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Abstract: - To trade off tracking accuracy and interception risk in a multi-sensor multi-target tracking 
context, we study the sensor-scheduling problem where we aim to assign sensors to observe targets over 
time. Our problem is formulated as a partially observable Markov decision process, and this formulation is 
applied to develop a non-myopic sensor-scheduling scheme. We resort to extended Kalman filtering for 
information-state estimation and use unscented transformation for trajectory sampling in order to reduce the 
number of samples required for Q-value approximation. We make decision using a simulation-based 
approximate dynamic programming method called policy rollout, which is implemented by means of 
receding horizon control. The effectiveness of our approach is substantiated through an example in which 
multiple sensors are deployed to track a single target.  
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1 Introduction 
We assume that a sensor network consisting of 
several sensors collects target information in a 
battlefield. A typical purpose of sensor scheduling 
is how to activate sensors to trade off quality of 
service and usage cost for the network. Traditional 
scheduling methods that are generally myopic 
optimize the immediate reward to evaluate the 
instantaneous benefit resulting from a single action 
[1-3]. However, the non-myopic scheduling scheme 
outperforms the myopic scheduling scheme in some 
special cases because it considers the long-term 
benefit resulting from a sequence of actions [4-6]. 
In the literatures [7] and [8], the balance of tracking 
accuracy and power consuming has been 
considered. Furthermore, the work in [9] used a 
multi-mode sensor to track as more targets with 
high-priority as possible based on a presettable 
tracking requirement. Schneider and Chong attempt 
to track and discriminate targets of a specified type 
to desired levels using non-myopic scheduling 
approach [10]. Moreover, another alternative 
approach called multi-armed bandits (MAB) is 
applied to solve the non-myopic sensor-scheduling 
problem in recent years [11, 12]. Though MAB 
formulation is a special case of POMDP and its 
analytical solution is feasible, most sensor-scheduling 
problems are difficult to formulate using this MAB 

structure because several restrictive constraints on 
the scheduling problem must be satisfied. 

The signal interception can betray the existence 
and location of the sensor to the enemy and thus 
increase the vulnerability of the sensor, so we 
regard the interception risk as the sensor usage cost 
and focus on the trade-off between tracking 
accuracy and interception risk. Our research is 
inspired by the works [13-15] in which sensors are 
scheduled by incorporating Monte Carlo sampling 
and particle filtering into the rollout method to trade 
off tracking error and power consumption, but there 
exist some appealing features in this work. First, we 
try to trade off tracking accuracy and interception 
risk under the POMDP framework. Second, we 
propose a novel sampling method based on 
unscented transformation to decrease the number of 
samples when simulating information-state 
trajectories for Q-value estimation in the rollout 
method.  
 
 
2 Problem Formulation 
For clarity and ease of presentation, we made some 
assumptions:  
(1) All targets are moving independently, and each 
target must be tracked by only one sensor at each 
time step. 
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(2) All sensors are independent of each other, and 
each sensor can track no more than one target at 
each time step. 
(3) There are M sensors located at fixed positions to 
track N targets (M>N). 
(4) All targets and sensors work in a 2D plane. 

The POMDP problem is a special Markov 
decision process (MDP) in which the underlying 
state is unknown and the observations can yield 
uncertain information about the underlying state. We 
usually describe a POMDP by some elements 
including underlying state space S, action space U, 
observation space Z, state transition law p(Sk|Sk-1 uk), 
observation law p(Zk|Sk uk-1), initial state distribution 
p0 and one-step reward function r(Sk,uk). 

 
Fig.1 POMDP for sensor scheduling  

We assume that past decisions, plus past 
observations, are available to select the current 
action. Let ={Z1,…,Zk,u0,…,uk-1} denotes the 
information set including past information up to 
time step k. Starting from the initial state S0 with 
known distribution p0, a POMDP evolves as follows. 
At current time step k, the system state  and 
the observation  of targets are available. 
Select the action  based on information set 

 to obtain the next observation, and then the 
one-step reward r(Sk,uk) is incurred. After that the 
underlying state transits from Sk to Sk+1 according to 
the state transition law p(Sk+1|Sk uk), and an 
observation Zk+1 can be obtained in terms of the 
observation law p(Zk+1|Sk+1 uk). The action uk and the 
observation Zk+1 are added to the information set 

 to generate . Fig.1 reveals the causal 
sequence of a POMDP for sensor scheduling. 

We formulate our scheduling problem as a 
continuous-state discrete-time POMDP in which the 
elements are stated next. (See more details about 
POMDP in [16] .) 

