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Abstract- In this paper a convex optimization approach to design a robust state feedback control is proposed for 

DC-DC converter systems with mixed delays. Based on the Lyapunov theory, some required sufficient 

conditions are established in terms of delay-dependent linear matrix inequalities for the stochastic stability and 

stabilization of the considered system using some free matrices. The desired control is derived based on a 

convex optimization method.  
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1. Introduction 
The main task of DC-DC converters is the 

adaptation of the voltage and current levels between 

sources and loads while maintaining a low power 

loss in the conversion [1]-[2]. With the extensive 

use of DC-DC converters in different industry 

applications (e.g. power supplies for personal 

computers, DC-motor drive, telecommunications 

equipment, etc.), improving their performances 

becomes an interesting problem in recent years [1]-

[7]. Recently, different converter circuits (buck 

converter, boost converter, buck-boost converter, 

Cuk converter, etc.) are known. According to each 

application purpose (increase or decrease the 

magnitude of the DC voltage and/or invert its 

polarity), the converter circuit was chosen. Among 

them, we consider here, the control of the basic 

Pulse-Width-Modulation (PWM) buck converters, 

but it could be easily adapted for other converters. 

On the other hand, in recent years more attention 

has been devoted to the study of stochastic hybrid 

systems, where the so-called Markov jump systems. 

These systems represent an important class of 

stochastic systems that is popular in modeling 

practical systems like manufacturing systems, power 

systems, aerospace systems and networked control 

systems that may experience random abrupt changes 

in their structures and parameters [8]-[13]. Random 

parameter changes may result from random 

component failures, repairs or shut down, or abrupt 

changes of the operating point. Many such events 

can be modeled using a continuous time finite-state 

Markov chain, which leads to the hybrid description 

of system dynamics known as a Markov jump 

parameter system [14]; such a description will be 

utilized in the paper. The state of a Markov jump 

parameter system is described by continuous range 

variables and also a random discrete event variable 

representing the regime of system operation. A great 

number of results on robust stability, stabilization, 

   control and filtering problems related to such 

systems have been reported in the literatures ([8], 

[9], [15]).  

On another research front line, time delays for many 

dynamic systems have been much investigated; see 

for example [16]. Time-delayed systems represent a 

class of infinite-dimensional systems largely used to 

describe propagation and transport phenomena or 

population dynamics. Delay differential systems are 

assuming an increasingly important role in many 

disciplines like economic, mathematics, science, and 

engineering. For instance, in economic systems, 

delays appear in a natural way since decisions and 

effects are separated by some time interval. The 

delay effects on the stability of systems including 

delays in the state and/or input is a problem of 

recurring interest since the delay presence may 

induce complex behaviors for the schemes [16]-

[17].  

On the other hand, stability of neutral delay systems 

proves to be a more complex issue because the 

system involves the derivative of the delayed state. 

Especially, in the past few decades increased 

attention has been devoted to the problem of robust 

delay-independent stability or delay-dependent 

stability and stabilization via different approaches 

for linear neutral systems with delayed state and/or 

input and parameter uncertainties (see [18]-[19]). 

Among the past results on neutral delay systems, the 

LMI approach is an efficient method to solve many 

control problems such as stability analysis and 
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stabilization [20] and    control problems [21]-

[24]. It is also worth citing that some appreciable 

works have been performed to design a guaranteed-

cost (observer-based) control for the neutral system 

performance representation [25]-[27].  

In this paper, we are concerned to develop a robust 

   control problem for Markovian switching 

systems with mixed discrete, neutral and distributed 

delays. The main merit of the proposed method is 

the fact that it provides a convex problem such the 

delay-dependent control gains can be found from 

the LMI formulations. Some required sufficient 

conditions are established in terms of LMIs 

combined with the Lyapunov-Krasovskii method for 

the existence of the desired control. Numerical 

examples are given to illustrate the use of our results 

for a DC-DC converter model.  

