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Abstract: This paper is concerned with a n-species cooperation system with distributed delays and feedback con-
trols on time scales. For general nonautonomous case, by using differential inequality theory and constructing a
suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of
the system are obtained. For the almost periodic case, by using the Razumikhin type theorem, sufficient conditions
which guarantee the existence of a positive almost periodic solution of the system are obtained. Finally, an example
and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.
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1 Introduction
As is well known, ecosystem in the real world are con-
tinuously disturbed by unpredictable forces which can
result in changes in the biological parameters such as
survival rates. Of practical interest in ecology is the
question of whether or not an ecosystem can with-
stand those unpredictable disturbances which persist
for a finite period of time. In the language of control
variables, we call the disturbance functions as con-
trol variables. During the last decade, dynamic be-
haviors such as permanence, global attractivity, pe-
riodicity and almost periodicity of different types of
ecosystems with feedback control have been studied
extensively; see, for example, [1-5] and the references
therein.

On the other hand, in the natural world, there are
many species whose developing processes are both
continuous and discrete. Hence, using the only differ-
ential equation or difference equation can’t accurately
describe the law of their developments; see, for ex-
ample, [6,7]. Therefore, there is a need to establish
correspondent dynamic models on new time scales.

Recently, ecosystems with periodic coefficients
on time scales received more researchers’ special at-
tention due to their applications; see, for example, [8-
13] and the references therein. However, upon con-
sidering long-term dynamical behaviors, the periodic
parameters often turn out to experience certain pertur-
bations, that is, parameters become periodic up to a
small error, then one has to consider the ecosystem-
s to be almost periodic. Therefore, if we consider

the effects of the environmental factors (e.g. seasonal
effects of weather, food supplies, mating habits, and
harvesting), the assumption of almost periodicity is
more realistic, more important and more general.

To the best of the authors’ knowledge, there are
few papers published on the dynamic behaviors (per-
manence, global attractivity, almost periodicity, etc.)
of ecosystems on time scales, especially for coopera-
tive ecosystems on time scales. As we know, coopera-
tive ecosystems is one kind of most important ecosys-
tem in the real world.

Motivated by the above, in the present paper, we
shall study a nonautonomous n-species cooperation
system with distributed delays and feedback controls
on time scales as follows:

x∆i (t) = ri(t)xi(t)

[
1− ci(t)xi(σ(t))

− xi(t)

ai(t)+
n∑

j=1,j ̸=i
bij(t)

∫ 0
−θij

Bij(s)xj(t+s)∆s

]
−di(t)ui(t)xi(t)
−hi(t)xi(t)

∫ 0
−τi

Hi(s)ui(t+ s)∆s,

u∆i (t) = −αi(t)ui(t) + βi(t)xi(t)

+gi(t)
∫ 0
−ηi

Gi(s)ui(t+ s)∆s,

(1)

where xi(i = 1, 2, · · · , n) is the density of cooper-
ation species, ui(i = 1, 2, · · · , n) is the control vari-
able.

Throughout this paper, we assume that

(H1) ri(t), ai(t), bij(t), ci(t), di(t), hi(t), αi(t), βi(t),
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gi(t), i, j = 1, 2, · · · , n are all continuous, real-
valued functions which are bounded above and
below by positive constants;

(H2) θij , τi, ηi are all positive constants, Bij(s),
Hi(s), Gi(s) are all nonnegative continuous
functions such that

∫ 0
−θij

Bij(s)∆s = 1,
∫ 0
−τi

Hi(s)∆s = 1,
∫ 0
−ηi

Gi(s)∆s = 1, i, j = 1, 2,
· · · , n.

Let τ = max{θij , τi, ηi, i, j = 1, 2, · · · , n}, con-
sider (1) together with the following initial conditions

xi(θ) = φi(θ) ≥ 0, θ ∈ [−τ, 0]T, φi(0) > 0,

ui(θ) = ψi(θ) ≥ 0, θ ∈ [−τ, 0]T, ψi(0) > 0, (2)

where φi(s) and φi(s) are continuous on [−τ, 0]T.
For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function.
The organization of this paper is as follows. In

section 2, we introduce some notations and definitions
and state some preliminary results needed in later sec-
tions. Section 3 is devoted to studying the permanence
and the global attractivity of system (1). Section 4 is
devoted to studying the existence of a unique positive
almost periodic solution of the system (1). An exam-
ple is given in Section 5.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

The basic theories of calculus on time scales, one
can see [14].

A function p : T → R is called regressive provid-
ed 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions p : T → R will

be denoted by R = R(T,R). Define the set R+ =
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. (see [14]) If p, q : T → R be two regres-
sive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(vi) (ep(t, s))∆ = p(t)ep(t, s).

Lemma 2. (see [15]) Assume that a > 0, b > 0 and
−a ∈ R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a
[1+(

ay(t0)

b
−1)e(−a)(t, t0)], t ∈ [t0,∞)T.

