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Abstract: - This study presents an investigation into dynamic modelling of a flexible single-link manipulator 
system using differential evolutionary technique (DE) and particle swarm optimization technique (PSO). 
Details of simulation study, Model Selection, optimization and result analysis are given in this study. The 
input-output data of the system were first acquired through the simulation study using finite element method 
(FDM) based on Lagrangian approach. A bang-bang torque was applied as an input and the dynamic responses 
of the system were investigated. Next, an appropriate model structure was chosen and optimized using DE and 
PSO. One Step Ahead (OSA) prediction, correlation tests and mean squared error (MSE) have been performed 
for validation and verification of the obtained model in characterizing the manipulator system. Furthermore, an 
unseen data was used to observe the prediction ability of the model. A comparative assessment of the two 
models in characterizing the manipulator system is presented in time and frequency domains. Results 
demonstrate the advantages of DE over PSO in parametric modeling of the flexible manipulator system used in 
this study. 
 
 
Key-Words: - Differential evolutionary algorithm, particle swarm optimization, flexible single-link 
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1 Introduction 
Modern flexible link manipulator systems are 
widely used in many areas such as space vehicles, 
medical, defense and automation industries. The 
flexible link manipulator system, compared with 
rigid link manipulator system offers many 
advantages including low inertia, light weight, few 
powerful actuators, cheaper construction, fast 
response, safer operation, higher payload carrying 
capacity and longer reach. In general, the flexibility 
in modern robot manipulators system is an 
unwanted feature since it causes a serious of 
vibration problem when subjected to disturbance 
forces. Therefore the control of the flexible link 
manipulator robot becomes much more complex 
than rigid link robots. Accordingly, there is a 
growing need to develop suitable control strategies 
for such kind of systems [1], [2]. 

To control the vibration of a flexible link system 
effectively, it is often required to obtain an accurate 
or approximate model of the system structure, which 
will result in good control. Thus, finding an 
appropriate model of a dynamic system, such as a 
flexible system, would be the key to design an 

effective controller to suppress the vibration in the 
flexible link manipulator system [1]. 

The process of constructing a structure that 
characterizes the dynamics of a system is called 
system modelling. Different modeling techniques 
for analysis the flexible manipulators are studied by 
a number of researchers [1]. Mathematical method 
and numerical analysis have been proposed, 
developed and used by researchers. Through 
mathematical analysis, the dynamic model of the 
flexible manipulator dynamics is represented in the 
form of a partial deferential equation (PDE). The 
exact solution of such systems is not feasible 
practically and the infinite dimensional model 
imposes severe constraints on the design of 
controllers as well. Hence, the numerical analysis 
method was used to represent the flexible 
manipulator dynamics by solving the PDE using 
assumed modes, finite elements or lumped 
parameter methods [1], [2], [3]. 

To avoid solving the dynamics of flexible single-
link manipulator, it can be modelled using system 
identification approaches [4]. System identification 
is the process of developing an accurate or 
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approximate dynamic model of a physical system 
using a set of input-output data pairs collected at 
input-output terminals of the system using 
experimental or simulation study. Modeling from 
first principles requires an in-depth knowledge of 
the system. System identification techniques can 
represent several system dynamics without 
knowledge of the actual physics of the system. This 
is one of the advantages of using the system 
identification method to represent the model of 
physical systems. 

System identification consists of parametric and 
nonparametric techniques. Parametric modelling 
constitutes building a linear mathematical function 
of a dynamic system based on measured data in 
form of  partial differential/difference equation or 
transfer function. Non parametric modelling is an 
attempt to represent plant with an input-output 
behavioral box, not as an explicit mathematical 
function. 

There are two stages for these methods. The first 
stage is known as characterization, in which the 
assembly of the model such as type and order of the 
differential/difference equation that relate the input 
to the output is defined. The second stage is called 
identification, in which the numerical values of the 
structural parameters are determined. Construction 
of a model based on input-output data pair consist of 
four main components [5]: 

1. Collection of a set of input-output data from 
experiment or simulation. The accuracy of the 
model is highly dependent on the accuracy of the 
collected data. 

2. Determination of a suitable model structure 
from a set of candidate models. 

3. Model estimation, which means using an 
assessment mechanism to determine the best model. 
The estimated model must have similar properties to 
that of the true one, it should be able to simulate the 
dynamic system, and predict the future values of the 
output. 

4. Model validation, which means verifying 
whether the model is sufficient and if it has fulfilled 
the necessary requirements in representing the 
system. 

Several parametric and nonparametric estimation 
methods can be found in the literature. Researchers 
and engineers have been developing and applying 
hard computing methods and soft computing 
methods [6]. One of the parametric soft computing 
methodologies is differential evolutionary 
algorithm. 

Many parametric and nonparametric estimation 
techniques have been employed as optimization 

tools in identification of flexible link manipulator 
such as least mean square (LMS) and recursive least 
squares (RLS) [7], [8]; genetic algorithm (GA) [7], 
[9]; particle swarm optimization (PSO) [10], [11]; 
neural networks (NNs) [12], bacterial foraging 
algorithms (PFA) [13]. It can be noted from the 
literature that the use of DE for modelling 
manipulators has not been reported yet.  

In this study, DE is compared to PSO in term of 
identification of a single-link flexible manipulator. 
First, simulation environment characterizing the 
dynamic behavior of the flexible manipulator 
structure is developed using FEM based on 
Lagrangian approach. Then, DE and PSO based 
identification are carried out using the input-output 
data acquired. The results are obtained in both time 
and frequency domains. The validity of the obtained 
model also will be investigated using OSA 
prediction, correlation tests and MSE. 
 
