6:H7

C. Gravitational Torques Matrix

G, = gcos6,(m,L,. + myL, + msLy + myL, + mgLy + mgL, + m;L;)
—gsinf;(myh + mzh + myh + mgh + mgh + m;h)

G, = gcosO,(myL,y. + mgly + mylL, + msL, + mgL, + m;Ly)

G3 = gcosOs(msLs. + myLls + mgls + mgLs + mgLs)

Gy = gcos8,(myLs.)

Gs = —gcosOs(mgLs — msLg. + mgls + m;Lg)

Gg = —gcosOg(mglg — mgLg. + myLg)

G, = gcosO,(m;,L,.) + gsinb,(m,k)

Gqo =—G1+ G, +G3+ G, — Gs — G + Gy
Gg1 = =Gy —G3 — Gy + G5 + Gg — G

G2 = G3+ Gy — Gs — G + Gy

Ggs = Gy — G5 — Gg + G

Ggq = —Gs — Gg + Gy

Gq5=Gs_G7

G = G
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