Lemma 3. (see [15]) Assume that a > 0, b > 0. Then

y∆(t) ≤ (≥)y(t)(b−ay(σ(t))), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a
[1+(

b

ay(t0)
−1)e⊖b(t, t0)], t ∈ [t0,∞)T.

Let T be a time scale with at least two positive
points, one of them being always one: 1 ∈ T, there
exists at least one point t ∈ T such that 0 < t ̸= 1.
Define the natural logarithm function on the time scale
T by

LT(t) =

∫ t

1

1

τ
∆τ, t ∈ T ∩ (0,+∞).
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Lemma 4. (see [16]) Assume that x : T → R+ is
strictly increasing and T̃ := x(T) is a time scale. If
x∆(t) exists for t ∈ Tk, then

∆

∆t
LT(x(t)) =

x∆(t)

x(t)
.

Lemma 5. (see [14]) Assume that f, g : T → R are
differentiable at t ∈ Tk, then fg : T → R is differen-
tiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

Let C = C([−τ, 0]T,Rn),H∗ ∈ R+. Denote
CH∗ = {φ,φ ∈ C, ∥φ∥ < H∗}, SH∗ = {x, x ∈
Rn, ∥x∥ < H∗}, ∥φ∥ = sup

θ∈[−τ,0]T

|φ(θ)|.

Consider the system

x∆ = f(t, x), (3)

where f(t, ϕ) is continuous in (t, ϕ) ∈ R × C and
almost periodic in t uniformly for ϕ ∈ CH∗ , CH∗ ⊆
C. ∀α > 0,∃L(α) > 0 such that |f(t, ϕ)| ≤ L(α), as
t ∈ T, ϕ ∈ Cα.

In order to investigate the almost periodic solu-
tion of system (3), we introduce the associate product
system of system (3)

x∆ = f(t, x), y∆ = f(t, y). (4)

Lemma 6. (see [17]) Assume that there exists a Lya-
punov function V (t, x, y) defined on [0,+∞)T ×
SH∗ × SH∗ , which satisfies the following condition-
s:

(1) α(|x−y|) ≤ V (t, x, y) ≤ β(|x−y|), where α(s)
and β(s) are continuous, increasing and positive
definite;

(2) |V (t, x1, y1) − V (t, x2, y2)| ≤ ω(|x1 − x2| +
|y1 − y2|), where ω > 0 is a constant;

(3) D+V ∆
(2.2)(t, x, y) ≤ −λV (t, x, y), where λ > 0

is a constant.

Moreover, assumes that (3) has a solution ξ(t) such
that ∥ξ∥ ≤ H < H∗ for t ∈ [t0,+∞)T. Then sys-
tem (3) has a unique almost periodic solution which
is uniformly asymptotic stable.

Definition 7. A positive bounded solution (x1(t),
x2(t), · · · , xn(t), u1(t), · · · , un(t)) of (1) is said to
be globally attractive if for any other positive bounded
solution (y1(t), y2(t), · · · , yn(t), v1(t), · · · , vn(t)) of
(1), the following equality holds:

lim
t→+∞

[ n∑
j=1

|xj(t)− yj(t)|+
n∑

j=1

|uj(t)− vj(t)|
]
= 0.

3 Permanence and attractivity

Assume that the coefficients of (1) satisfy

(H3) r
l
i >

rui
ali
M1i + (dui + hui )M2i, i = 1, 2, · · · , n.

Theorem 8. Let (x1(t), x2(t), · · · , xn(t), u1(t), · · · ,
un(t)) be any positive solution of system (1) with ini-
tial condition (2). If (H1) − (H3) hold, then sys-
tem (1) is permanent, that is, any positive solution
(x1(t), x2(t), · · · , xn(t), u1(t), · · · , un(t)) of system
(1) satisfies

m1i ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤M1i, (5)

m2i ≤ lim inf
t→+∞

ui(t) ≤ lim sup
t→+∞

ui(t) ≤M2i, (6)

especially if m1i ≤ xi(t0) ≤ M1i, m2i ≤ ui(t0) ≤
M2i, i = 1, 2, · · · , n, then

m1i ≤ xi(t) ≤M1i, m2i ≤ ui(t) ≤M2i,

t ∈ [t0,+∞)T, i = 1, 2, · · · , n,

where

M1i =
rui
rlic

l
i

, M2i =
(βui + gui )M1i

αl
i

,

m1i =
rli −

rui
ali
M1i − (dui + hui )M2i

rui c
u
i

,

m2i =
(βli + gli)m1i

αu
i

.