 
2 Parametric system identification 
Parametric system identification constitutes building 
mathematical model of a dynamic system based on 
measured data. So, the first step is to obtain the 
input-output data pairs through simulation or 
experimental work. Then, define a suitable model 
structure that could represent the system. After 
determining the model structure, the main task of 
identification is to estimate the model parameters, 
which are usually determined on the basis of a 
global minimum criterion function. The final step is 
to verify whether the model is adequate or not using 
validation tests 
 
 
2.1 Flexible Manipulator System 
The flexible single-link manipulator system 
considered in this study is shown in Fig. 1. The link 
has been modelled as a pinned-free flexible beam. 
The pinned end of the flexible beam of length L  is 
attached to the hub with inertia 

hI , where the input 
torque )(tτ  is applied at the hub by a motor, and a 
payload mass 

pM  is attached at the free end. E , I  
and ρ  represent the Young’s modulus, second 
moment of inertia and mass density per unit length 
of the flexible manipulator respectively. 00YX  axis 
and XY  axis represent the stationary and moving 
coordinate respectively. Both axes lie in a horizontal 
plane and all rotation occurs about a vertical axis 
passing through o. 
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The flexible link, viewed as an Euler-Bernoulli 
beam, is modeled based on the following 
assumptions and constraints:  
• The flexible link is viewed as a pinned-free 

flexible beam. 
• The flexible link is assumed to be moving in the 

horizontal plane. Thus, perpendicular 
deformation is neglected as the gravitational 
term is not considered. 

• Cross-section area and material properties 
remain constant in each segment. 

• The effect of rotary inertia and shear 
deformation are ignored.  

The mathematical modeling of a flexible single-
link manipulator was derived using a finite element 
method based on Lagrangian approach [14], [15], 
[16]. The main step in a finite element analysis can 
be divided into six sections as follows: 
1. Decompose the structure into finite elements, 

which are assumed to be interconnected at 
certain points. Number of elements determines 
the accuracy of analysis. 

2. For each element, select an approximating 
polynomials function describing the behavior of 
the element using an approximation technique to 
interpolate the result. 

3. Formulate the element characteristic matrices 
and vectors. The equations can be derived from 
the properties of the material and kinetic and 
potential energies. 

4. Assemble the element matrices and vectors and 
derive the system equation. This equation 
describes the dynamic behavior of the system. 

5. Incorporate the boundary condition. These 
conditions will prevent the structure from 
unlimited body motion. 

6. Solve the system equations with the inclusion of 
the boundary condition. 

In this manner, the overall approach involves 
treating the link of the manipulator as an assemblage 
of N  elements of equal length 

N
Ll = . For each of 

these elements the kinetic energy 
iT  and potential 

energy 
iP  are computed in terms of a suitably 

selected system of five generalized variables Q  and 
their rate of change Q . The development of the 
algorithm can be divided into three main steps: 
finite element method and Lagrangian approach 
analysis, state space representation and obtaining 
the result. An outline of this process is given below: 

For a small angular displacement )(tθ  and small 
elastic deflection )(x,tv , the overall displacement 

 t)y(x,  of a point along the link at a distance  x  
from the hub can be described as a function of both 
the rigid body motion )(tθ  and elastic deflection 

)(x,tv  measured from the line passing through o: 
v(x,t)t)y(x,t)=xθ( +   (1) 

 

 
Fig.1: Schematic diagram of the flexible 

manipulator system 
 
Using the standard FEM to solve dynamic 

problems, the flexible displacement t)(x,vi  can be 
approximately expressed, as: 

(t)(s) Q(x,t)=Nv iii  (2) 
where s, represent the local variable, (s)N n

 and (t)Qn
 

represent the shape function and nodal displacement 
respectively. As a consequence of using the Euler-
Bernoulli beam theory, the finite element method 
requires each the nodes through which we divide the 
beam into elements to possess two degrees of 
freedom, a transverse deflection and rotation at the 
same time when the beam is rotating. The 
displacements of two nodes of the ith element are 
denoted by nv  and 1+nv , and the rotations of the 
nodes by nθ , 1+nθ . Because there are N elements in 
total, the number of generalized variables Q equal 
[ ]22 +N . These necessitate the use of Hermite cubic 
basis functions as the element shape function. 
Hence, the shape function can be obtained as: 

(s)]   (s)   (s)   (s) [=(s) N 4321n φφφφ  
where, 

    )(2s+ )(3s-1=(s) 3

3

2

2

1 ll
φ     )(s+ )(2s-s=(s) 2

32

2 ll
φ  

    )(2s- )(3s=(s) 3

3

2

2

3 ll
φ ,     )(s- )(s=(s) 

2

2

3

4 ll
φ  

and the generalized variables  
T

1n1nnni ]  (t)θ   (t)   v(t)θ   (t)[v=(t)Q ++  
Substituting equation (2) into (1) gives 
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(t)Q(s)N(t) = Q(s)Nt)+y(x,t)=xθ( iii

N

i
i ′′∑

=1

 (3) 

where, 
[ ](s)x N (s)=N ii′  (4) 

T
i ]  [=(t)Q (t)θ(t)   Qi′  (5) 

The new shape function (s) Ni′  in equation (4) and 
new nodal displacement vector (t)Qi′  in equation (5) 
incorporate local and global variables. Among these, 
the angle (t)θ  and the distance x  are global 
variables while (s)N i

 and (t)Qi
 are local variables. 

