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Abstract: - Neural Network algorithms have significant applications in microgrid operations optimization and 
control to provide cheap, robust, and reliable energy to end-users.  These algorithms are inspired by artificial 
neural networks (ANNs). In this paper, we have proposed a neural network algorithm (NNA) based on the 
unique structure of ANNs. Neural network algorithms have the capability to generate new candidate solutions 
using the complicated structure of ANNs and their operators. Improvised exploitation and each parameter in the 
asymmetric interval are iteratively converged theoretically in the context of convergence proof. In this paper, 
we have demonstrated the scheduling problems for networked microgrids solved by using artificial neural 
networks (ANNs) along with the biological nervous systems approach. The neural network algorithm (NNA) is 
designed by using a specific structure of ANNs. NNA has the capability to take the benefits using complicated 
structure of ANNs to generate the enhanced solution. The designed code supports and implements a neural 
network-supported optimization algorithm. The proposed algorithm finds optimal solutions by utilizing 
solutions that are based on certain rules produced by machine learning neural networks. 
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1  Introduction 
Climate change is leading to a threat to power 
systems by introducing potential challenges of more 
electricity demand and impacts on the power 
equipment’s installed. In addition, overloading and 
overheating may occur due to the convergence of 
these climate change factors. To resolve these 
issues, we need to enhance the capability of the 
power network to face such weather conditions 
commonly known as enhancing the power system 
resilience. Power system resilience can be enhanced 
by using several methods such as strategic planning 
approaches and system hardening methodologies. A 
notable and rare solution is integrating controlled 
and smart technology based on establishing 
networked microgrids (NMGs) strategically. NMGs 
are capable of transferring both power and 
information across the microgrids. We can 

configure and link the multiple microgrids 
according to our needs like ring, star, or full 
configuration. Each configuration of networked 
microgrids has its own benefits of reducing 
operational costs and improving power supply 
resilience as compared with independent microgrids, 
[1].  

Networked microgrid configuration and 
networked microgrid optimization and control can 
drastically affect the operational cost by using 
detailed exploration of problem modelling, and 
objective functions with constraints. The 
comparative analysis of algorithms supports the 
strengths and limitations of NMGs configurations, 
optimization, and control of NMGs operations. In 
this paper, we have offered a more realistic and 
comprehensive description of problem modeling, its 
optimization, and control to make stable and reliable 
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NMGs operations for meeting the energy 
requirements, [2].  

For this purpose, machine learning techniques 
seem to be good approaches to finding effective 
prediction of uncertainty parameters. There are 
several algorithms to find the optimal parameter 
making the cost function optimal. The distributed 
networked microgrids have more operational 
characteristics like less computing time and more 
secure energy availability as an optimal solution, 
[3]. We can model the uncertain parameters of 
distributed networked microgrids including the 
loads, and output power using machine learning 
effective methods, [4]. 

The paper has Section II describing the 
microgrid operation optimization problem and its 
machine learning solutions. Section III describes 
machine learning in microgrids’ operation 
optimization and control. Section IV gives findings 
for NMGs configuration, optimization and control 
based on comparison of Genetic Algorithms and 
Neural Network Algorithms. Conclusions and future 
directions are mentioned in Section V. 

 
 

2 Microgrids Operation Optimization 

 Problem and Machine Learning 

 Solutions  
Microgrid operation optimization problems can be 
solved by using machine learning algorithms as 
shown in Figure 1, [5]. The machine learning 
algorithms find regression and classification-based 
solutions for microgrids. In this context, networked 
microgrid operation optimization and control are 
considered more reliable machine learning solutions 
to provide stable and available energy to end users 
due to their statistical behavior. In statistical 
problems, machine learning algorithms are 
considered optimal solutions due to their regression 
and classification properties,  [6].   
 