Proof. Assume that (x1(t), x2(t), · · · , xn(t), u1(t),
· · · , un(t)) be any positive solution of system (1) with
initial condition (2). From the ith equation of system
(1), we have

x∆i (t) ≤ ri(t)xi(t)(1− ci(t)xi(σ(t)))

≤ xi(t)(r
u
i − rlic

l
ixi(σ(t))). (7)

By Lemma 3, we can get

lim sup
t→+∞

xi(t) ≤
rui
rlic

l
i

:=M1i.

Then, for arbitrary small positive constant ε > 0, there
exists a T1 > 0 such that

xi(t) < M1i + ε, ∀t ∈ [T1,+∞]T.

From the n + ith equation of system (1), when
t ∈ [T1,+∞)T,

u∆i (t) = −αi(t)ui(t) + βi(t)xi(t)

+gi(t)xi(t)

∫ 0

−ηi

Gi(s)ui(t+ s)∆s
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< −αl
iui(t) + (βui + gui )(M1i + ε),

Let ε→ 0, then

u∆i (t) ≤ −αl
iui(t) + (βui + gui )M1i. (8)

By Lemma 2, we can get

lim sup
t→+∞

ui(t) =
(βui + gui )M1i

αl
i

:=M2i.

Then, for arbitrary small positive constant ε > 0, there
exists a T2 > T1 such that

ui(t) < M2i + ε, ∀t ∈ [T2,+∞]T.

On the other hand, from the ith equation of sys-
tem (1), when t ∈ [T2,+∞)T,

x∆i (t)

= ri(t)xi(t)

[
1− ci(t)xi(σ(t))

− xi(t)

ai(t) +
n∑

j=1,j ̸=i

bij(t)
∫ 0
−θij

Bij(s)xj(t+ s)∆s

]

−di(t)ui(t)xi(t)

−hi(t)xi(t)
∫ 0

−τi

Hi(s)ui(t+ s)∆s,

> xi(t)[r
l
i −

rui
ali

(M1i + ε)− rui c
u
i xi(σ(t))

−(dui + hui )(M2i + ε)].

Let ε→ 0, then

x∆i (t) ≥ xi(t)[r
l
i −

rui
ali
M1i − rui c

u
i xi(σ(t))

−(dui + hui )M2i]. (9)

By Lemma 3, we can get

lim inf
t→+∞

xi(t) =
rli −

rui
ali
M1i − (dui + hui )M2i

rui c
u
i

:= m1i.

Then, for arbitrary small positive constant ε > 0, there
exists a T3 > T2 such that

xi(t) > m1i − ε, ∀t ∈ [T3,+∞]T.

From the n + ith equation of system (1), when
t ∈ [T3,+∞)T,

u∆i (t) = −αi(t)ui(t) + βi(t)xi(t)

+gi(t)xi(t)

∫ 0

−ηi

Gi(s)ui(t+ s)∆s

> −αu
i ui(t) + (βli + gli)(m1i − ε).

Let ε→ 0, then

u∆i (t) ≥ −αu
i ui(t) + (βli + gli)m1i. (10)

By Lemma 2, we can get

lim inf
t→+∞

ui(t) =
(βli + gli)m1i

αu
i

:= m2i.

Then, for arbitrary small positive constant ε > 0, there
exists a T4 > T3 such that

ui(t) > m2i − ε, ∀t ∈ [T4,+∞]T.

In special case, if m1i ≤ xi(t0) ≤ M1i, m2i ≤
ui(t0) ≤ M2i, by Lemma 2 and Lemma 3, it follows
from (7)-(10) that

m1i ≤ xi(t) ≤M1i, m2i ≤ ui(t) ≤M2i,

t ∈ [t0,+∞)T,

This completes the proof.

Theorem 9. Assume that all the conditions of Theo-
rem 2.1 hold, further assume that

(H4)
rli

aui +
n∑

j=1,j ̸=i
buijM1j

− βui > 0;

(H5) α
l
i − dui > 0;

(H6) There exist positive constants k > 1 and γ > 0
such that Π > γ, where

Π = min
i

[(
rli

aui +
n∑

j=1,j ̸=i

buijM1j

−βui
)
m1i, (α

l
i − dui )

]
−k

n∑
i=1

[ n∑
j=1,j ̸=i

rui b
u
ijM1iM1j

(ali +
n∑

j=1,j ̸=i

blijm1j)2

+hui + gui

]
.

Then the solution of system (1) is globally attractive.