Define, ∑
=

1-n

1i
il-x=s  as a local variable of the ith 

element, where il  is the length of the ith element. 
The equations (4) and (5) can be expressed as: 

[ ](s))) Nl(N-(s (s)=N ii 1+′  (6) 
(t)Q(s)Ny(s,t)= ii ′′  (7) 

According to the basic finite element method and 
energy principle, the kinetic energy and potential 
energy of ith element of the link can be acquired 
according to equation (8) and (10) as follows: 

[ ] ie
T

i

i

l

i
T

i
T

i

t
T

t

i

QMQ

Q)dsNNρA(Q

dsYYρAds
t

y(s,t)ρAT

′′=

′







′′′=

=





∂
∂

=

∫

∫∫







2
1

2
1

2
1

2
1

0

0

2

0

 (8) 

where 

∫ ′′=
l

i
T

ii )dsNNρA(M
0

 (9) 

is element mass matrix 

[ ] ie
T

i

i

l

i
T
i

T
i

t

ii
T

ii

t

i

QKQ

Q)dsBEI(BQ

)dsQ(B)QEI(B

ds
s

y(s,t)EIP

′′=

′







′=

′′=









∂

∂
=

∫

∫

∫

2
1

2
1

2
1

2
1

0

0

2

0
2

2

 (10) 

where  

∫=
l

i
T
ii )dsBEI(BK

0

 (11) 

is element stiffness matrix 

2
i

2

i ds
(s)NdB
′

=  

For a flexible single-link manipulator system, the 
mass matrix consists of three terms; mass matrix 

due to the structural mass of the manipulator, mass 
matrix due to hub inertia and mass matrix due to tip 
payload mass. A brief outline of the mass matrices 
is given below. The kinetic energy of the ith element 
due to structural mass of the manipulator can be 
obtained using equation (8). Thus, 

is iiis Q][MQ=T ′′ 

2
1  (12) 

the element structural mass matrix yields: 























−−−
−
−
−

=

22
51

41

22
31

21

1514131211

422313
221561354
313422
135422156

420

llllm
llm

llllm
llm

mmmmm

lAρ][M ss
si

 (13) 

where sA  is the cross section area of the 
manipulator, and sρ  is the density of the material of 
the manipulator and  

1)+3-(3140=m 22
11 NNl , 7)-(10 21=mm 2112 Nl=

3)-(5 7=mm 2
3113 Nl= , 3)-(1021=mm 4114 Nl=

2)-(5-7=mm 2
5115 Nl=  

and the generalized variables are 
[ ](t)   (t)v (t)v(t)(t)=(t)Q 1i1iiii ++′ θθθ . The 

kinetic energy of tip payload mass can be found 
using equation (14): 

[ ]

[ ] ip
T

i

ii
T

ip
T

iii
T

i
T

ip

i
T

ippp

QMQ

QNNMQQNNQM

YYM
t

tsyMT

′′=

′′′′=′′′′=

=





∂
∂

=







2
1

2
1

2
1

2
1),(

2
1 2

 (14) 

where i
T

ip NNM ′′=p[M] . Hence, the inertia matrix of 
tip payload mass pM  is: 























=

00000
0M00ML
00000
00000
0ML00ML

]M[

pp

pp
2

pn  (15) 

and the generalized variables are 
] v   v  [=(t)Q 1N1NNNi ++′ θθθ . Rotational kinetic energy of 

driving end can be found using equation (16): 

i
T

ih

2

hh QQI
2
1

t
)t(I

2
1T ′′=





∂
∂

= 

θ  (16) 

The inertia matrix of driving end is expressed as: 
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





















=

00000
00000
00000
00000
0000I

]M[

h

m  (17) 

and generalized variables are ] v   v  [=(t)Q 2211i θθθ′ . 
Similarly, the potential energy due to the elasticity 
of the FEM can be obtained using equation (10) and 
the element stiffness matrices can be expressed  























−
−−−

−
−

=

2l4l62l2l60
l612l6120

2l2l62l4l60
l612l6120

00000

3l

EI
i]nK[  (18) 

The global elements mass matrix has been 
achieved by assembling the element mass matrices 
in equation (13) and adding the payload mass matrix 
(15) and hub inertia mass matrix (17) as in equation 
(19). 

















=∗

Nn

1n

n

]M[0

0]M[
M







 (19) 

The global elements stiffness matrix has been 
achieved by assembling the element stiffness 
matrices in equation (18) as in equation (20). 

















=∗

Nn

1n

n

]K[0

0]K[
K







 (20) 

Considering node coordinates overlapping 
between neighborhood elements when assembled, 
the general coordinate is introduced as












++ 1N 1  N  1-N1-N  3 2 2  1  1 =

z
vvvvvv Q 3 NNθθθθθθθ  . While 

taking boundary conditions into account, the beam 
is fixed on one end and there holds 011 == wθ . Then

1θ and 1w can be removed from the general 
coordinates, while the corresponding row and 
column in the mass matrix and stiffness matrix can 
also be removed. The  total kinetic and potential 
energies from equations (12), (14), (16) and (10) can 
be written as:  

∗∗∗

==

=+++= ∑∑ nn
T

np

N

1i
ia

N

1i
ish QMQ

2
1TTTTT   (21) 

∗∗∗

=

==∑ nn
T

n

N

1i
i QKQ

2
1PP  (22) 

where the local coordinate [ ] [ ] [ ][ ]TNnnnn QQQQ 



21=  

The dynamic equations of motion of the flexible 
manipulator can be derived utilizing the Lagrange 
equation based on general coordinates: 

F
Q
L

Q
L

dt
d

=







∂
∂

−







∂
∂


 (23) 

where PTL −=  is the Lagrantian and F is a vector of 
external forces. Considering the damping, the 
desired dynamic equations of motion of the system 
can be obtained as: 

τbQKQDQM ′=++ ∗∗∗∗∗∗
  (24) 

where ∗M  is the global mass matrix which consist of 
the structural mass, added mass of fluid, payload 
mass and hub mass. ∗K  is global rigidity matrix and 

∗Q  is the general coordinates when substituting 
boundary conditions. [ ]Tb 001 =′  and τ is input 
torque. )(tQ  is the nodal displacement given as: 

]w    w[=Q(t) NN22 θθθ 
 

∗D is structural damping matrix due to structural 
material. For the flexible manipulator under 
consideration, the global mass matrix can be 
represented as: 

















