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Abstract: - Since the inception of the electric grid in the 19th century, power systems have continuously evolved 
due to technological, industrial, legislative, demographic, environmental, and economic factors. With the advent of 
machine learning, monitoring and anticipating the evolutionary trends of the electric grid has become possible. 
This is facilitated by the convergence of vast data availability, sophisticated algorithms, and advanced 
computational capabilities. Our focus is on utilizing the supervised learning paradigm of machine learning for 
predictive analytics in power systems. Specifically, we aim to forecast electricity consumption, leveraging the 
predictive power of supervised learning techniques. 
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1  Introduction 
Supervised learning is a branch of machine learning 
that involves training a model on a labeled dataset, 
where the correct output is provided for each 
example in the training set. The goal of supervised 
learning is to build a model that can make predictions 
based on new, unseen examples. 

In the power sector, supervised learning can be 
used for energy forecasting by training a model to 
predict future electricity demand or generation based 
on historical data. To achieve this, one would need to 
first gather a dataset of historical electricity demand 
or generation data, along with any relevant features 
or variables that might influence demand or 
generation. 

With the evolution of the electric grid due to 
technological, industrial, legislative, demographic 
environmental, and economic factors, the predictive 
analytics of power systems is of vital importance for 
the strategic planning and balance of electricity 
demand and supply. Thanks to our era and digital age 
which guarantees the availability of large amounts of 
data and the high computational capacity of 
computers, statistical models and algorithms can be 
trained to make predictions or classifications in 
sectors of our choosing. Our interest in this paper 

would be the application of the supervised learning 
technique for the predictive analytics of electricity 
consumption in Cote d’Ivoire (Figure 1). 
 

 
Fig. 1: Map of Côte d’Ivoire, [1] 
 

1.1  Literature Review of Some Supervised 

Learning Techniques  
In recent years, accurately predicting energy demand 
has become more important than ever, especially 
with the increasing reliance on renewable energy 
sources within the power grid, [2], [3]. To tackle this 
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challenge, researchers have explored various 
supervised learning methods. These methods include 
well-known techniques like linear regression, random 
forest, gradient boosting, support vector regression 
(SVR), k-nearest neighbors (KNN), and decision 
trees. 

Linear regression is one of the first methods that 
comes to mind when dealing with supervised 
learning techniques. This method maps input and 
output data based on a dataset of input and output 
pairs, [4]. It is a classic and effective approach 
especially for long-term energy forecasting, [5].  A 
more robust technique is the Random forest method. 
It does combine several decision trees to ensure the 
reliability and accuracy of predictions, [2], [3].   

Metrics like the Mean Absolute Error(MAE) 
amongst others, show that Random forest models 
outperform some machine learning techniques like 
the Auto Regressive Moving Average Models 
(ARMA) presenting minimal prediction errors in 
energy forecasting applications, [6]. We also have the 
Gradient Boosting ensemble method which combines 
weak models of decision trees and iteratively corrects 
errors of previous decision trees through training. 
This ultimately results in a more robust predictive 
model, [7].  

Next is the Support Vector Regression (SVR) 
which stems from the Support Vector Machines 
(SVM). It is a kernel based method used for short-
term energy forecasting capable of handling complex 
and non-linear relationships, [7].  Decision trees are a 
popular machine learning algorithm that recursively 
partitions the input space to make predictions, and has 
been widely used for energy forecasting due to their 
interpretability and flexibility, [2], [3], [4], [7], [8]. 
K-nearest neighbors is a memory-based algorithm 
that relies on the similarity of historical data to make 
predictions and has been applied to energy 
forecasting with promising results, [4], [9]. 

Recent research has also explored the use of deep 
learning techniques for energy forecasting, which 
have shown promising results in capturing the 
inherent nonlinear and complex patterns in renewable 
energy data,[2]. However, the effectiveness of these 
supervised learning techniques can vary depending 
on the specific characteristics of the energy data, the 
forecasting horizon, and the application 
requirements. 

Our goal is to guarantee strategic planning and 
balance of electricity demand and supply by 
accurately predicting/forecasting electricity 

consumption. And Figure 2 depicts our research 
methodology. We began by collecting and cleaning a 
sufficient        amount of historical data (Primary Data 
gotten from CI-Energies beginning from1985-2021 
on electricity production and consumption in  Cote 
d’Ivoire (Precisely, the regional directorate of 
Yopougon). After which, we Split the data into 
training and test sets. We then used different 
supervised learning methods to train our model so as 
to capture the underlying patterns and trends in our 
data. Then, we evaluated the model performance 
using the test set and made the necessary adjustments 
in order to fine-tune the model. We validated our 
model using additional data. This allowed us to 
ensure that our model provided reliable predictions. 
 