Proof. Assume that z1(t) = (x1(t), x2(t), · · · ,
xn(t), u1(t), · · · , un(t)) and z2(t) = (y1(t), y2(t),
· · · , yn(t), v1(t), · · · , vn(t)) be two positive bound-
ed solutions of system (1). It follows from (5)-(6) that
for sufficient small positive constant ε0 (0 < ε0 <
min
1≤i≤n

{m1i,m2i}), there exists a T > 0 such that

m1i − ε0 < xi(t), yi(t) < M1i + ε0,

m2i − ε0 < ui(t), vi(t) < M2i + ε0, (11)
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where t ∈ [T,+∞)T, i = 1, 2, · · · , n, and

rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

− βui > 0. (12)

Since xi(t), yi(t), i = 1, 2, · · · , n are positive,
bounded and differentiable functions on T, then there
exists a positive, bounded and differentiable function
m(t), t ∈ T, such that xi(t)(1 + m(t)), yi(t)(1 +
m(t)), i = 1, 2, · · · , n are strictly increasing on T.
By Lemma 4 and Lemma 5, we have

∆

∆t
LT(xi(t)[1 +m(t)])

=
x∆i (t)

xi(t)
+
xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]
,

∆

∆t
LT(yi(t)[1 +m(t)])

=
y∆i (t)

yi(t)
+
yi(σ(t))m

∆(t)

yi(t)[1 +m(t)]
, i = 1, 2, · · · , n.

Here, we can choose a functionm(t) such that |m∆(t)|
1+m(t)

is bounded on T, that is, there exist two positive con-
stants ζ > 0 and ξ > 0 such that 0 < ζ < |m∆(t)|

1+m(t) < ξ,
∀t ∈ T.

Set

V (t) =
n∑

i=1

Vi(t),

Vi(t) = |e−δ(t, T )|(|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))|+ |ui(t)− vi(t)|),

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0;
if µ(t) > 0, then δ > 0). It follows from the mean
value theorem of differential calculus on time scales
for t ∈ [T,+∞)T,

1

M1i + ε0
|xi(t)− yi(t)|

≤ |LT(xi(t)(1 +m(t)))− LT(yi(t)(1 +m(t)))|

≤ 1

m1i − ε0
|xi(t)− yi(t)|, i = 1, 2, · · · , n. (13)

Now, we divide the proof into two cases.
Case I. If µ(t) > 0, set δ > max{(rui cui +

ξ
m1i

)M1i, γ} and 1−µ(t)δ < 0. Calculating the upper
right derivatives of Vi(t) along the solution of system
(1), it follows from (11)-(13), (H4) − (H6) that for
t ∈ [T,+∞)T,

D+V ∆
i (t)

= |e−δ(t, T )|sgn(xi(t)− yi(t))

[
x∆i (t)

xi(t)
− y∆i (t)

yi(t)

+
m∆(t)

1 +m(t)

(
xi(σ(t))

xi(t)
− yi(σ(t))

yi(t)

)]
−δ|e−δ(t, T )||LT(xi(σ(t))(1 +m(σ(t))))

−LT(yi(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(ui(t)− vi(t))(u

∆
i (t)− v∆i (t))

−δ|e−δ(t, T )||ui(σ(t))− vi(σ(t))|

≤ |e−δ(t, T )|
[
− ri(t)

ai(t) +
n∑

j=1,j ̸=i

bij(t)(M1j + ε0)

×|xi(t)− yi(t)|

+

n∑
j=1,j ̸=i

ri(t)bij(t)(M1i + ε0)

(ai(t) +
n∑

j=1,j ̸=i

bij(t)(m1j − ε0))2

×
∫ 0

−θij

Bij(s)|xj(t+ s)− yj(t+ s)|∆s

+ri(t)ci(t)|xi(σ(t))− yi(σ(t))|

+di(t)|ui(t)− vi(t)|+ hi(t)

∫ 0

−τi

Hi(s)

×|ui(t+ s)− vi(t+ s)|∆s

+
m∆(t)

1 +m(t)

−xi(σ(t))|xi(t)− yi(t)|
xi(t)yi(t)

+
m∆(t)

1 +m(t)

|xi(σ(t))− yi(σ(t))|
yi(t)

]
−δ|e−δ(t, T )||LT(xi(σ(t))(1 +m(σ(t))))

−LT(yi(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|[−αi(t)|ui(t)− vi(t)|
+βi(t)|xi(t)− yi(t)|

+gi(t)

∫ 0

−ηi

Gi(s)|ui(t+ s)− vi(t+ s)|∆s]

−δ|e−δ(t, T )||ui(σ(t))− vi(σ(t))|

≤ −|e−δ(t, T )|
[(

rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

−βui
)
(m1i − ε0)|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))|

+(αl
i − dui )|ui(t)− vi(t)|

]
+ |e−δ(t, T )

×|
[ n∑
j=1,j ̸=i

rui b
u
ij(M1i + ε0)(M1j + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2

×
∫ 0

−θij

Bij(s)|LT(xj(t+ s)(1 +m(t+ s)))

−LT(yj(t+ s)(1 +m(t+ s)))|∆s
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+hui

∫ 0

−τi

Hi(s)|ui(t+ s)− vi(t+ s)|∆s

+gui

∫ 0

−ηi

Gi(s)|ui(t+ s)− vi(t+ s)|∆s
]
.