 
 

2.1 Action, State and State Transition Law 
To denote the sensor assignment at time step k, the 
action  is a M×N matrix, where 

 or  indicates scheduling decision 
on whether sensor j is activated for observing target 
i from time step k to time step k+1. Only one of the 
elements in each column equals to unity, and at 
most one of the elements in each row equals to 
unity.  

The underlying state vector Sk is comprised of 
the dynamic state Xk and state estimator . At 
time step k, the system state is written as 

 
Here =[ ]T represents the dynamic 
state of target i at time k, including target position 
and velocities in Cartesian coordinates. Notice that 
the state estimator  of Xk evolves via extended 
Kalman filtering (EKF) in this paper. The state 
transition law p(Sk+1|Sk uk) is given by 

  (1) 
where the dynamic state transition law p(Xk|Xk-1) is 
defined through the target dynamics equation that is 
a nearly constant velocity model in our simulation. 

          (2) 
 

 

 
where Ts is the sampling interval, and ωk-1 is the 
unrelated zero-mean Gaussian process noise with 
the covariance matrix W. 

 Based on EKF, the estimator transition law 
p( | uk-1) is given by 

 (3) 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Zining Zhang, Ganlin Shan

E-ISSN: 2224-2856 122 Issue 4, Volume 8, October 2013



( ) ( ) ( )1 1 1 1 1
ˆ|  |  |  kk k k k k k k k k Xp Z X u p Z X u p X u dη− − − − −=∫  

where p(Zk|Xk uk-1) is the observation law, and the 
conditional probability p(Xk| 1kη − uk-1) constitutes the 
predicted information state explained later. 
 
 
2.2 Observation and Observation Law 
The overall observation kZ  of dynamic state kX  
can be written as 

[ ] ( )T1 T
1  N

k k kk k kZ Z Z h X u I ν−= = + ⊗ ⋅    (4) 

( ) ( ) ( ) [ ]T T1 1
1   ,    N M

k N kk k k kh X h X h X ν ν ν=  =    
Here the symbol ⊗  denotes the Kronecker 
product, I is the identity matrix, ( )ih ⋅  stands for 
the true value of nonlinear observation of target i, 
and j

kν  is the unrelated zero-mean Gaussian 
observation noise of sensor j. The nonlinear 
observation of a target is obtained in polar 
coordinates and can be written as 

[ ]T( )   i i i i
i k k k kh X r rθ=              (5) 

with 

( )( ) ( )( )
( )
( )

( )( ) ( )( )
( )( ) ( )( )

2 2

1

2 2

tan

i i i
j jk k k

i
jki

k i
jk

i i i i
j jk k k ki

k
i i

j jk k

r x sc x y sc y

y sc y
x sc x

x sc x x y sc y y
r

x sc x y sc y

θ −

= − + −

 −
=   − 

− + −
=

− + −

 



 

Here i
kr , i

kθ  and i
kr  are the range, the azimuth 

angle and the range rate of target i, and 
1

i
ku j

kν − = =[ ,r j
kν , j

k
θν ,r j

kν
 ]T are the corresponding 

Gaussian noise. It is noted that the coordinates 
( ( )jsc x , ( )jsc y ) are the position of sensor j, and the 
coordinates ( i

kx , i
ky ), ( i

kx , i
ky ) are the position and 

velocities of target i, respectively. Note that the 
observation law p(Zk|Sk uk-1)=p(Zk|Xk uk-1) is defined 
by the expressions (4) and (5). 
 
 
2.3 One-step Reward and Objective Function 
The signal interception occurs as overlaps happen to 
multiple window functions [17, 18], so that we 
define three window functions as follows. 
(1) The window function of pulse signal for sensor j 
is defined as ( , )j j j

p p pF T τ , where j
pT  is the pulse 

repetition interval, and j
pτ  is the pulse width. 

(2) The window function of scanning antenna for 
target i is defined as ( 360 , )i i i i i i

a a a a a aF T γ τ ψ γ= = , 
where i

aγ  is the antenna rotation rate, and i
aψ  is 

the antenna beam width. 
(3) The window function of scanning receiver for 
target i is defined as ( , )i i i i

r r r i r iF T B T fτ = , where 
i

rT  is the time required for the receiver to scan 

across a frequency band if , and iB  is the receiver 
passband. 

Therefore, the interception probability 
i
ku

IP  of 
sensor j is derived from the three window functions 
above. 