 
2  Research Methodology 
 

 

Fig. 2: Research Methodology 
 
 
3   Results 
 
3.1  Exploratory Data Analysis (EDA) 
Our dataset spans from the year 1985 to 2021 with 
information on monthly energy consumption in 
MWh. And no missing values were observed in our 
dataset. The columns that represent key information 
in our dataset are: Year Index, Regional Key, 
monthly energy consumption (MWh), and the date. 
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Thanks to our EDA, we notice the exponential 
increase of electricity consumption as shown in 
Figure 3, Figure 4 and Figure 5. Figure 6 illustrates 
the monthly energy distribution and Figure 7 presents 
the correlation matrix and Table 1 presents statistical 
summary of energy consumption of the regional 
directorate of Yopougon. 
 

 
Fig. 3: Monthly Energy Trend Over the Years (GWh) 
 

 
Fig. 4: Yearly Total Energy Consumption (GWh) 
 

 

Fig. 5: Energy Consumption Vs. Year Fi 

 
Fig. 6: Monthly Energy Distribution (GWh) 
 

 
Fig. 7: Gradient Boosting 
 

 
Fig. 8: Correlation Matrix 
 

Table 1. Statistics Summary 
Statistics Energy (GWh) 

Mean 48.11 
Std 35.74 
Min 00.00 
25% 17.33 
50% 36.82 
75% 71.83 
Max 151.16 

 

3.2  Model Selection & Training 
Our model selection was predicated on the 
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exploration of several supervised learning techniques 
with the goal of having the most reliable model for 
energy forecasting in the regional directorate of 
Yopougon in Côte d'Ivoire. The models explored 
were Linear Regression, Random Forest, Gradient 
Boosting, Support Vector Regression, k-nearest 
Neighbors (KNN), and Decision Tree Regression 
models. These models were assessed with metrics 
such as the Mean Absolute Error(MAE), the Mean 
Squared Error(MSE), the Root Mean Squared 
Error(RMSE), and the R-squared metrics. Graphical 
representations of the various models mentioned 
above are given below.  

Our findings did reveal the Gradient Boosting 
model as the best-performing model delivering a 
result with the smallest MAE and RMSE of 2.28 and 
3.92 respectively.  

The next best-performing model according to our 
analysis is the Random Forest model with MAE and 
RMSE of 2.48 and 4.13 respectively. 

The Random Forest model is followed by 
Decision Tree Regression with MAE and RMSE of 
2.83 and 5.32 respectively.  

 
Fig. 9: Random Forest 
 

 
Fig. 10: Linear Regression 
 

 
Fig. 11: Support Vector Regression 

 
Fig. 12: K-Nearest Neighbors 
 

 

Fig. 13: Decision Tree 
 

Table 2. Performance metrics of each model 
Model MAE MSE RMSE R-squared 

Linear Regression 10.75 206.90 14.38 0.883014 
Random Forest 2.48 17.03 4.13 0.990369 
Gradient Boosting 2.28 15.36 3.92 0.991315 
SVR 11.73 462.53 21.51 0.738472 
KNN 3.85 46.85 6.84 0.97351 
Decision Tree 2.83 28.35 5.32 0.98397 

 
 
4 Discussion (Model Validation & 

Testing) 
Table 2 and Figure 8, Figure 9, Figure 10, Figure 11, 
Figure 12 and Figure 13 do give the results of the 
different models tested using metrics such as the 
MAE, MSE, RMSE, and R-squared values. In the 
sections below we will discuss the performance 
evaluation, assumptions, and diagnostics of the 
different models.  
 
4.1  Performance Evaluation 

1) Linear Rrogression: 

The Linear Regression Model did produce an R-
squared value of 0.883. This means that our model 
was able to explain about 88.3% of the variation in 
the energy consumption data. However, the model 
exhibited a relatively high RMSE of 14.38, 
suggesting that the predictions were not as precise as 
those of other models. While linear regression 
provides a straightforward approach, its performance 
was suboptimal compared to more advanced 
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techniques. 
F-test: The F-statistic for the model was 1446 

with a p-value of 1.74e-170, indicating  that our 
model is highly significant and that our explanatory 
variable (Year) is significantly related to the 
dependent variable (Energy). 
2) The Random Forest: 