=∗

vv
T
v

v

MM

MM
M

θ

θθθ

 

where vvM  is associated with the elastic degrees of 
freedom (residual motion), vMθ represents the 
coupling between these elastic degrees of freedom 
and the hub angle θ  and θθM  is associated with the 
inertia of the system about the motor axis. Similarly, 
the global stiffness matrix can be written as: 
















=∗

vvK
K

0

00
 

where 
vvK  is associated with the elastic degrees of 

freedom (residual motion). It can be shown that the 
elastic degrees of freedom do not couple with the 
hub angle through the stiffness matrix. The global 
damping matrix ∗D  in equation (24) can be 
represented as 
















=∗

vvD
D

0

00
 

where vvD  denotes the sub-matrix associated with 
the material damping. The matrix is obtained by 
assuming that the beam exhibits the characteristics 
of Rayleigh damping. This proportional damping 
model has been assumed because it allows 
experimentally determined damping ratios of 
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individual modes to be used directly in forming the 
global matrix. It also allows assignment of 
individual damping ratios to individual modes, such 
that the total beam damping is the sum of the 
damping in the modes. Using this assumption, the 
damping can be obtained as 
[ ] [ ] [ ]vvvvvv KMD βα +=  (25) 
where α , and β , are the Rayleigh damping 
coefficients related to the modal damping and 
frequency of the manipulator by: 

ii
2
i 2 ωζβωα =+  (26) 

where iζ  and iω  are the ith modal damping ratio and 
frequency, respectively. Equation (26) indicates that 
the more samples of the modal damping ratio and 
frequency, the more accurate estimation of the 
Rayleigh damping coefficients. However, it is a 
common practice in engineering application to use 
the lower and upper cutoff frequencies of the 
manipulator system and the corresponding modal 
damping ratios to define the values of the Rayleigh 
damping coefficients, such that, 

2
1

2
2

211221 )(2
ωω

ζωζωωωα
−
−

= , 2
1

2
2

11222
ωω
ζωζωβ

−
−

=  

where ω  and ζ  are the modal frequency and 
damping ratio and the subscripts ‘1’ and ‘2’ are the 
lower and upper bounds of the frequency region in 
interest, respectively. 
The ∗∗∗ KDM ,, matrices are of size 

11 * mm  and 
[ ] τTb 001 =′ has 1*1m  size and 121 += nm . For 

simplicity 0=′D and 0)0( =Q  
Now, the equation of motion is expressed in 

state-space form, so that it can be solved using 
control system approaches. 

The state-space form of the equation of motion 
is:  

BuAvv +=  
DuCvy +=  

where  

















−−
=

−− DMKM

I
A
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11

110







 
















=

− eM
B

m

1

1*10


 

[ ]110 mm IC =  
[ ]1*120 mD =  

10m is an 
11 * mm  null matrix, 1mI is an 11 * mm  identity 

matrix, 1*120 m is an 1*1m null vector, and the vector 
e  is the first column of the identity matrix. 

[ ]Tu 00 τ=  
T

1n1n2 211n22 ] uu uu  [=v ++++ θθθθθθ 










 n  
 
 
 
 
2.2 Model Structure 
A variety of model structures are available to assist 
in modelling a system. The choice of model 
structure is based upon an understanding of the 
system identification method and insight and 
understanding into the system undergoing 
identification. The autoregressive moving average 
model with exogenous inputs (ARMAX) model is 
one of the most popular linear models [17], [18]. 
The ARMAX Model structure provides a complete 
model with disturbance properties modelled 
separately from system dynamics. If the model is 
good enough to identify the system without 
incorporating the noise term or considering the 
noise as additive at the output, the model can be 
represented in the ARX form. The ARX model is 
the simplest model incorporating the stimulus 
signal. The estimation of the ARX model is the most 
efficient of the polynomial estimation methods 
because it is the result of solving linear regression in 
analytic form. Moreover, the solution is unique. In 
other words, the solution always satisfies the global 
minimum of the loss function. The ARX model 
therefore is preferable [18]. 

As the simulation data would be collected by the 
sampling process from the simulation procedure, it 
is more straightforward to relate the observed data 
to a discrete time model. The schematic of ARX 
model is shown in discrete domain as in Fig. 2. 
 

 
Fig.2: Schematic of ARX model [19] 

 
Mathematically the ARX model is given by the 

following equation: 
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2

1
1

1 zbzbzb)B(z −−−− +++=   are polynomials 
with associated parameters. x(k) is the input data,
y(k)  is the output data, ξ(k) is the zero mean white 
noise. 1z− is a back-shift operator, n is order of the 
model and 1a  until na and 1b  until nb  are the model 
parameters. The main objective of system 
identification is thus to estimate the model 
parameters as best as possible. 
 
 
2.3 Parameters estimation 
The main task of identification after determining the 
model structure is to estimate the model parameters. 
Optimization methodologies are techniques to 
estimate parameters in a given model structure 
essentially by finding (by numerical search) those 
numerical values of the parameters that give the best 
agreement between the simulated or predicted 
output of the model and the measured one. Fig. 3 
shows the principle of system identification via 
optimization methodologies. As noted, optimization 
methodology uses error function to estimate the 
model parameters. 
 

 
Fig.3.Diagrammatic representation of the principle 

of system identification via optimization 
methodologies 

 
where  x(k) is the actual input,  y(k)  is the actual 
output,  (k)ŷ is the predicted output and  e(k) is the 
prediction error. The predicted error  e(k) between 
the system output  y(k) and OSA estimated model 

output  (k)ŷ at time k  is: )(ˆ)()( kykyke −= . The 
mean square error is defined as: 

∑
=

−=
N

1k

2(k)]ŷ[y(k)
N
1MSE . An obvious approach is 

then to estimate the model parameters so as to fit the 
predicted output  (k)ŷ as best as possible to the real 
output  y(k) . In other words, the parameters should 
be estimated so that MSE converges to zero. 
Therefore, MSE was employed as the fitness 
function of the optimization methodology and the 
optimization process of the optimization 
methodology was conducted to estimate the model 
parameters so that the value of MSE was reduced to 
a distinct level. Several optimization methodologies 
can be found in the literature. Two of these methods 
are DE and PSO. 
 