1
s

i
k o

T
u j T

IP eκ
−

= = −            (6) 

( )( ) ( )( ) ( )( )
j i i

p a r
o j i j i i i

p ji a ji p ji r ji a ji r ji

T T T
T

d d d d d dτ τ τ τ τ τ
=

− − + − − + − −

  (7) 
Here 1κ ≈  for radar examples, and jid  is the 
minimum interception duration to declare a valid 
interception. Note that i

ku  is the i-th column vector 
of ku , denoting which sensor is assigned to 
observe target i. 

By combining the tracking accuracy with the 
interception risk, the one-step reward is defined as  

( ) 1 1
ˆ( , ) ln 1-

i
k

N
u

k k k k I
i

r S u X X Pα
=

= − − ∏    (8) 

Here  1|| ||⋅  denotes the L1 norm of a vector. The 
second term in (8) represents the interception cost 
of all selected sensors with no interception during 
the sampling interval. The coefficient α  is the 
balance factor that adjusts the impact of interception 
cost on the one-step reward. 
 
 
2.4 Information-state Transformation 
The standard POMDP problem generally has to be 
converted into MDP problem for solutions using 
so-called information state kχ ={ ( | )k kp X η  for all 

kX }, which is the probability distribution of state kX  
conditioned on the information set kη  including the 
history of past measurements and actions up to time 
step k. Consequently, the equivalent MDP with the 
underlying state kχ  is called as information-state 
Markov decision process (IS-MDP). We will depict the 
state transition law 1 1( |  )k k kp uχ χ − − , the one-step 
reward ( , )k kR uχ  and the objective function J for our 
IS-MDP formulation. 

The state transition law 1 1( |  )k k kp uχ χ − −  of our 
IS-MDP problem is written as 

( )
( ) ( )

1 1

1 1 1 1

|  

|   |  
k

k k k

k k k k k k k Z

p u

p Z u p Z u d

χ χ

χ χ χ
− −

− − − −= ∫
(9) 

( ) 1 1
1 1

1 1

1   , , 
|   

0   , , 
k k k k k

k k k k
k k k k k

Z u
p Z u

Z u
χ χ χ

χ χ
χ χ χ

− −
− −

− −

′⇒ =
=  ′⇒ ≠

 

( ) ( ) ( )1 1 1 1 1|  |  |  
kk k k k k k k k k Xp Z u p Z X u p X u dχ η− − − − −=∫  

where kZ , 1kχ −  and 1ku −  are devoted to acquiring 
kχ′  using Bayesian rule as 

( ) ( ) ( )
( ) ( )

1 1 1

1 1 1

|  |  
|

|  |  
k

k k k k k k
k k

k k k k k k X

p Z X u p X u
p X

p Z X u p X u d
η

η
η

− − −

− − −

=
∫

(10) 
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( ) ( ) ( )
11 1 1 1 1|  | |

kk k k k k k k Xp X u p X X p X dη η
−− − − − −=∫ (11) 

Here the symbol kχ ={ 1 1( |  )k k kp X uη − − for all kX } 
is the predicted information state which is the 
representation of information state before obtaining 
observation kZ . It is theoretically possible that the 
evolutional information state could be iteratively 
computed by the equations (9), (10) and (11). 
However, we can observe that the information state 

kχ  can be approximated to Gaussian distribution 
ˆ( , )k kN X P  duo to Gaussian noise and nonlinear 

observation. It is feasible to represent the information 
state through the sufficient statistics ( ˆ

kX , kP ) we keep 
track of which using EKF. Therefore, the state transition 
law 1 1( |  )k k kp uχ χ − −  is equivalent to the statistic 
transition law 1 1 1

ˆˆ(( , ) | ( , ) )k k k k kp X P X P u− − −  in 
EKF. 

Derived from the one-step reward in (8), the 
mathematical definition of the one-step reward in 
IS-MDP is given by 

( ) ( ) ( )

( ) ( )
1

, , |

( ) ln 1-

k

i
k

k k k k k k X

N
u

k I
i

R u r S u p X d

trace sqrt P P

χ η

α
=

=

= − ⋅ ∏

∫
(12) 

where kP  is the covariance matrix in EKF, and the 
symbol ( )ksqrt P  denotes the matrix consisting of 
the square roots of all elements in kP . Thus, the 
objective function is the expected total one-step 
reward over a horizon of H time steps 

( )

( ) ( )
( ) ( )