2.1 Networked Microgrids Operation 

 Optimization and Control Framework 

 and Problem Description 
Networked microgrids consist of distributed energy 
resources, battery energy management systems, and 
local loads for their operation and control scenarios. 
Networked microgrids have the ability to achieve 
complete performance and expected outcomes by 
processing information about forecasting data and 
information about market transactions. The 
constraints for networked microgrid optimization 
and control have significant characteristics and 
limitations of operation based on the set rules for the 

implementation of strategies. The optimization cost 
function of networked microgrids can take shape as 
per the requirements in actual scenarios. We have 
optimization objectives and measurement 
indications based on four aspects: 

- Economic Benefits 
- Environmental Impacts 
- Power Quality Affects 
- Demand Requirements 
We can categorize the optimization model into 

various properties of formulated problems like 
objective functions, decision variables, and 
constraints. These properties are helpful in deciding 
the appropriate optimization method for the 
optimization model. For example, if we have one 
cost function or objective function, we need to solve 
a single optimization problem, and it will give one 
optimal solution. Alternatively, for multiple 
objective functions, we have a multi-objective 
optimization problem to be solved, and it gives 
multiple optimal solutions. Then we can transform 
the networked microgrid optimization problem into 
a mathematical formula in order to optimize the   
model. The implementation of the algorithm to the 
model is based on the complexity of the 
optimization problem, [7].      

 
2.2  Machine Learning Algorithms 
Machine learning algorithms are used to find 
statistically complex optimization problems that are 
difficult to solve by using other methods. They are 
applicable to both regressed and classified 
problems. Unlike traditional optimization problems, 
machine learning algorithms explore the random 
factors properties to solve the optimization problem 
getting optimal solutions. Recently, several machine 
learning algorithms have been designed and 
developed with a chain of algorithms and their 
enormous applications in networked microgrids, [8]. 
 
2.2.1 Machine Algorithms for Single Objective 

Optimization 
The single objective optimization has only one 
objective function for optimal solution. Both 
supervised and unsupervised machine learning 
algorithms can be applied to get the optimal solution 
of a single objective function. The list of supervised 
and unsupervised machine learning algorithms is 
shown in Figure 1. Decision Trees, Naive Bayes 
Classification, Support vector machines for 
classification problems, Random Forest for 
classification and regression problems, Linear 
regression for regression problems, Ordinary Least 
Squares Regression,  Logistic Regression, and 
Ensemble Methods are supervised machine learning 
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algorithms that can be used for single objective 
optimization process.  
 
2.2.2 Machine Learning Algorithms for Multi-

Objective Optimization 

Multi-objective optimization is mostly referred to as 
a complex optimization problem that consists of two 
or more conflicting objective functions 
simultaneously. In this case, the improved 
performance of one objective function can degrade 
the other objective function. Multi-objective 
functions are considered favorable for coordinating 
trade-offs between the objective functions and 
getting the solutions making all the objectives 
optimal as much as possible. Moreover, single-
objective functions are optimized giving one 
optimal solution while multi-objective problems 
give a set of Pareto optimal solutions which is the 
case of this research paper. So, machine learning 
algorithms can identify a bunch of pareto optimal 
solutions in the presence of constraints instead of 
the single objective solution.  

The most attractive supervised and unsupervised 
machine learning algorithms for multi-objective 
optimization problems are support vector machines 
and independent component analysis respectively. 
In addition, we can use Decision Trees, Naive Bayes 
Classification, Random Forest for classification and 
regression problems, Linear regression for 
regression problems, Ordinary Least Squares 
Regression, Logistic Regression, and Ensemble 
Methods. Unsupervised algorithms involved in 
multi-objective optimization problems of networked 
microgrids are K-means for clustering problems, A-
priori algorithm for association rule learning 
problems, Principal Component Analysis, and 
Singular Value Decomposition. 

 
2.3 Networked Microgrids Operation 

 Analysis  
The networked microgrids have their two categories 
of operations: dynamic networked microgrids and 
pre-defined networked microgrids.  