Since Vi(t, z1(t+s), z2(t+s)) < kVi(t, z1(t), z2(t)),
s ∈ [−τ, 0]T, k > 1 is a constant, then

D+V ∆
i (t)

≤ −min

[(
rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

− βui

)

×(m1i − ε0), (α
l
i − dui )

]
Vi(t)

+k

[ n∑
j=1,j ̸=i

rui b
u
ij(M1i + ε0)(M1j + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2

+hui + gui

]
Vi(t).

Therefore,

D+V ∆(t) =

n∑
i=1

D+V ∆
i (t)

≤ −
(
min
i

[(
rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

− βui

)

×(m1i − ε0), (α
l
i − dui )

]
−k

n∑
i=1

[ n∑
j=1,j ̸=i

rui b
u
ij(M1i + ε0)(M1j + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2

+hui + gui

])
V (t)

≤ −γV (t). (14)

By the comparison theorem and (14), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
|e−γ(t, T )|,

that is,

|e−δ(t, T )|(|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))|+ |ui(t)− vi(t)|)

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
|e−γ(t, T )|,

then

1

M1i + ε0
|xi(t)− yi(t)|+ |ui(t)− vi(t)|

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
×|e(−γ)⊖(−δ)(t, T )|. (15)

Since 1 − µ(t)δ < 0 and 0 < γ < δ, then (−γ) ⊖
(−δ) < 0. It follows from (15) that

lim
t→+∞

|xi(t)− yi(t)| = 0, lim
t→+∞

|ui(t)− vi(t)| = 0.

Case II. If µ(t) = 0, set δ = 0, then σ(t) =
t and |e−δ(t, T )| = 1. Calculating the upper right
derivatives of V (t) along the solution of system (1),
it follows from (11)-(13), (H4) − (H6) that for t ∈
[T,+∞)T,

D+V ∆(t)

= sgn(xi(t)− yi(t))

(
x∆i (t)

xi(t)
− y∆i (t)

yi(t)

)
+sgn(ui(t)− vi(t))(u

∆
i (t)− v∆i (t))

≤ −|xi(t)− yi(t)|
[
ri(t)ci(t)

+
ri(t)

ai(t) +
n∑

j=1,j ̸=i

bij(t)(M1j + ε0)

]

+

n∑
j=1,j ̸=i

ri(t)bij(t)(M1i + ε0)

(ai(t) +
n∑

j=1,j ̸=i

bij(t)(m1j − ε0))2

×
∫ 0

−θij

Bij(s)|xj(t+ s)− yj(t+ s)|∆s

+di(t)|ui(t)− vi(t)|

+hi(t)

∫ 0

−τi

Hi(s)|ui(t+ s)− vi(t+ s)|∆s

+[−αi(t)|ui(t)− vi(t)|+ βi(t)|xi(t)− yi(t)|

+gi(t)

∫ 0

−ηi

Gi(s)|ui(t+ s)− vi(t+ s)|∆s]

≤ −
[
rlic

l
i +

rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

−βui
]
(m1i − ε0)|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))| − (αl
i − dui )|ui(t)− vi(t)|

+
n∑

j=1,j ̸=i

rui b
u
ij(M1i + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2
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×
∫ 0

−θij

Bij(s)|xj(t+ s)− yj(t+ s)|∆s

+hui

∫ 0

−τi

Hi(s)|ui(t+ s)− vi(t+ s)|∆s

+gui

∫ 0

−ηi

Gi(s)|ui(t+ s)− vi(t+ s)|∆s]

≤ −min

[(
rlic

l
i +

rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

−βui
)
(m1i − ε0), (α

l
i − dui )

]
Vi(t)

+k

[ n∑
j=1,j ̸=i

rui b
u
ij(M1i + ε0)(M1j + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2

+hui + gui

]
Vi(t).

Therefore,

D+V ∆(t) =
n∑

i=1

D+V ∆
i (t)

≤ −
(
min
i

[(
rlic

l
i +

rli

aui +
n∑

j=1,j ̸=i

buij(M1j + ε0)

−βui
)
(m1i − ε0), (α

l
i − dui )

]
−k

n∑
i=1

[ n∑
j=1,j ̸=i

rui b
u
ij(M1i + ε0)(M1j + ε0)

(ali +
n∑

j=1,j ̸=i

blij(m1j − ε0))2

+hui + gui

])
V (t)

≤ −γV (t). (16)

By the comparison theorem and (16), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
|e−γ(t, T )|,

that is,

|LT(xi(t)(1 +m(t)))− LT(yi(t)(1 +m(t)))|
+|ui(t)− vi(t)|

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
|e−γ(t, T )|,

then

1

M1 + ε0
|xi(t)− yi(t)|+ |ui(t)− vi(t)|

< 2

(
M1i + ε0
m1i − ε0

+M2i + ε0

)
|e−γ(t, T )|. (17)

It follows from (17) that

lim
t→+∞

|xi(t)− yi(t)| = 0, lim
t→+∞

|ui(t)− vi(t)| = 0.