1 -1

1 -1

1 -1

1

, , 0

1

, , 10

1 1

, , 0 10

,

  ( ) ln 1-

  ( ) ln 1-

H

i
k

H

i
k

H

H

k kZ Z k

H N
u

k IZ Z ik

H H N
u

k IZ Z k ik

J E R S u

E trace sqrt P P

E trace sqrt P P

α

α

−

=

−

==

− −

= ==

 
=  

 
 = − ∏  

 
=   − ∏ ∏  

 

∑

∑

∑







                                (13) 
where 1

0 1(1- )
i
kuH N

k i IP−
= =∏ ∏  is the probability of all 

scheduled sensors with no interception over H time 
steps. We have represented our problem in the form 
of information state, and our goal is to find an 
optimal policy { }0 1, , Hπ π π −=  , which is a 
sequence of mappings ( )k k ku π χ=  to minimize 
the objective function J in (13). 
 
 
3 Approximate Solution 
The main issue to solve our problem is the curse of 
dimensionality and computational complexity. We 
use a simulation-based approximate programming 
method called policy rollout [19, 20], which 
approximately solve a POMDP based on the 
Q-value approximation. 
 
 
 

3.1 Q-value Approximation 
It is known that the Q-value [21] is defined as 

( )
( ) ( )( )
( ) ( ) ( )

1

1 1

1 1 1

,

, | ,

, | ,
k

H k k k

k k H k k k k

k k H k k k k k

Q u

R u E J u

R u J p u dχ

χ

χ χ χ

χ χ χ χ
+

−

∗
− − +

∗
− − + +

= +

= + ∫ (14) 

where ( , )H k k kQ uχ−  is the Q-value in a horizon of 
H-k time steps, and 1 1( )H k kJ χ∗

− − +  is the optimal 
value over H-k-1 time steps given the next 
information state 1kχ + . The first term in the 
Q-value expresses the immediate reward at time 
step k and the second term denotes the expected 
reward in future. The rollout method is to give 
Q-value approximation by surrogating 1 1( )H k kJ χ∗

− − +  
with 1 1( )b

H k kJ π χ− − +  incurred by a base policy bπ . 
The base policy is a suboptimal heuristic mapping 
that is easy to implement.  

Suppose that the horizon length H is sufficiently 
large, the remaining horizon is still H steps away 
regardless of the time step k. This leads to the 
receding horizon control [22], which estimates the 
Q-value at each time step k and chooses an optimal 
action *

ku . 
( ) ( ) ( )( )1 1, , ,b

H k k k k H k k kQ u R u E J uπχ χ χ χ− +≈ + (15) 
* arg min  ( , )

k
k H k ku

u Q uχ=        (16) 

Here the base policy is the closest distances policy 
(CDP), which assigns the sensors with the minimum 
sum of distances between the sensor positions and 
the estimated positions of the targets 

( ) ( )( ) ( )( )
1

2 2

1

ˆˆarg min  i i
k kN

k k k

N
i i

b k k ku u
u u u i

sc x x sc y yπ χ
 = = 

 
= − + − 

 
∑



(17) 
where ˆ i

kx  and ˆ i
ky  are the position estimators of 

target i in x and y directions. 
 
 
3.2 Rollout Based on UT Sampling 
The rollout method is implemented with ease, but 
computationally intractable because there must be 
enough samples to evaluate the expected future 
rewards. In fact, the computational requirement of 
the rollout method depends on the length of the 
simulation runs and the number of samples required 
for the Q-value approximation. Traditional rollout 
methods employ Monte Carlo sampling to estimate 
the Q-value by averaging the cumulative rewards 
from the N Monte Carlo simulation runs. The resulting 
action minimizes 

1
1 1 1( , ) ( , ) ( |  )b nN

nH k k k k H k k kQ u R u N J uπχ χ χ χ−
= − +≈ + ⋅∑   

where 1
n
kχ +  is the n-th information state sample 

derived from the current state kχ . Note that Monte 
Carlo sampling has to collect a large number of 
random samples to evaluate the Q-value without 
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considering the horizon length and the number of 
the targets. Moreover, Monte Carlo sampling is a 
time-consuming random sampling method, and the 
use of more samples in the rollout method induces 
expensive computation. Unscented transformation 
(UT) was developed as a method to propagate mean 
and covariance information through nonlinear 
transformations [23], but we use it to afford the 
initial state samples in the rollout method. Unlike 
Monte Carlo sampling, unscented transformation 
sampling could engender numbers of deterministic 
samples according to the concrete tracking scenario, 
resulting in large decrease on the samples especially 
in a tracking mission with a small number of targets 
to track. Fig.2 illustrates the rollout algorithm based 
on unscented transformation sampling, which we 
name as UTR for short (see Fig. 2 in Appendix). 