In dynamic networked microgrids, an advanced 
structure for microgrids is adapted to define the 
boundaries and their adjustment to create balance in 
generation and load. These networked microgrids 
are flexible in the context of optimization of 
operations which are real-time, efficient use of 
resources and system demands to make the system 
more reliable. Similarly, dynamic networked 
microgrids had the capability of auto-detection, self-
healing, fault tolerance, and reconfiguration in case 
of restoring the power system network supply. In 

this work, we have used a multi-objective system 
which is considered as dynamic networked 
microgrids providing the real-time coordination, 
interconnection of components, load balancing, and 
optimal sharing of powers in the microgrids of 
networked microgrids.  

The pre-defined networked microgrids have the 
ability for consistent network configuration and 
consistent switching without considering the system 
operating conditions and priorities of customers. 
The system boundaries are determined with the help 
of supply adequacy, coverage, and reliability scores. 
These are operated by using pre-defined rules and 
agreements. In the case of grid-connected system, 
the power sharing is carried out by using these rules 
and agreements. Community microgrids are 
considered as pre-defined networked microgrids. 
Community microgrids are connected to each other 
with pre-defined connections, agreement for power 
sharing, and strategies for its operations to meet the 
loads for the community.   

As we have used dynamic networked 
microgrids approach, if we compare it with 
predefined networked microgrids. It provides more 
flexible conditions and boundaries for real-time 
changes in generation and loads. This also enhances 
the system resilience, and reconfiguration of 
networked microgrids to resolve the faults, isolation 
from the main grid, and provide uninterruptable 
power to the loads. Energy efficiency and cost-
effectiveness are improved in dynamic networked 
microgrids by optimizing the use of distributed 
energy resources. Dynamic networked microgrids 
scalability has the property of integration of new 
microgrids and distributed energy resources. This 
process enables the management of the voltage and 
frequency and balancing of loads. In short, dynamic 
networked microgrids have more advantages over 
pre-defined networked microgrids, [1].  

 
2.4  The Review Methodology in this Paper 
We have reviewed the literature systematically and 
categorized the optimization and control into two 
phases deployment and operation phase for 
networked microgrids in order to enhance 
processing time, [9].  

The deployment phase consists of component 
selection, system sizing, and parameter 
configuration while the operation phase has more 
focus on real-time scheduling and planning. 
However, optimization of networked microgrids has 
no such clear boundaries for any comprehensive 
strategy and planning.   
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3 Machine Learning in Microgrids’ 

 Operation Optimization and 

 Control 
Machine learning algorithms have significant worth 
for operation optimization and control in networked 
microgrids, [10]. There are two phases for 
optimization and control i.e., the deployment phase 
and the operation phase. 
 
3.1 The Deployment Phase of Networked 

Microgrids Operation Optimization and 

Control 
The deployment phase of networked microgrids 
finds the actual performance of microgrids and their 
capability to handle future perspectives of 
microgrids in networked microgrids. The cost-
effective networked microgrid system is formulated 
in this research work with the help of several 
microgrids connected to networked microgrids. 
Different demands at different times have several 
operation response times as per the requirements. 
We need to compare the performance and analyze 
the complete parameters regarding cost-benefit 
approach. The main focus of the deployment phase 
is to formulate a reliable, cost-effective, and 
environment-friendly networked power system to 
supply reliable and stable power to the main grid 
and directly connect loads. 
 
3.1.1  System Sizing and Component Selection 

The performance parameters, size, and model of 
networked microgrids can give the cost of 
networked microgrids even with a limited budget 
for system components. Machine learning 
algorithms are commonly used for determining cost-
effective system components. We have several 
applications of machine learning algorithms for 
sizing and component selection in the deployment 
phase of networked microgrids. 

The system sizing and component selection in 
networked microgrids is a statistical problem to be 
classified or regressed. These tasks are daily-based 
maintenance costs to predict the equipment's 
reliability. For deployment of the networked 
microgrids optimization and control, applications of 
supervised and unsupervised algorithms in sizing 
and component selection are most common due to 
their classification and regression properties.   