 
2.3.1 Differential Evolution Algorithm 
Evolutionary algorithms are used effectively for 
solving difficult optimization problems such as 
nonlinear global optimization problems subjected to 
multiple nonlinear constraints [20]. The differential 
evolution algorithm (DE) proposed by Storn and 
Price is a population-based stochastic optimization 
algorithm developed to solve nonlinear and multi-
modal global optimization problems. DE is an 
efficient, robust, and effective algorithm. It uses 
mutation and crossover operations as searching 
mechanisms and selection operations to direct the 
search to the most promising regions of the search 
space. New candidate individuals are made by 
combining the target individual and several other 
individuals by randomly choosing from the same 
population, where the candidate with a better fitness 
value replaces the target individual [21]. The DE 
can be outlined as shown in Fig. 4. 

The basic operations of differential evolution can 
be described as: 
Initialization: All the DE optimization parameters 
required for optimization process are listed below: 
• Problem dimension, D. 
• Population size, N. 
• Number of generation /stopping condition, G. 
• Boundary constraints, L-H. 
The upper and lower bounds of each parameter is set 
based on the parameters range such that

U
jGi,j,

L
j XXX ≤≤  where  D,…1,2,=j and

N ,…1,2,=i . After that, the target (parent) vector 
is generated by a random number assigned to each 
parameter of every vector within the prescribed 
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range ]X,X[ U
j

L
j . Equation (28) shows how a target 

(parent) vector is created.  
}X…,X,{X=X (0)i,(D),(0)i,2,(0)i,1,(0)i,j,  

L
j

U
j

U
jji,0j, x+) x-(0,1).(x rand=X  (28) 

After that, evaluation of fitness function of each 
vector is implemented. At the first generation  

(0)i,j,(G)i,j, X =X . 
Mutation: Mutation can be viewed as an operation 
that generate Mutant individuals from the target 
vectors such that the weighted difference of two 
randomly selected individuals from the target 
vectors are multiplied by a constant factor and then 
added with a randomly selected individual from the 
target vectors. Equation (29) shows how a mutant 
(donor) vector is created.  

}V…,V,{V=V (G)i,(D),(G)i,2,(G)i,1,(G)i,j,  
)VV(VV 1)r2,(Gj,1)r1,(Gj,1)j,i,(G 1)(Gr3,j, +++ −+=

+
F  (29) 

The mutation factor (or scale factor), F is a positive 
real constant that controls the rate of the differential 
variation between two individuals and its value lies 
between 0 and 2. This type of mutation is called 
de/rand/1. There are other forms of creating the 
mutant vector frequently used in the literature. 
 

 
Fig.4: Working Principle of DE 

 
Crossover: crossover is introduced to increase the 
diversity of the perturbed parameters for each 
individual in the population. The aim of applying 
the crossover is to achieve trial vectors by replacing 
a certain individual in the target vectors with 
corresponding individual in the donor vectors such 
that an individual is selected randomly from the 
mutant individuals when rand (D) is less than the 
value of the crossover probability. Equation (30) 
shows how a trail vector is created.  

}U…,U,{U= U (D),i,(G)2,i,(G)1,i,(G)j,i,(G)  



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
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The crossover ratio controls the fraction of 
parameter values that are to be copied from the 
mutant vector. If the value of a first random number 

Evaluate the objective function of 
trail vector  

 

Initialize - generate a target 
vector 

Mutation to generate a mutant 
vector 

Selection operation 
 

Is terminating 
criteria satisfied? 

Define the search space  

Evaluate the objective function of 
target vector  

Crossover to generate a trail 
vector 

Stop: output the final result 

Yes 

No 
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is less than the chosen CR then the corresponding 
element of mutant vector is passed on to the target 
vector otherwise it is copied from the trial vector. 
This process is repeated for all elements and for the 
entire population.  
Selection: If the objective function value of the 
individual in the trial vector )1,(, +GijU  has an equal or 
lower corresponding individual in the target vectors

)(,, GijX , it replaces the target vector in the next 
generation; otherwise, the target retains its place in 
the population for at least one generation. Equation 
(31) shows how a mutant (donor) vector is created.







 ≤

= +++
+ otherwiseX

XfUfifU
U

Gij

GijGijGij
Gij

)(,,

)1(,,)1(,,)1(,,
)1(,,

)()(  (31) 

 
 
2.3.2 Particle Swarm Optimization 
Particle swarm optimization is a population based, 
stochastic optimization technique introduced by 
Kennedy and Eberhart [22]. The operating 
procedure of a PSO can be described through the 
stages shown in Fig. 5.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. 5: Flowchart of PSO algorithm: (a) PSO 

procedure, (b) Initial setup procedure of PSO, (c) 
Initial population procedure of PSO, (d) Update 

population procedure of PSO 
 

Update the pbest and gbest positions and 
  

Loop from 1: (Max Generation) or (stop 
criterion) 

Evaluate cost of each particle using J(θ) 

Calculate the new velocity and positions for 
all swarm elements  

End Loop 

Create position vectors of random (N) 
particles of dimension (D) without violating 

[Ub, Lb] 

Create velocity vectors of random (N) 
particles of dimension (D)  

Number of dimensions (D) 

Upper and lower bounds [Ub, Lb] 

Number of particles (N)  

Maximum Iteration 

Define hypothesis function h(θ) 

Define the cost function J(θ) 