Notation: The notations used throughout the paper 

are fairly standard.   and   represent identity matrix 

and zero matrix; the superscript     stands for matrix 

transposition. ‖ ‖ refers to the Euclidean vector 

norm or the induced matrix 2-norm.         
represents a block diagonal matrix and the operator 

   ( ) represents     . Let        )  and 

     denotes the expectation operator with respect to 

some probability measure  . If  ( ) is a continuous 

  -valued stochastic process on        ), we let 

     (   )            for     which is 

regarded as a   (     ]   )-valued stochastic 

process. The notation      means that   is real 

symmetric and positive definite; the symbol  

denotes the elements below the main diagonal of a 

symmetric block matrix.  

 

2. Problem Description 
Consider a class of uncertain time-delay systems 

with Markovian switching parameters and mixed 

neutral, discrete and distributed delays and norm-

bounded time-varying uncertainties represented by 

 

                                      (1a) 

                      (1b) 

                          (1c) 

   (1d) 

where , ,   and 

 are state, input, disturbance and controlled 

output, respectively. 

 and  are matrix 

functions of the random jumping process . 

 is a right-continuous Markov process on 

the probability space which takes values in a finite 

space  with generator 

given by 

 

(2) 

where ,  and , for , 

is the transition rate from mode  at time  to mode 

 at time  and  .The time-varying 

function  is continuous vector valued initial 

function and  and  are constant time delays 

with             . Moreover, the norm-

bounded uncertainties are defined as follows: 

 
 

(3a) 

 

                                                                    
 (3b) 

where  is the uncertain time-varying matrix 

function of the random jumping process, which 

satisfies  for  and 

 and  are known real constant 

matrices of the random jumping process with 

appropriate dimensions. 

 

Definition 1. Uncertain time-delay system (1) with 

Markovian switching parameter in (2) is said to be 

stochastically mean square stable if, when  ( )   , 

for any finite  ( )     defined on      ], and 

     the following condition is satisfied 

 

  ‖ ( )‖       
      

‖ ( )‖         

 

where   ( ) is the trajectory of the system state from 

initial system state  ( ) and initial mode   , and   

is a positive constant. 

 

Definition 2. The    performance measure of the 

system (1) is defined as      (∫    ( ) ( )  
 

 

    ( ) ( )]    ), where the positive scalar   is 

given. 

 

Assumption 1. The full state variable  ( ) is 

available for measurement. 
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In this paper, the author’s attention will be focused 

on the design of the following robust mode-

dependent delayed state feedback    control law, 

 

       ( )        (   )        (   )  

     ∫  ( )    
 

   
        

                                                 (4) 

where the matrices                of the 

appropriate dimension is to be determined such that 

for any  ( )       the resulting closed-loop 

system is stochastically stable and satisfies an    

norm bound  , i.e.     .  

 

3. Main Results 
In this section, we first investigate both the 

stochastic stability and    performance of the 

system (1) with norm-bounded uncertainty 

parameters. A new delay-dependent stochastic 

stability condition by a discretization technique is 

proposed in Theorem 1. Then, we will show the 

procedure to design the controller gains     
             , which guarantee the resulting closed-

loop system is stochastically stable and satisfies an 

   norm bound  . 

We choose a stochastic Lyapunov-Krasovskii 

functional candidate  (       )          
     as 

                   (5) 

where 

,  

 

 

 

 

Theorem 1. The time-delay system (1) with 

Markovian switching parameters in (2) and without 

the norm-bounded uncertainties in (3) is 

stochastically mean square stable with an    

performance level    , if there exist some 

matrices             ,          , and 

positive definite matrices               (  
       )  satisfying the following LMIs 

,                                    (6a) 

   

                                                    

(6b) 

where    [
    
      

] and 
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   (  )                }    

 
, 
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Proof. See [28]. 

 

Remark 1. Note that the matrix 
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] 

 

(or, equivalently, the matrix    ) is non-singular due 

to the fact that the only matrix which can be 

negative definite in the first block on the diagonal of 

LMI (6b) is       .  

 

Remark 2. If the switching modes are not 

considered, i.e. , the jump linear system is 

simplified into a general linear system with 

nonlinearities and time delays. Then it is easy to 

conclude a criterion from Theorem 1, which can be 

used to determine the stability of such a system. 