From the above discussion and Definition 7, we
can see that the solution of system (1) is globally at-
tractive. This completes the proof.

4 Almost periodic solution

The aim of this section is to investigate the positive
almost periodic solution of system (1), to do so, we
further assume that system (1) satisfies

(H7) ri(t), ai(t), bij(t), ci(t), di(t), hi(t), αi(t), βi(t),
gi(t), i, j = 1, 2, · · · , n are all continuous, real-
valued positive almost periodic functions.

The relevant definitions and the properties of al-
most periodic functions, see [18,19].

Let S(T) be the set of all solutions
(x1(t), x2(t), · · · , xn(t), u1(t), · · · , un(t)) of system
(1) satisfying m1i ≤ xi(t) ≤ M1i, m2i ≤ ui(t) ≤
M2i for all t ∈ T, i = 1, 2, · · · , n.

Lemma 10. S(T) ̸= ∅.

Proof. By Theorem 8, we see that for any
t0 ∈ T with m1i ≤ xi(t0) ≤ M1i, m2i ≤
ui(t0) ≤ M2i, system (1) has a solution
(xi(t), ui(t)) satisfying m1i ≤ xi(t) ≤ M1i,
m2i ≤ ui(t) ≤ M2i, t ∈ [t0,+∞)T. Since
ri(t), ai(t), bij(t), ci(t), di(t), hi(t), αi(t), βi(t), gi(t),
σ(t) are almost periodic, there exists a se-
quence {tn}, tn → +∞ as n → +∞ such that
ri(t+ tn) → ri(t), ai(t+ tn) → ai(t), bij(t+ tn) →
bij(t), ci(t + tn) → ci(t), di(t + tn) → di(t), hi(t +
tn) → hi(t), αi(t + tn) → αi(t), βi(t + tn) →
βi(t), gi(t + tn) → gi(t), σi(t + tn) → σi(t) as
n→ +∞ uniformly on T.

We claim that {xi(t+tn)} and {ui(t+tn)} are u-
niformly bounded and equi-continuous on any bound-
ed interval in T.

In fact, for any bounded interval [α, β]T ⊂ T,
when n is large enough, α + tn > t0, then t + tn >
t0, ∀t ∈ [α, β]T. So, m1i ≤ xi(t+ tn) ≤M1i, m2i ≤
ui(t + tn) ≤ M2i for any t ∈ [α, β]T, that is,
{xi(t+ tn)} and {ui(t+ tn)} are uniformly bounded.
On the other hand, ∀t1, t2 ∈ [α, β]T, from the mean
value theorem of differential calculus on time scales,
we have

|xi(t1 + tn)− xi(t2 + tn)|

≤ ruM1i[1 +
M1i

ali
+ cuiM1i + (dui + hui )M2i]
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×|t1 − t2|, (18)
|ui(t1 + tn)− ui(t2 + tn)|
≤ (αu

iM2i + (βui + gui )M1i)|t1 − t2|. (19)

The inequalities (18) and (19) show that {xi(t+ tn)}
and {ui(t + tn)} are equi-continuous on [α, β]T. By
the arbitrary of [α, β]T, the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subse-
quence of {tn}, we still denote it as {tn}, such that

xi(t+ tn) → pi(t), ui(t+ tn) → ui(t),

as n → +∞ uniformly in t on any bounded interval
in T.

For any θ ∈ T, we can assume that tn + θ ≥ t0
for all n, and let t ≥ 0, integrate both equations of
system (1) from tn+ θ to t+ tn+ θ, then by using the
Lebesgues dominated convergence theorem, we can
obtain

pi(t+ θ)− pi(θ)

=

∫ t+θ

θ

{
ri(ω)xi(ω)

[
1−

xi(ω)

ai(ω) +
n∑

j=1,j ̸=i

bij(ω)
∫ 0
−θij

Bij(s)xj(ω + s)∆s

−ci(ω)xi(σ(ω))
]
− di(ω)ui(ω)xi(ω)

−hi(ω)xi(ω)
∫ 0

−τi

Hi(s)ui(ω + s)∆s

}
∆ω,

qi(t+ θ)− qi(θ)

=

∫ t+θ

θ
[−αi(ω)ui(ω) + βi(ω)xi(ω)

+gi(ω)

∫ 0

−ηi

Gi(s)ui(ω + s)∆s]∆ω.

This means that (pi(t), qi(t)) is a solution of system
(1), and by the arbitrary of θ, (pi(t), qi(t)) is a solution
of system (1) on T. It is clear that

m1i ≤ pi(t) ≤M1i,

m2i ≤ qi(t) ≤M2i, ∀t ∈ T.

This completes the proof.