End 

Initial Setup 

Update Population 

Start 

Initial Population 

Display Output Results 
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PSO is initialized with a group of random 
particles, ‘fly’ in the search space of an optimization 
problem. Particles are updated with two ‘best’ 
values every iteration. The first one is called pbest, 
which is the best position a particle has visited so far 
and is memorized. Another ‘best’ value is the global 
best or gbest, obtained so far by any particle in the 
population. Using their memories of the best 
positions of pbest and gbest, particle is then 
accelerated toward those two best values by 
updating the particle position and velocity using the 
following set of equations:  

1))-(tx-(p randc+
1))-(tx-(p randc+1)-(twv(t)v

idgd2

 idid1 id=id  

)t(v+1)-(t x=(t)x ididid  
where )(vid t  and )(xid t  are the current velocity and 
position vector of the i-th particle in the d-
dimensional search space respectively. 1C  and 2C  
are acceleration coefficients usually 2CC 21 == and 
rand is a random number between 0 and 1. w  is the 
inertia which serves as memory of the previous 
direction, preventing the particle from drastically 
changing direction. High values of w  promote 
global exploration and exploitation while low values 
of w  lead to a local search. The common approach 
is to provide balance between global and local 
search by linearly decrease w  during the search 
process. Decreases the inertia over time can be 
expressed as:  

t
T

wwwtw endstart
start

max

)( −
−=  

where startw  and endw  are the starting and end point 
of inertia weight set as 0.9 to 0.25 respectively and 

maxT  is the maximum number of time step the 
swarm is allowed to search.  
 
 
2.4 Model Validation 

Model validity tests are procedures designed to 
detect the adequacy of a fitted model. Once a model 
of the system is obtained, it is required to validate 
the model whether it is good enough to represent the 
system or not. Many model validation tests are 
available in the literature. In this study, mean 
squared error, one step-ahead prediction and 
correlation tests were used to validate the model. 
Furthermore, an unseen data used to observe the 
prediction ability of the model and pole-zero plots 
test was used to check the stability of the obtained 
models. 
 

2.4.1 One Step-Ahead Prediction (OSA) 
A common measure of predictive accuracy used in 
control and system identification is to compute the 
OSA prediction of the system output. This is 
expressed as: 

)1()(
)1()()(ˆ

1

1

−+−+
−−−−=

kybnkyb
kyankyaky

yn

xn





 

Often )k(ŷ will be a relatively good prediction of 
)k(y over the estimation set, even if the model is 

biased, because the model was estimated by 
minimizing the prediction errors. 
 
 
2.4.2 Mean Squared Error 
Mean squared error is one of the most common 
variables used in the validations. The mean-squared 
error is difference between actual output of the 
system and the predicted output produced from the 
input to the system and the optimized parameters. 
 
 
2.4.3 Correlation Tests  
Correlation Tests is a more convincing method to be 
used in model validation. Correlation test is a 
statistical test that shows the degrees of the 
relationship between two variables. There are two 
types of correlation test: 
1. Auto correlation test is representing as a vector.  
2. Cross correlation test is representing as matrix. 

In the theory of linear systems, the usual 
statistical approach to validate identified linear and 
nonlinear models consists of computing the 
autocorrelation test examines the correlation among 
the residuals themselves while the cross-correlation 
test surveys the correlation between the residuals 
and past inputs. It has been shown that acceptable 
predictions over different data sets are produced 
only if the model is unbiased. If the model structure 
and the estimated parameters are correct then the 
prediction error sequence e(t) should be 
uncorrelated with all linear and nonlinear 
combinations of past inputs and outputs (unbiased) 
and this will hold if and only if the following 
conditions are satisfied : 
 

[ ] )()()()( tteteEee δττφ =−=  
[ ] τττφ ∀=−= ,0)()()( tetuEue  
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In practice, the correlation will never be exactly 
zero for all lags but the model is considered as 
adequate if the correlation tests lay within 95% 
confidence limits, defined as 1.96/√N, where N is 
the data length. Autocorrelation of the residual will 
also never be an ideal delta function but will be 
considered as adequate if the autocorrelation plot 
enters the 95% confidence limits before lag one.  

Ideally the model validity test should detect all 
the deficiencies in algorithm performance including 
bias due to internal noise. Consequently the full five 
tests defined by equation should be satisfied. For 
linear system only first two conditions must be 
satisfied. 
 
 
3. Implementation and Results 
To study the dynamic behavior of the flexible 
manipulator system, a computer program was 
written within Matlab environment to simulate the 
state space matrices derived from the mathematical 
modeling (referred to section 2.1). A thin aluminium 
alloy with the specifications shown in Table 1 is 
considered [3]. 

For simplicity purposes, the effect of mass 
payload is neglected. Throughout this simulation, a 
bang-bang torque input with an amplitude ±0.3 Nm 
was applied at the hub of the manipulator as shown 
in Fig. 6. The response of the flexible manipulator at 
the hub angle and end-point residual is monitored 
for duration of 3.0 seconds with sampling time 0.37 
ms and is observed and recorded as shown in Figs. 7 
(a), (b) and 8 (a), (b) in both time and frequency 
domain respectively. Previous researches 
demonstrated the validity of FEM in modeling 
flexible single link manipulator system []. 
Therefore, the same FEM is adopted in this study.  

The flexible manipulator is a single-input 
multiple-output (SIMO) system. The input, is the 
torque of the motor and the outputs are the hub-
angle and end-point residual. In this study, two 
single-input single-output (SISO) models are 
developed. The first model represents system 
behavior from input torque to hub-angle output and 
the second model represents system behavior from 
input torque to the end-point residual output.  
 