 
3.1.1.1 Multi-Objective Machine Learning 

Techniques 

The environmental conditions and economic 
structure define the indications of the design of 
networked microgrids operation. Networked 

microgrids are also considering reliabilities and 
uncertainties for the system. Hybrid machine-
learning techniques can enhance the optimization 
and control of networked microgrids. The indicators 
differences including the annualized cost and 
expected load loss and energy loss, power supply 
probability, and electricity cost are involved to 
determine the feasibility and decision-making.  
 
3.1.2  Parameters Configuration 

Parameters configuration is compulsory in order to 
get the optimal cost function as per the requirement 
of power and topology of the networked microgrids. 
We have configured the networked microgrids as a 
star, ring, and full configuration to get the feasible 
results as per our requirements.  

Machine learning classification algorithms are 
commonly used to configure the parameters of 
networked microgrids in order to optimize the 
operational cost. These classification algorithms 
may be supervised or unsupervised. For example, if 
we have five networked microgrids, we have to 
configure the parameters of each microgrid to get a 
full optimal solution of all five microgrids in 
networked microgrids, [11].  

 
3.1.2.1 Multi-Objective Machine Learning 

Techniques 

To get optimal solutions in multi-objective 
optimization, we need to configure the parameters 
optimally for the size and topology of networked 
microgrids. Optimal decision variables affect can be 
tested by conducting a sensitivity analysis. Multi-
objective algorithms have the ability to reduce the 
computational time in treating all objectives 
simultaneously or independently. The result in 
multi-objective functions is a set of optimal 
solutions rather than a single solution giving many 
choices to minimize the cost for decision making. 
 
3.2 The Operation Phase of Microgrids 

Operation Optimization and Control 
The operation phase of networked microgrid 
optimization and control is considered a full 
reflection of the deployment stage. To realize the 
operation economy of the networked microgrids and 
meet various operation constraints, the utilization 
energy rate is maximized. Similarly, the operation 
of networked microgrids is more relevant to end 
users of load. In the operation phase, we have two 
stages planning and real-time scheduling. 
 
3.2.1  Planning 

Networked microgrid optimization and control is a 
complex task due to more data prediction and 
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component runtime characteristics to settle the 
optimal energy scheduling points. The advanced 
prediction of scheduling response with the 
networked microgrids can reduce the operating cost 
of networked microgrids. We can use machine 
learning algorithms in the operation phase for 
networked microgrid optimization and control.  

We can plan the operation of networked 
microgrids by using supervised and unsupervised 
machine learning algorithms in the operation phase 
of optimization. Optimal scheduling points are 
based on the statistical nature of networked 
microgrids having the parameters of time scaling, 
and energy output as required. 

 
3.2.1.1  Multi-Objective Machine Learning 

Techniques 

For multi-objective optimization problems, we can 
find the optimal energy and scheduling scheme for 
networked microgrids. For multi-objective 
functions, we can obtain a set of pareto optimal 
solutions minimizing the operational cost of 
networked microgrids.  
 
3.2.2  Real-Time Scheduling 

Short-term operations can lead the scheduling 
process in networked microgrids to minimize energy 
production costs and balance the real-time power 
generation and demand. If there is an uncertain data 
prediction, scheduling can be failed severally. There 
are enormous applications of machine learning 
algorithms in real-time scheduling in the operation 
of networked microgrids.   

Networked microgrids can only have effective 
and efficient operation and control when they have 
real-time and short term microgrids parameter 
settings adjustments to respond to the demand. 
Machine learning algorithms are simple to apply for 
real-time scheduling of the operation of networked 
microgrids.  

 
3.2.2.1 Multi-Objective Machine Learning 

Techniques 
In the islanding mode of one or more microgrids in 
networked microgrids, the multi-objective 
optimization problem can arise to be optimized to 
get the optimal results of droop-regulated islanded 
microgrids. By using supervised and unsupervised 
machine algorithms, we can find the optimal 
strategy to maximize the utilities or profit and 
eventually minimize the cost of operation of the 
networked microgrid, [12]. 