Theorem 11. Assume that (H1)−(H7) hold, then sys-
tem (1) has a unique positive almost periodic solution
which is globally attractive.

Proof. Consider the associated product system of (1),

x∆i (t) = ri(t)xi(t)

[
1−

xi(t)

ai(t)+
n∑

j=1,j ̸=i
bij(t)

∫ 0
−θij

Bij(s)xj(t+s)∆s

−ci(t)xi(σ(t))
]
− di(t)ui(t)xi(t)

−hi(t)xi(t)
∫ 0
−τi

Hi(s)ui(t+ s)∆s,

u∆i (t) = −αi(t)ui(t) + βi(t)xi(t)

+gi(t)
∫ 0
−ηi

Gi(s)ui(t+ s)∆s,

y∆i (t) = ri(t)yi(t)

[
1−

yi(t)

ai(t)+
n∑

j=1,j ̸=i
bij(t)

∫ 0
−θij

Bij(s)yj(t+s)∆s

−ci(t)yi(σ(t))
]
− di(t)vi(t)yi(t)

−hi(t)yi(t)
∫ 0
−τi

Hi(s)vi(t+ s)∆s,

v∆i (t) = −αi(t)vi(t) + βi(t)yi(t)

+gi(t)
∫ 0
−ηi

Gi(s)vi(t+ s)∆s,

(20)

Let z(t) = (z1(t), z2(t)) be a positive solution of
product system (20), where

z1(t) = (x1(t), · · · , xn(t), u1(t), · · · , un(t)),
z2(t) = (y1(t), · · · , yn(t), v1(t), · · · , vn(t)).

Define z1i(t) = (xi(t), ui(t)), z2i(t) = (yi(t), vi(t)).
By using the same Lyapunov functional in Sec-

tion 3. Set

V (t, z1(t), z2(t)) =

n∑
i=1

Vi(t, z1i(t), z2i(t)),

Vi(t, z1i(t), z2i(t)) = |e−δ(t, T )|(|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))|
+|ui(t)− vi(t)|),

and |z1(t) − z2(t)| =
n∑

i=1
(|xi(t) − yi(t)| + |ui(t) −

vi(t)|).
It follows from (13) that

min{ 1

M1i + ε0
, 1}|e−δ(t, T )|(|xi(t)− yi(t)|

+|ui(t)− vi(t)|)
≤ Vi(t, z1i(t), z2i(t))

≤ max{ 1

m1i − ε0
, 1}|e−δ(t, T )|(|xi(t)− yi(t)|

+|ui(t)− vi(t)|),
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then

min
i
{ 1

M1i + ε0
, 1}|e−δ(t, T )|

×
n∑

i=1

(|xi(t)− yi(t)|+ |ui(t)− vi(t)|)

≤ V (t, z1(t), z2(t))

≤ max
i

{ 1

m1i − ε0
, 1}|e−δ(t, T )|

×
n∑

i=1

(|xi(t)− yi(t)|+ |ui(t)− vi(t)|).

that is

min
i
{ 1

M1i + ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|)

≤ V (t, z1(t), z2(t))

≤ max
i

{ 1

m1i − ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|).

Therefore, condition (1) in Lemma 6 is satisfied.
Since

|Vi(t, z1i(t), z2i(t))− Vi(t, z̃1i(t), z̃2i(t))|
= |e−δ(t, T )|

∣∣|LT(xi(t)(1 +m(t)))

−LT(yi(t)(1 +m(t)))|+ |ui(t)− vi(t)|
−|LT(x̃i(t)(1 +m(t)))

−LT(ỹi(t)(1 +m(t)))| − |ũi(t)− ṽi(t)|
∣∣

≤ |LT(xi(t)(1 +m(t)))− LT(x̃i(t)(1 +m(t)))|
+|ui(t)− ũi(t)|
+|LT(yi(t)(1 +m(t)))

−LT(ỹi(t)(1 +m(t)))|+ |vi(t)− ṽi(t)|

≤ max{ 1

m1i − ε0
, 1}(|xi(t)− x̃i(t)|

+|ui(t)− ũi(t)|
+|yi(t)− ỹi(t)|+ |vi(t)− ṽi(t)|),

then

|V (t, z1(t), z2(t))− V (t, z̃1(t), z̃2(t))|

≤ max
i

{ 1

m1i − ε0
, 1}

n∑
i=1

(|xi(t)− x̃i(t)|

+|ui(t)− ũi(t)|
+|yi(t)− ỹi(t)|+ |vi(t)− ṽi(t)|)

= max
i

{ 1

m1 − ε0
, 1}(|z1(t)− z̃1(t)|

+|z2(t)− z̃2(t)|).

Therefore, condition (2) in Lemma 6 holds.