Starting from the initial state sample n
kX , we 

propagate the state sample and observe it to 
simulate the evolutional information state by EKF 
[24]. Each initial state sample gives birth to a 
trajectory over H-1 steps to produce the 
accumulated future rewards. Specifically, the 
candidate action ku

 is selected at the first step of 
the H-length horizon, and the base policy bπ  is 
used for the remaining time steps to generate the 
future action sequence. We summarize the UTR 
algorithm systematically in Algorithm 1. 

Algorithm 1 Rollout based on UT sampling 
1. Given kχ  at current time step k, use (18) 
and (19) to sample the integrated sigma points 

n
kε  and the sigma weights nβ . 

2. Select a candidate action ku  and compute 
immediate reward using (12). 
3. Let t=k, ˆ ˆ( , ) ( , )n n

k k k kX P X P=   for 0, ,2n σ=  . 
4. Process all sigma points in parallel through 
the following steps. 

Propagate system state samples via (20). 
Acquire the measurements by (21). 
Update information state for sigma point n 
using EKF in (22) and (23). 

5. Starting at time step k+1 from 1 1
ˆ( , )n n

k kX P+ +
   

and 1
n
kX +
 , transact the following procedure for 

0, ,2n σ=  . 
for t= k+1 to k+H-1 
   Determine the action tu  through CDP. 
   Calculate the one-step reward in (12). 

Implement step 4. 
end 

6. Evaluate the approximate Q-value for 
information state trajectory in (24) 
7. Enumerate all actions and choose the best 
action minimizing the Q-value. 

Notice that we implement Algorithm 1 at each 
time step k to make scheduling decision in real time. 
The equations mentioned in Algorithm 1 are given 

as follows. 
T

1 1

0 0

0 0

      

( ( ) ) , 1, ,

( ( ) ) , 1, ,2

n n

n n n n n n
k k k k H k k H

k k n

k k n

X

n

n

ω ν

ε ω ω ν ν

ε σ λ ρ σ

ε σ λ ρ σ σ

+ − + +

 
 =
 
 
 + + == 

− + = +

 



   
 

 





(18) 

( ) ( )

T

0 ˆ  0  0  0  0
n n

k k
E E

X
ω ν

ε
 
 =
   

 

 

 

( ) ( )T T

0 , , , , , ,
n n n n

k k

E E

diag P W W V V
ω ω ν ν

ρ
⋅ ⋅

 
 =  
 
    

 

 

 

where σ  is the dimension of the sigma point, 
0( ( ) )k

nσ λ ρ+  denotes the n-th row of the matrix 
square root and 2 ( )λ ξ σ ϕ σ= + − , ξ  is the 
spreading parameter, and ϕ  is a factor usually 
chosen to be 3 σ−  [25]. 

( )0 1, ,2
1,  

2n n σ
λβ β

λ σ λ σ= == =
+ +

    (19) 

1
n n n
t t tX F X ω+ = ⋅ + Γ ⋅           (20) 

( ) T
1 1 1

n n n
t t t tZ h X u I ν+ + += + ⊗ ⋅ 

       (21) 

T T
1 1

ˆ ,   n n n n
t t t tX F X P F P F W+ += ⋅ = ⋅ ⋅ + Γ ⋅ ⋅Γ   

 (22) 

( )( ) ( )1 1 1 1 1 1
ˆ ,  n n n n n n

t t t t t tX X K Z h X P I KH P+ + + + + += + − = −      (23) 

( )
1

1
T T

1 1,  
t

n
t

n n
t t u

X X

hH K P H HP H V
X

+

−

+ +
=

∂
= = +
∂



   

where tuV  is the covariance matrix of observation 
noise of all the assigned sensors. 