4 Neural Network Algorithm in 

Microgrids’ Operation 

Optimization and Control 
Scheduling problems for networked microgrids are 
solved by using artificial neural networks (ANNs) 
along with biological nervous systems approach. 
The neural network algorithm (NNA) is designed by 
using a specific structure of ANNs. NNA has the 
capability to take the benefits using the complicated 
structure of ANNs to generate the enhanced 
solution, [13]. The designed code supports and 
implements a neural network-supported 
optimization algorithm. The proposed algorithm 
finds an optimal solution by utilizing solutions that 
are based on certain rules produced by machine 
learning neural networks, [14].  

The Pseudocode and process of the main loop 
for the neural network algorithm (NNA) in 
MATLAB is as follows: 
There are three steps in this process (i), (ii) and (iii): 
i) Process Explanation 
The process explanation is further consisting of two 
more steps as follows: 

a) Initialization 
• Initialize the population of solutions 

(pop), the weights (w), and the 
parameters. 

b) Main Loop 
• For each iteration (max_it), the 

algorithm updates the solutions and 
the weights based on certain rules. 

a.  Solution Update: - Create new 
solutions by updating the 
positions of the solutions (XP) 
based on the weighted average 
(w*XP). 

b. Weight Update: - Update the 
weights (w) based on certain 
rules to encourage exploration 
and exploitation. 

c.  Input Solutions Update: - 
Update the input solutions 
(XP) based on certain rules to 
encourage exploration and 
exploitation. 

d. Bias Reduction: - Reduce the 
bias (beta) to encourage 
exploration and exploitation. 

e. Constraint Handling: - Apply 
constraint handling to ensure 
that the updated solutions 
(XP) are within the feasible 
region. 
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f.  Objective Function 
Evaluation: - Evaluate the 
objective function values for 
the updated solutions (XP). 

g. Selection: - Select the new 
population of solutions based 
on the objective function 
values and the constraint 
violations.   

 
 

ii)Explanation of Parameters and Variables  
The parameters and variables can be explained as 
follows: 

• max_it: Maximum number of iterations 

• npop: Population size 

• nvars: Number of variables 

• w: Weights 

• wtarget: Target weights 

• beta: Bias parameter 

• LB, UB: Lower and upper bounds of the 
variables 

• Epss: Tolerance for constraints  

• pop: Initial Population of solutions 

• XP: Current population of solutions 

• x_pattern: Pattern of solutions 

• XTarget: Best obtained solution called target 
solution. 

• my_fitness_function: Objective function 
 
4.1  Neural Network Algorithm (NNA) 
We can demonstrate the neural network algorithm in 
Figure 1(a) and Figure 1(b) which is a complete 
representation of the Artificial Neural Networks 
(ANNs). Mostly there are three errors that occurred 
in ANN.  

1- Training Error 
2- Validation Error  
3- Test Error 
Mostly, we can find these errors with the help of 

loss function, for example, mean square error. Due 
to these errors, ANN is not able to learn and model 
the data which is nonlinear and has complexity. Due 
to such difficulties, we have used the NNA 
algorithm to find the results. This algorithm is the 
unique structure of ANN which gives the new 
candidate solutions to the problem.  

 
Fig. 1(a): Shows the Artificial Neural Networks 
(ANNs) 

 

 
Fig. 1(b): Shows the Neural Network Algorithm 

 
4.2  Steps of the NNA 
We can take advantage of ANNs in the context of 
NNA inspiration by the structure and concept of 
ANNs. The complete process of the NNA is 
described in Figure 2 (Appendix) for all processes. 