By the proof of Theorem 9. Calculating the upper
right derivatives of V (t, z1(t), z2(t)) along the solu-
tion of system (20), it follows from (14) and (16) that
for t ∈ [T,+∞)T,

D+V ∆(t, z1(t), z2(t)) ≤ −γV (t, z1(t), z2(t)).

Therefore, condition (3) in Lemma 6 is satisfied.
From the above discussion, we can see that all

conditions in Lemma 6 hold. By Lemma 6 and Lem-
ma 10, system (1) has a unique almost periodic solu-
tion which is uniformly asymptotic stable. Together
with Theorem 8 and Theorem 9 that system (1) has
a unique positive almost periodic solution which is
globally attractive. This completes the proof.

5 Example and simulations

Consider the following system on time scales (n = 2)

x∆1 (t) = (0.8 + 0.2 sin
√
2t)x1(t)[1−

x1(σ(t))

(4.5+0.5 cos t)+0.01
∫ 0
−θ12

B12(s)x2(t+s)∆s

−x1(t)− 0.2u1(t)

−0.01
∫ 0
−τ1

H1(s)u1(t+ s)∆s],

u∆1 (t) = −(0.4 + 0.1 cos
√
3t)u1(t)

+(0.015 + 0.005 sin
√
2t)x1(t)

+0.01
∫ 0
−η1

G1(s)u1(t+ s)∆s,

x∆2 (t) = (0.85 + 0.15 sin t)x2(t)[1−
x2(σ(t))

(4+cos t)+0.02
∫ 0
−θ21

B21(s)x1(t+s)∆s

−x2(t)− 0.2u2(t)

−0.02
∫ 0
−τ2

H2(s)u2(t+ s)∆s],

u∆2 (t) = −(0.45 + 0.05 cos t)u2(t)
+(0.012 + 0.002 sin t)x2(t)

+0.02
∫ 0
−η2

G2(s)u2(t+ s)∆s.

(21)

By a direct calculation, we can get

ru1 = 1, rl1 = 0.6, au1 = 5, al1 = 4,

bu12 = bl12 = 0.01, cu1 = cl1 = 1, du1 = dl1 = 0.2,

hu1 = hl1 = 0.01, αu
1 = 0.5, αl

1 = 0.3,

βu1 = 0.02, βl1 = 0.01, gu1 = gl1 = 0.01,

ru2 = 1, rl2 = 0.7, au2 = 5, al2 = 3,

bu21 = bl21 = 0.02, cu2 = cl2 = 1, du2 = dl2 = 0.2,

hu2 = hl2 = 0.02, αu
2 = 0.5, αl

2 = 0.4,

βu2 = 0.014, βl2 = 0.01, gu2 = gl2 = 0.02,

then

M11 = 1.6667,M21 = 0.1667,

m11 = 0.1483,m21 = 0.0059,

M12 = 1.4286,M22 = 0.1214,

m12 = 0.1971,m22 = 0.0118,
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and

(H3) r
l
1 −

ru1
al1
M11 + (du1 + hu1)M21 = 0.2183,

rl2 −
ru2
al2
M12 + (du2 + hu2)M22 = 0.2505.

(H4)
rl1

au1+bu12M12
− βu1 = 0.0997,

rl2
au2+bu21M11

− βu2 = 0.1251;

(H5) α
l
1 − du1 = 0.1, αl

2 − du2 = 0.2;

(H6) Let k = 1.1, then Π = 0.0074. One can choose
γ ∈ (0, 0.0074].

From the above, we can see that the conditions (H1)−
(H7) hold. According to Theorem 11, system (21)
has a unique positive almost periodic solution which
is globally attractive.

Let θ12 = θ21 = η1 = η2 = +∞. If T = R, set
B12(s) = B21(s) = G1(s) = G2(s) = es; if T = Z,
set B12(s) = B21(s) = G1(s) = G2(s) = (12)

s. The
dynamics simulation of system (21), see Figures 1 and
2.
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Figure 1: Let T = R, dynamics behavior of sys-
tem (21) with the initial conditions (x(0), y(0)) =
{(0.3, 0.3), (0.5, 0.5), (0.8, 0.8)}.

6 Conclusion

This paper studied a n-species cooperation system
with distributed delays and feedback controls on time
scales. For general nonautonomous case, by using d-
ifferential inequality theory and constructing a suit-
able Lyapunov functional, sufficient conditions which
guarantee the permanence and the global attractivity
of the system are obtained. For the almost period-
ic case, by using the Razumikhin type theorem, suf-
ficient conditions which guarantee the existence of a
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0 10 20 30 40 50 60 70 80
0

0.05

t

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Figure 2: Let T = Z, dynamics behavior of sys-
tem (21) with the initial conditions (x(1), y(1)) =
{(0.1, 0.01), (0.3, 0.03), (0.5, 0.05)}.

positive almost periodic solution of the system are ob-
tained. The methods used in this paper are completely
new, and the methods can be applied to study other
dynamic systems.
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