In the following, we present a condition for the 

stability of the time-delay system (1) with 

Markovian switching parameters in (2) and norm-

bounded uncertainties in (3). 
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Theorem 2. Under Assumption 1, a state feedback 

controller given in the form (4) exists such that the 

time-delay system (1) with Markovian switching 

parameters in (2) is stochastically stable with an    

performance level    , if there exist some scalars 

     , matrices   ̅     ̃    ̃ ,  ̃   ̃    ̃  

 ̃ ,                , and positive definite matrices 
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    (   ). Moreover, the controller gains in (4) can 

be designed as       ̅  
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Proof. See [28]. 

Remark 3. By setting        and minimizing   

subject to LMIs (26), we can obtain the optimal    

performance level    (by     √ ) and the 

corresponding control gains as well. 

 

4. DC-DC converters 
There are three kinds of switching mode DC-DC 

converters, buck, boost and buck-boost. The buck 

mode is used to reduce output voltage, whilst the 

boost mode can increase the output voltage. In the 

buck-boost mode, the output voltage can be 

maintained either higher or lower than the source 

but in the opposite polarity. The simplest forms of 

these converters are schematically represented in 

Figure 1. These converters consist of the same 

components, an inductor, L, a capacitor, C and a 

switch, which has two states u = 1 and u = 0. All 

converters connect to a DC power source with a 

voltage (unregulated),     and provide a regulated 

voltage,    to the load resistor, R by controlling the 

state of the switch. In some situations, the load also 

could be inductive, for example a DC motor, or 

approximately, a current load, for example in a 

cascade configuration. For simplicity, here, only 

current and resistive loads are to be considered. 

 

 
(a) Boost 

 
(b) Buck 

 
(c) Buck-boost 

Figure 1. Switching-mode DC-DC converters: (a) 

buck, (b) boost and (c) buck-boost. 
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5. Averaged model of Basic PWM 

buck converter 
Figure 1 shows the basic circuit of the nonlinear 

PWM buck converter proposed in [3]-[4] with an 

external disturbance      ( ) as proposed in [1]-[2]. 

   is the on-state resistance of the MOSFET 

transistor,    is the winding resistance of inductor, 

   is the threshold voltage of the diode and    is 

the equivalent series resistance of the filter 

capacitor. By applying the Kirchhoff’s voltage law 

(KVL) and Kirchhoff’s current law (KCL) in on-

state of the MOSFET transistor case, we obtain 

[29]: 

                                             (8)

 

where  and . 

  (8a) 

 

Figure 2. Schematic of a basic PWM buck 

converter. 

 

Now, in off-state of the MOSFET transistor case 

and by applying of KVL and KCL, we get: 

                                                    (9) 

Using Averaging Method of on One Time Scale 

Discontinuous system (AM-OTS-Ds) [30], the 

global dynamical behavior of the DC-DC converter 

is modeled as: 

                                                      (10) 

where  ( ) is the duty cycle. 

 

6. Simulation results 
In this section, with the aid of MATLAB LMI 

Toolbox [31], we use the averaged model of Basic 

PWM buck converter to illustrate the effectiveness 

and advantage of our design method. In this 

simulation, the PWM frequency equals to 1 kHz. 

The simulation parameters used in this work are as 

follows [3]: 

                              
                                    
                      

with the input current . The DC-

DC converter parameters are switching between two 

modes, i.e., 1.0 and 1.2 nominal values, under the 

following Markovian transition matrix  

  [
       
       

]. 

The optimization problem described in (7) is solved 

for initial condition , h=15 ms and c=0.3. 

Responses of the output voltage of PWM buck 

converter and the inductance current of PWM buck 

converter are, respectively, plotted in Fig. 3 and Fig. 

4. 

 

 
Figure 3. Response of the output voltage of PWM 

buck converter 
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Figure 4. Response of the inductance current of 

PWM buck converter. 

 

7. Conclusion 
The problem of robust state feedback     control 

was proposed for a class of Markovian swtiching 

systems with mixed discrete, neutral and 

distributed delays. Some required sufficient 

conditions were derived in terms of delay-

dependent LMIs using some free matrices and the 

Lyapunov-Krasovskii functional theory. The 

desired control is derived based on a convex 

optimization method. Numerical examples were 

given to illustrate the use of our results for a DC-

DC converter model. 
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