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Abstract: - This work proposes a methodology to construct an electricity power demand annual profile using a 
novel model to reproduce the demand behavior during weekends and holidays. These days have the common 
characteristic that the demand decreases during the day, or weekend, and then increases again. This behavior is 
represented by a simple deterministic model that is systematically applied to a normalized hourly demand 
profile based on similar days, allowing a relatively fast construction of an annual profile that reflects the actual 
demand characteristics and is useful for load demand forecasting, and as support for other medium or long term 
analysis, such as electrical expansion planning or fuel economics planning. The electricity demand profile 
construction starts with hourly measurements of demand as input and a base profile is prepared with historical 
data from previous years. It is based on the characterization of the weekdays by normalization and grouping 
into several time periods along the year. The base profile made with normalized days is then shaped by 
functions that allow the characterization of the demand behavior during weekends and holidays. In this work, a 
shape function is a one-dimensional vector that multiplies a demand vector and modifies its data for an interval 
of interest, leaving the rest of the vector unchanged. For the case of weekend modeling, the shape function 
spans 7 days, centering the modification on the weekend and leaving the initial and final days unchanged. The 
shape function for a public holiday spans two days and does not modify all the two-day interval, preserving the 
initial part of the first day and the last part of the second day. The objective is to generate shape functions with 
a simple model that systematically represents the real demand with low computational effort. In this work, the 
shape functions for weekends and holidays are based on the gamma probability distribution. The shape 
functions approach does not explicitly consider the weather, but it implicitly considers stationarity effects by 
dividing the yearly time data into segments, each one with its own characteristic properties, which vary along 
the year. The shape functions methodology is demonstrated with the construction of a power demand forecast 
for the Mexican National Interconnected System for the year 2022. 
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1  Introduction 
Electricity demand forecast is a key activity in 
several areas related to the energy market. From 
real-time load scheduling and one-day ahead unit 
commitment to expansion planning strategies for 
electrical generation systems, depending on the time 
horizon involved, the forecast is useful to support 
decision-making. Forecasts are commonly 
categorized as short-term, middle-term, and long-
term, with their time span ranging from minutes to 
hours, hours to months, and one year to several 
years, respectively. 

There is a diverse variety of techniques for 
demand forecasting, depending on the horizon time 
span. The most known are time series methods such 
as autoregression, autoregression with moving 
average, integrated moving average, and seasonal 

autoregressive integrated moving average. There are 
also exponential methods, single, double, and triple, 
depending on the type of data. A wide variety of 
artificial intelligence methods are also applied, such 
as neural networks, fuzzy logic, genetic algorithms, 
etc. 

Among the mentioned forecasting methods, 
there are ARMA models for mid-term electric load 
forecast [1], or grey trigonometric models for 
demand forecasting [2], [3], [4], including a 
comparison of trigonometric with ARMA and 
exponential Holt Winters models, [3]. The 
application of Grey index models to short term 
forecast is described in [4]. 

For long-term peak load forecasting, [5] 
presents a comparison of Holt-Winters and Prophet 
models. Findings highlight the importance of 
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precise long-term energy forecasting for informed 
policy decisions and infrastructure planning. 

On more recent methods, [6] presents a 
comparative analysis of machine learning 
approaches for long-term and short-term electricity 
load forecasting. Among machine learning 
applications to short-term load forecast for different 
seasonal conditions, [7] applies SVM to process a 
season specific similarity concept. 

On fuzzy logic techniques, among other 
applications, there is a system to forecast electricity 
load using learning machine techniques [8], and a 
combination of fuzzy entropy with neural networks 
for middle term load forecasting, [9]. A 
convolutional neural network model for load 
forecast in a smart grid is analyzed in [10]. A 
combination of neural networks with particle swarm 
optimization for short term load forecasting is 
documented in [11]. 

Decomposition methods are also used in power 
system forecasting. Decomposition of an aggregated 
load into sub-loads, and preparation of a forecast for 
each sub-load, where the sum is the aggregated load 
forecast is presented in [12]. A thorough literature 
review on time series decomposition methods in 
power systems forecasting is presented in [13]. It 
categorizes publications based on forecast aim, 
decomposition method, and comparisons with other 
techniques. According to this reference, most papers 
prefer multiplicative decomposition, followed by 
additive decomposition, and some use 
decomposition as an initial step in forecasting. 

Similar day selection is another approach to 
obtain a forecast. This approach requires an expert 
or a method to select the appropriate days according 
to some specific conditions. An application using 
reinforcement learning for short-term load 
forecasting algorithm to remove the dependency on 
an expert to select similar days is found in [14]. 

Calendar holidays introduce a different behavior 
on the electric demand profile. Another short-term 
load forecast involving similar days for a day-ahead 
application focused on holidays was presented in 
[15]. 

A review of techniques for load forecasting can 
be found in the literature [16], [17] as well as 
discussion of advantages and disadvantages, [18]. 
Reference [19] is focused on methods for operation 
and planning. 