NNA has the ability for global search to find the 
best solution. It is an unsupervised algorithm that 
has the property of a self-learning process to find 
the best solution. There are two major properties of 
NNA algorithms. These can be used for opposite-
based learning These are using tunable parameters 
for exploration and exploitation to find the better 
solution in each learning cycle, [15].  
iii) Pseudocode 
The pseudocode for MATLAB simulation is shown 
in Figure 3 (Appendix). 
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5  Results: Comparing Neural Network 

with Genetic Algorithm in the Full, Line, 

Ring and Star Topology 
The results obtained from the heuristic technique 
genetic algorithm [16] and machine learning neural 
network algorithm are obtained during the 
simulation and optimization process. These results 
are compared with each other in order to get a better 
understanding of the operation optimization of 
networked microgrids, [17].  

Table 1 and Table 2 are the results obtained by 
using genetic algorithm and neural network 
algorithm respectively. Both Table 1 and Table 2 
shows the comparative values for each parameter 
optimized for networked microgrids in full 
configuration case. 
 
Table 1. Genetic Algorithm Results for Networked 

Microgrids Full Configuration (Total Energy 

Cost: 2385.977863 (2385.977863) USD per 

hour)  

 
 

Table 2. Neural Network Algorithm Results for 
Networked Microgrids Full Configuration (Total 

Energy Cost: 2385.977868 (2385.977700) USD per 
hour) 

 
 

Table 3 and Table 4 are the results obtained by 
using genetic algorithm and neural network 
algorithm respectively. Both Table 3 and Table 4 
shows the comparative values for each parameter 
optimized for networked microgrids in line 
configuration case. 

Table 5 and Table 6 are the results obtained by 
using genetic algorithm and neural network 
algorithm respectively. Both Table 5 and Table 6 
shows the comparative values for each parameter 
optimized for networked microgrids in ring 
configuration case. 

Table 3. Genetic Algorithm Results for Networked 
Microgrids Line Configuration (Total Energy Cost: 

2395.864618 (2385.864618) USD per Hour) 

 
 

Table 4. Neural Network Algorithm Results for 
Networked Microgrids Line Configuration (Total 

Energy Cost: 2395.864618 (2385.864618) USD per 
hour) 

 
 

Table 5. Genetic Algorithm Results for Networked 
Microgrids Ring Configuration (Total Energy Cost: 

2395.864618 (2385.864618) 
USD per hour) 

 
 

Table 6. Neural Network Algorithm Results for 
Networked Microgrids Ring Configuration (Total 

Energy Cost: 2395.864618 (2385.864618) USD per 
hour) 

 
 

Table 7 and Table 8 are the results obtained by 
using genetic algorithm and neural network 
algorithm respectively. Both Table 7 and Table 8 
shows the comparative values for each parameter 
optimized for networked microgrids in star 
configuration case. 
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Table 7. Genetic Algorithm Results for Networked 
Microgrids Star Configuration (Total Energy Cost: 

2423.250826 (2423.250826) USD per hour) 

 
 

Table 8. Neural Network Algorithm Results for 
Networked Microgrids Star Configuration (Total 

Energy Cost: 2423.250826 (2423.250826) USD per 
hour) 

 
 
 
6    Conclusion 
The proposed algorithm neural network is run by 
using the code which is optimizing the problem in 
order to find the optimal solution by utilizing a 
population of solutions and updating each solution 
supported by certain rules. The proposed algorithm 
basically and encourages exploration and 
exploitation by updating the solutions and weights 
supported by certain rules. This also reduces the 
bias to find the optimal solution. The proposed 
methodology neural network algorithm (NNA) 
consists of dynamic optimization modeling based on 
the structure and concept of artificial neural 
networks (ANNs). NNA is getting benefits from 
ANNs unique structure in order to solve complex 
optimization problems. The optimal results show 
NNA’s ability to find the minimum of multi-modal 
functions having minimum probability to be trapped 
in local minima and it is verified from the results 
section.  