The Random Forest model demonstrated excellent 
predictive capabilities, with an R- squared value of 
0.990 and a low RMSE of 
4.13. This model effectively captured the complex 
patterns in the data, resulting in highly accurate 
predictions. The robustness of the Random Forest 
algorithm, which aggregates multiple decision trees, 
likely contributed to its superior performance. Our 
findings are confirmed, [10], [11], [12]. 
3) Gradient Boosting: 

Gradient Boosting emerged as the best-performing 
model, achieving the highest R- R-squared value of 
0.991 and the lowest RMSE of 3.92. This model's 
ability to iteratively improve its predictions by 
focusing on errors from previous iterations allowed it 
to outperform other models. The slight edge over 
Random Forest underscores the effectiveness of 
boosting techniques in handling non-linear 
relationships and interactions within the data. Its 
attributes make for forecasting accuracy for both 
short-term and long-term energy predictions, [13]. 
4) Support Vector Regression (SVR): 

SVR showed the weakest performance among the 
evaluated models, with an R-squared value of 0.738 
and a high RMSE of 
21.51. The SVR model's inability to capture the 
underlying patterns in the data suggests that it may 
not be well-suited for our dataset, possibly due to its 
sensitivity to the choice of kernel and 
hyperparameters. 
5) K-Nearest Neighbours (KNN): 

The KNN model achieved a respectable R-squared 
value of 0.974 and an RMSE of 6.84. While not as 
accurate as Random Forest or Gradient Boosting, 
KNN still provided reasonably good predictions. Its 
performance demonstrates the potential of instance-
based learning methods in regression tasks, though it 
is slightly less effective in capturing complex 
patterns compared to ensemble methods. While k-
nearest neighbors may not outperform more complex 
machine learning algorithms, it can be a useful tool 
in hybrid forecasting models, where it is combined 
with linear statistical models to leverage the strengths 
of both approaches. 

6) Decision Tree: 

The Decision Tree model performed well, with an R-
squared value of 0.984 and an RMSE of 5.32. 
Although it did not match the accuracy of Random 
Forest or Gradient Boosting, it still outperformed 
Linear Regression and SVR. Decision Trees are 
known for their interpretability and ability to model 
non-linear relationships, which likely contributed to 
their solid performance. Our results from the decision 
tree model do show that they are suitable choices for 
energy forecasting applications, [14]. 
7) Assumptions and Model Diagnostics: 

For the Linear Regression model, diagnostic checks 
were conducted to ensure the assumptions of linear 
regression were met. The residual plots indicated no 
significant patterns, suggesting that the assumptions 
of linearity and homoscedasticity were reasonably 
satisfied. The Q-Q plot confirmed that the residuals 
were approximately normally distributed, and the 
Durbin-Watson statistic (1.76) suggested no 
significant autocorrelation in the residuals. 
Additionally, the F-test (F-statistic: 1446, p-value: 
1.74e- 170) indicated that the overall model was 
highly significant. 
 Homoscedasticity: The residual plot for the 
Linear Regression model showed that the residuals 
were randomly scattered around the horizontal axis, 
without forming a discernible pattern. This suggests 
that the assumption of homoscedasticity (constant 
variance of residuals) is reasonably satisfied. 
Homoscedasticity is essential for ensuring that the 
model's predictions are reliable across all levels of 
the independent variables. 

However, it is important to note that the F-test 
and certain assumptions, such as homoscedasticity, 
are specific to linear regression and do not directly 
apply to non-linear models like Random Forest, 
Gradient Boosting, SVR, KNN, and Decision Tree. 
For these models, performance metrics such as MAE, 
MSE, RMSE, and R-squared provide a 
comprehensive evaluation of their predictive 
capabilities and Figure 14 provides a summary of the 
linear regression model 

In conclusion, the Gradient Boosting and 
Random Forest models demonstrated the best 
performance in predicting monthly energy 
consumption, with Gradient Boosting having a slight 
edge. These models effectively captured the complex 
patterns in the data, resulting in highly accurate 
predictions. The findings highlight the importance of 
selecting appropriate models for specific datasets, as 
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advanced ensemble methods significantly 
outperformed traditional linear regression and other 
non-linear approaches. Future work could explore 
hyperparameter optimization and feature engineering 
to further enhance model performance. The 
significance of the F-test in the linear regression 
model allows us to confidently reject the null 
hypothesis, reinforcing the model's validity and 
reliability in capturing the relationship between the 
predictors and energy consumption. 
 

 
Fig. 14: Linear Regression Model Summary 
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