 
 
 
 
 
 
 

Table 1 
Physical parameters of the flexible manipulator 

Components value 
Length (l) 960 mm 
Width (w) 19.008 mm 
Thickness (h) 3.2004 mm 
Mass density (ρ) 2710  kg m−3 
second moment of inertia (I) 5.19 × 10−11 m4 
Young’s modulus (E) 71×109 N m−2 
hub inertia (Ih) 5.86×10−4 kg m2 

 

 
Fig.6: Bang-bang input torque 

 
(a) 

 
(b) 

Fig.7: Hub angle response, (a) Time domain, (b) 
Frequency domain 
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(a) 

 
(b) 

Fig.8: End-point residual response, (a) Time 
domain, (b) Frequency domain  

 

3.1 Modeling of  Hub Angle Using DE 
A Matlab program has been created based on DE 
algorithm and used to estimate the parameters of 
ARX model using torque input and hub angle output 
data obtained from the simulation study. Since there 
was no a priori knowledge regarding the suitable 
order of the model, the structure realization was 
performed by a trial-and-error method. Randomly 
selected parameters were optimized for different, 
arbitrarily chosen order to fit into the system by 
applying the working mechanism of DE based on 
One Step-Ahead prediction. Table 2 shows the work 
that carried out to select the best model order. 

It can be noted from Table 2 that the best result 
was achieved with model order = 4 for 4000 data 

length. From the work carried out for the model 
order = 4, the satisfactory results were achieved 
with the following set of parameters: 

Population Initial Range: [-3; 3] 
Number of Generations: 2800 
Population Size: 10 
The data set, comprising 7986 data points was 

divided into two sets of 4000 and 3986 data points 
respectively. The first set was used to estimate the 
model parameters while the second set was used to 
validate the model. Both output and estimated 
output of the hub angle in time and frequency 
domains are plotted in Figs. 9 and 10 respectively. 
The error between actual and predicted DE output 
are plotted in Fig. 11. The division between the 
trained data and the unseen data is indicated as a 
vertical line located at point 4000 as shown in Figs. 
9 and 11. The best mean square error of DE 
algorithm is 2.504 × 10−4. Using the proposed 
identification procedure, the parameters of the 
model were estimated as follows:  

 
𝑎𝑎1 −1.998052 
𝑎𝑎2 0.998075 
𝑏𝑏1 0.000156 
𝑏𝑏2 −0.000172 

 
Figs. 9, 10 and 10 show that the model was able 

to mimic the measured output well. The pole-zero 
diagram and correlation tests are depicted in Figs. 
12 and 13 respectively. It is noticed from Fig. 12 
that the model was stable and the poles of the 
transfer function were inside the unit circle and the 
zero was outside the unit circle indicating non-
minimum phase behavior. The correlation functions 
were carried out for 1000 samples to determine the 
effectiveness of the DE-based model. The results 
were found to be within 95% confidence level thus 
confirming the accuracy of the results.  

 

Table 2 
Comparative assessment for hub angle best order 

 MSE Correlation test time No. of generation stability 

four 2.5 × 10−4 unbiased 25.05 2800 stable 
six 3.75×10−4 unbiased 57.8 6000 stable 

eight 5.02×10−4 unbiased 133.4 12800 stable 
ten 6.32×10−4 unbiased 262.4 23000 unstable 

twelve 7.61×10−4 unbiased 323 36000 unstable 
fourteen 8.83×10−4 unbiased 424.8 42000 unstable 
Sixteen 0.0010 unbiased 447.5 48000 unstable 
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Fig.9: Actual and estimated output of the hub angle 

in time domain using DE 

 
Fig.10: Actual and estimated output of the hub 

angle in frequency domain using DE  

 
Fig.11: Error between actual and estimated output 

of hub angle using DE 

 
Fig.12: Pole-zero diagram of hub angle using DE 

 
a) Auto corelation 

 
b) Cross correlation 

Fig.13: Correlation tests for hub angle using DE 
 
 
3.2 Modeling End-point residual Using DE 
A Matlab program has been created based on the DE 
algorithm, and used to estimate the parameters of 
ARX model based on the torque input and end-point 
residual output data obtained from the simulation 
study. Since there was no a priori knowledge about 
the suitable model order of the flexible manipulator 
system, the structure realization was performed 
using a heuristic method. Randomly selected 
parameters were optimized for different, arbitrarily 
chosen order to fit into the system by applying the 
working mechanism of DE based on OSA 
prediction. Table 3 shows the work carried out to 
select the best model order 

It can be noted from Table 3 the best result was 
achieved with model order = 6, for 4000 data length. 
For the best model order, DE was designed with 10 
individuals with maximum number of iterations set 
to 6000. The data set, comprising 7986 data points 
divided into two sets of 4000 and 3986 data points 
respectively. The first set was used to compute the 
model parameters whilst the second set was used to 
validate the model. In addition, the best mean square 
error of DE algorithm is 1.587 × 10−6. Using the 
proposed identification procedure, the parameters of 
the model were estimated as follows: 
 

𝑎𝑎1 −2.990312 
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𝑎𝑎2 2.9849733 
𝑎𝑎3 −0.9946538 
𝑏𝑏1 −0.000530 
𝑏𝑏2 0.0000267 
𝑏𝑏3 0.000502 

 
Both output and estimated output of end-point 

residual in time and frequency domains are plotted 
in Figs. 14 and 15 respectively and the error 

between actual and predicted DE output are plotted 
in Fig. 16. The division between the trained data and 
the unseen data is indicated as a vertical line located 
at point 4000 as shown in Figs. 14 and 16. The pole-
zero diagrams and correlation tests are depicted in 
Figs. 17 and 18 respectively. Fig. 17 indicated that 
the model is stable. The correlation test functions 
results confirm that the model is acceptable. 
 