Future work includes updating the weight 
matrix and the transfer function operator can be 
used. The learning and updating weights in ANNs 
can be the further learning approaches in ANNs 
such as reinforcement learning, gradient descent 
learning, and competitive learning, and further 
learning versions can be derived from NNA. 
Optimization problems including transportation, 
scheduling, and energy saving can be the next topics 
for NNA to solve. 
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APPENDIX 

 
 

Pseudocode: 

 

matlabCopy code 
FMIN = zeros(max_it, 1);  
XP = zeros(npop, nvars);  
tic x_pattern = pop;  
for ii = 1:max_it % Creating new solutions  
 for jj = 1:npop  
  XP(jj, :) = x_pattern(jj).position;  
 end  
x_new = w * XP;  
XP = x_new + XP; % Updating the weights  
 for i = 1:npop  
  w(:, i) = abs(w(:, i) + ((wtarget - w(:, i)) * 2 .* 

rand(npop, 1)));  
 end  
 for i = 1:npop w(:, i) = w(:, i) ./ sum(w(:, i)); % 

Summation of each column = 1  
 end  
% Creating new input solutions  
 for i = 1:npop if rand < beta % Bias for input 

solutions  
  N_Rotate = ceil(beta * nvars);  
  xx = LB + (UB - LB) .* rand(1, nvars);  
  rotate_postion = randperm(nvars);  
  rotate_postion = rotate_postion(1:N_Rotate);  
   for m = 1:N_Rotate  
    XP(i, rotate_postion(m)) = 

xx(m);  
 end  
% Bias for weights  
  N_wRotate = ceil(beta * npop);  
  w_new = rand(N_wRotate, npop);  
  rotate_position = randperm(npop);  
  rotate_position = rotate_position(1:N_wRotate);  
 for j = 1:N_wRotate w(rotate_position(j), :) = 

w_new(j, :);  
 end  
 for iii = 1:npop w(:, iii) = w(:, iii) ./ sum(w(:, iii)); 

% Summation of each column = 1  
 end  
  else % Transfer Function Operator  
   XP(i, :) = XP(i, :) + (XTarget.position - 

XP(i, :)) * 2 .* rand(1, nvars);  
  end  
end  
% Bias Reduction  
 beta = beta * 0.99;  
 if beta < 0.01 beta = 0.05;  

 end  
XP = max(XP, X_LB);  
XP = min(XP, X_UB);  
 for jj = 1:npop x_pattern(jj).position = XP(jj, :);  
 end 
% Calculating objective function values  
 for i = 1:npop [x_pattern(i).cost, c] = 

my_fitness_function(x_pattern(i).position);  
 x_pattern(i).const = sum(c(c > epss));  
 end  
% Selection  
 POP_New = [pop; x_pattern];  
 X_Minus = []; aa = [POP_New.const];  
 COST_MINUS = [POP_New(aa <= epss).cost];  
  
 if ~isempty(COST_MINUS) X_Minus = 

POP_New(aa <= epss);  
 [~, INDEX_M] = sort(COST_MINUS);  
 X_Minus = X_Minus(INDEX_M);  
 end  
X_PLUS = [];  
SUM_C_PLUS = aa(aa > epss);  
 if ~isempty(SUM_C_PLUS) X_PLUS = 

POP_New(aa > epss);  
 [~, INDEX_P] = sort(SUM_C_PLUS);  
 X_PLUS = X_PLUS(INDEX_P);  
 end  
wtarget = w(:, 1);  
POP_New = [X_Minus; X_PLUS];  
x_pattern = POP_New(1:npop);  
pop = POP_New(1:npop);  
XTarget = POP_New(1);  
% Best obtained solution so called Target Solution  
% Display disp(['Iteration: ', num2str(ii), ' Fmin= ', 

num2str(XTarget.cost), ' Sum_Const= ', 
num2str(XTarget.const), ' beta= ', 
num2str(beta)]); FMIN(ii) = XTarget.cost;  

end  
toc 
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Fig. 2: Process of NNA 

Fig. 3: Pseudocode for MATLAB simulation 
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