2 1

0 1
( , ) ( , ) ( , )

k H
n

H k k k k n t t
n t k

Q u R u R u
σ

χ χ β χ
+ −

= = +

 
≈ +  

 
∑ ∑  (24) 

 
 
4 Simulation Experiment 
We aim to assign redundant sensor assets to track 
multiple targets, but it is burdensome to enumerate 
all the candidate actions in Algorithm 1. Clearly, the 
number of the candidate actions is 1 ( 1)N

i M i= − +∏  
for the exhaustive search. To reduce the number of 
the candidate actions, we plan to adopt a partition 
strategy in which M sensors are divided into N 
groups and each group consisting of mi sensors is 
responsible for tracking a single target. This 
strategy only needs to search for 1

N
i im=∏  candidate 

actions. It is obvious that mi>1 and 1
N
i im M= =∑ , so 

that the following inequation holds 

 
1,  

1 1 0
N

i i
i i i

M i m m i N i′
′ ′= ≠

− + − = − + > − ≥∑   (25) 

Note that (25) has proven that 1 ( 1)N
i M i= − +∏ > 1

N
i im=∏ . 
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That is to say, the partition strategy is more tractable. 
Fig.3 shows the multi-target tracking scenario of the 
partition strategy for M=10, N=3. 

 
Fig.3 Illustration of the partition strategy 

In view of the partition strategy, we verify the 
UTR algorithm via an example in which four 
sensors (Sensor A, B, C and D) are located at the 
fixed positions to track a single target whose 
process noise is = =7 m/s2. The two window 
functions of the target are ( =100 ms, =0.05 
ms) and ( =200 ms, =27.8 ms). The 
particular parameters in the simulation are displayed 
as follows: the horizon length H=8, the spreading 
parameter =0.1 and the balance factor =200. 
To demonstrate the performance of our approach, 
the CDP and the minimum one-step reward (MOR) 
method are involved. We use two scenarios for the 
performance analysis. All sensors have the same 
observation noise in scenario 1 but Sensor A is more 
prone to be intercepted than the other sensors, while 
all sensors have the same interception probability in 
scenario 2 but Sensor C has the smallest observation 
noise. The sensor parameters in the experiment are 
shown in Table 1. 

Table 1 Sensor parameters in the simulation 

 Sensor 
Parameter 

Scenario 
1 

Scenario 
2 

Error 
Statistics 

=200 m 
=2° 

=30 m/s 

Sensor 
A, B,  
C, D 

Sensor 
A, B, D 

=100 m 
=1° 

=10 m/s 
 Sensor C 

Window 
Function 

Fp(Tp=2, 
τp=0.02) ms 

Sensor 
A  

Fp(Tp=1.88, 
τp=0.1) ms 

Sensor 
B,C,D 

Sensor 
A, B,  
C, D 

Sampling 
Interval 

Ts=1 s Sensor 
A  

Ts=2 s Sensor 
B, C, D 

Sensor 
A,B,  
C, D 

The accumulated tracking errors and interception 
costs from the CDP, MOR and rollout policies are 
shown in Fig.4 (see Fig. 4 in Appendix), which has 
demonstrated that our rollout policy outperforms the 
other two methods.. What is significant here is that 
our rollout policy is able to automatically trade off 
tracking accuracy and interception risk. The UTR 
largely decreases the interception risk in scenario 1 
despite of a little sacrifice on the tracking accuracy, 
while the rollout policy reduces the tracking error 
with no increase in interception cost in scenario 2. 

Fig.5 displays the estimated trajectories and the 
sensor sequences (see Fig. 5 in Appendix). Notice 
that the true target trajectories are shown by the 
solid lines, and the estimated target trajectories are 
shown using the marks whose shapes represent the 
selected sensors. In scenario 1, our rollout method 
avoids selecting Sensor A to decrease the 
interception risk. In scenario 2, our rollout method 
prefers selecting Sensor C to reduce tracking error. 
5 Conclusion 
In this paper, our multi-sensor scheduling problem 
is how to assign redundant sensors to track multiple 
targets over time to trade off tracking accuracy and 
interception risk. This scheduling problem is 
formulated as a POMDP to develop a non-myopic 
scheme. We parameterize the information state as 
Gaussian distribution and use EKF to keep track of 
it. To solve this continuous-state discrete-time 
POMDP, we introduce unscented transformation 
into the rollout method to sample numbers of the 
information-state trajectories. We choose CDP as 
the base policy and implement our rollout policy in 
the manner of RHC. At the end of this paper, we try 
to demonstrate the effectiveness of our scheduling 
scheme through a simulation, which involves 
multiple sensors tracking a single target. The 
simulation results indicate that our non-myopic 
scheme outperforms the myopic schemes in trading 
off tracking accuracy and interception risk. 
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Fig.2 Diagram of the UTR algorithm 
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(b) scenario 2

(a) scenario 1

 
Fig.4 Comparison of accumulated tracking errors and interception costs 
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(a) scenario 1

(b) scenario 2
 

Fig.5 Estimated trajectories and sensor sequences 
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