 
Table 3 

Comparative assessment for end-point residual best order 
 MSE Correlation test  time No. of generation  stability 

four 1.8× 10−6 biased 15.5 4000 stable 
six 2.3× 10−6 unbiased 55.9 6000 stable 

eight 2.1× 10−6 unbiased 105.5 10400 stable 
ten 6.4× 10−6 biased 330 32000 unstable 

twelve 4.5× 10−6 biased 353.0 36000 unstable 
fourteen 7.2× 10−6 biased 495.5 42000 unstable 
Sixteen 6.9× 10−6 biased 523.3 48000 unstable 

 
 

 
Fig.14: Actual and estimated output of end-point 

residual in time domain using DE 

 
Fig.15: Actual and estimated output of end-point 

residual in frequency domain using DE 

 
Fig.16: Error between actual and estimated output 

for end-point residual using DE 

 
Fig.17: Pole-zero diagram of end-point residual 

using DE 
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a) Auto corelation 

 
b) Cross corelation 

Fig.18: Correlation tests of end-point residual using 
DE 

 
 
3.3 Modeling Hub Angle Using PSO 
Investigations were then carried out with PSO 
algorithm to model the hub angle using the same 
input-output data and same model order achieved 
with DE. PSO was designed with 50 individuals 
with maximum number of iterations set to 30000. 
The best mean square error of PSO is 2.519 ×
10−4. Using the proposed identification procedure, 
the parameters of the model were estimated as 
follows: 
 

𝑎𝑎1 −1.643623 
𝑎𝑎2   0.643645 
𝑏𝑏1  0.003884 
𝑏𝑏2  −0.003815 

 
Both output and estimated output of end-point 

residual in time and frequency domains are plotted 
in Figs. 19 and 20 respectively and the error 
between actual and predicted PSO output are plotted 
in Fig. 21. The division between the trained data and 
the unseen data is indicated as a vertical line located 
at point 4000 as shown in Figs. 19 and 21. The pole-
zero diagrams and correlation tests are depicted in 
Figs. 22 and 23 respectively. Fig. 22 indicating that 
the model is stable with non-minimum phase 

behavior. The correlation test functions results 
confirm that the model is acceptable. 

 

 
Fig.19: Actual and estimated output of the hub 

angle in time domain using PSO 

 
Fig.20: Actual and estimated output of the hub 

angle in frequency domain using PSO 

 
Fig.21: Error between actual and estimated output 

for hub angle using PSO 

 
Fig.22: Pole-zero diagram for hub angle using PSO 
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a) Auto corelation 

 
b) Cross corelation 

Fig.23: Correlation tests for hub angle using PSO 
 
 
3.4 Modeling End-point residual Using PSO 
Investigations were then carried out with the PSO 
algorithm to model the end-point residual using the 
same input-output data and same model order 
achieved for end-point residual used in DE. PSO 
was designed with 150 individuals with maximum 
number of iterations set to 30000. The best mean 
square error of PSO algorithm is 1.014 × 10−4. 
Using the proposed identification procedure, the 
parameters of the model were estimated as follows:   
 

𝑎𝑎1 -0.448655 
𝑎𝑎2 -2.375043 
𝑎𝑎3 1.828526 
𝑏𝑏1 -0.036951 
𝑏𝑏2 0.341808 
𝑏𝑏3 −0.305859 

 
Both output and estimated output of end-point 

residual in time and frequency domains are plotted 
in Figs. 24 and 25 respectively and the error 
between actual and predicted PSO output are plotted 
in Fig. 26. The division between the trained data and 
the unseen data is indicated as a vertical line located 
at point 4000 as shown in Figs. 24 and 26. The pole-
zero diagrams and correlation tests are depicted in 
Figs. 27 and 28 respectively. Fig. 27 indicated that 
the model is unstable. The correlation test functions 
results showed that the model is biased. 

 
Fig.24: Actual and estimated output of end-point 

residual in time domain using PSO 

 
Fig.25: Actual and estimated output of end-point 

residual in frequency domain using PSO 

 
Fig.26: Error between actual and estimated output 

for end-point residual using PSO 

 
Fig.27: Pole-zero diagram for end-point residual 

using PSO 
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a) Auto corelation 

 
b) Cross corelation 

Fig.28: Correlation tests for end-point residual 
using PSO 

 
 
5 Comparative Assessment 
The overall comparative performance of DE and 
PSO modelling approaches in terms of mean 
squared error, stability and correlation tests is 
summarised in Table 4. 

From Table 4, it can be seen that the stability and 
the correlation test results by DE are better than 
PSO especially for the end-point residual modelling. 
However, a major advantage of the PSO is that the 
algorithm is simple. Table 4 also shows that the 
performance of DE in terms of mean-squared error 

is better than the PSO with the same model 
structure. Therefore, high performance computing 
power could provide better solutions in the real time 
implementation of the DE based identification. 
 
 
6 Conclusion 
In this work, DE and PSO have been adopted for 
modelling a single-link flexible manipulator system. 
Input-output data pairs have been collected from a 
simulation study and used in developing linear 
models of the system from input torque to hub-angle 
and end-point acceleration. The performances of 
DE-ARX and PSO-ARX models have been assessed 
through many validation tests. It has been 
demonstrated that the DE and PSO modelling 
technique has performed well in approximating the 
system response and DE is better than PSO in 
modelling a single-link flexible manipulator system. 

This simulation platform forms the basis to 
implement different control structures to control a 
single-link flexible manipulator system. Moreover, 
this study can be extended to use system 
identification techniques for modeling a single-link 
flexible manipulator system using a real plant to 
implement different control structures before online 
control can be implemented. 
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Table 4 

Overall comparative assessment 
Modelling 

domain 
MSE Stability Correlation test 

End-point residual DE 1.58 × 10−6 stable unbiased 
PSO 1.01 × 10−4 unstable biased 

hub angle DE 2.50 × 10−4 stable unbiased 
PSO 2.52 × 10−4. stable unbiased 
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