A review of long-term hourly electricity 
demand forecast methods considering the evolving 
energy landscape is found in [20]. It identifies two 
main approaches: partial decomposition focusing on 
long-term trends and bottom-up methods 
aggregating hourly load profiles. The survey offers 

insights into diverse strategies and concludes with 
general recommendations for improving long-term 
load forecasting in dynamic power systems. 

In this work, characteristics of similar days and 
decomposition methods are considered to construct 
the initial part of an hourly forecast for a one-year 
forecast. It commences with the normalization of the 
historical data for all seven weekdays. Once 
normalized, the shapes of the curves are compared 
so atypical days are readily identified and 
suppressed to obtain a representative shape over a 
period of time. With the seven representative days 
defined, a typical week is then constructed. A 
profile is built with typical weeks for several periods 
along the year. The obtained normalized profile has 
a straight aspect, it does not follow the power 
demand reduction on weekends and holidays. To 
account for the general behavior of demand, the 
profile is compensated with shape functions that 
provide the general tendency of the demand during a 
period of time, the weekend, for example. The shape 
function can be modeled and applied systematically 
to obtain a power demand profile close to the 
available data. Once a model is obtained, it can be 
applied to represent a future period of time and 
generate a forecast. 
 
 

2 Power Demand Profile Construction 
Multiplicative decomposition is a technique for time 
series analysis and forecasting applications, [13]. 
These decomposition methods model the level, 
trend, and seasonality components from the input 
data, and the forecast is obtained as the product of 
each contribution. A similar concept is applied in 
this work, where a power demand profile is 
represented by a series of components for a given 
period of time, specifically one year. The power 
profile is assumed to be factorized into four 
components: 

𝑃𝑖 = 𝑁𝑓 𝑆𝑏𝑎𝑠𝑒
𝑖  𝑆𝑛𝑟𝑚𝑙

𝑖  𝑆𝑤𝑘𝑛𝑑
𝑖   𝑆ℎ𝑙𝑑𝑦

𝑖  (1) 
 
where 
Pi  ith hourly element of the demand profile, 

with i varying from 1 to n, the total hours of 
the year. 

Nf  Normalization factor, scalar 
Si

base  Base annual shape profile, nX1 vector 
Si

nrml Normalized annual shape, nX1 vector 
Si

wknd Weekend shape profile, nX1 vector 
Si

hdy Holiday shape profile, nX1 vector 
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The normalization scalar factor Nf allows the 
integral of the profile to meet the total energy 
expected to be generated along the year. 

The Mexican National Interconnected System 
(SIN) is composed by seven regions [21], and the 
total demand is the arithmetic addition of them. The 
data used in the present work corresponds to the 
preparation and conditioning of SIN information, 
and was collected and processed from public web 
pages, [22]. 
 
2.1  Base Annual Shape Profile 
The input data to build a power demand profile is 
organized into yearly sequences of hourly 
measurements. The developed power demand 
profile is not an explicit function of weather, but it 
implicitly considers stationarity effects by dividing 
the year sequence into segments, each one with their 
own characteristic properties, which vary along the 
year. This profile provides the general shape of the 
demand curve and it is scaled to meet the energy 
generation during the year. 
 
2.1.1  Computing the Base Shape Profile  

The base annual shape profile sets the general aspect 
of the power profile. It is assumed that the shape of 
the demand curve for a given year resembles that of 
previous years, scaled according to some growth 
rate and subject to satisfy the proposed total energy 
to be generated. Given m years of data, the demand 
profile is computed as an average of the previous m 
years.  

𝑃𝑖 =
1

𝑚
∑𝑄𝑖

𝑗

𝑚

𝑗=1

𝑖 = 1…𝑛 (2) 

 
where n is the number of hours in a year: 8760 or 
8784 if it is a leap year, and Qj

i represents the ith 
element of the power demand profile for year j. 

 
The plot of Pi would result on a curve with 

multiple peaks and valleys, as the demand peaks 
sometimes twice a day and has a minimum during 
the early hours of each day. Pi will be processed to 
generate a smoother annual shape. 

A calendar year contains 52 weeks, plus one or 
two days depending if it is a leap year or not. 
Assuming hourly data, for a week there are 168 
demand values. A new vector is defined as Wj, 
where j represents the jth week of the year and is 
defined as 

𝑊𝑗 = ∑𝑃𝑖

𝑖

 (3) 

 

where 
𝑖 = 168𝑚 − 167 …   168𝑚           𝑖𝑓 𝑚 < 52
𝑖 = 168𝑚 − 167 …   168𝑚 + 24 𝑓 𝑚 = 52

 

 
The summation involves adding 168 terms each 

week, except for the final week, which has one or 
two additional days to complete the year. The 
sequence of the 52 Wj values form a smoothed 
version of the power demand profile. 

Figure 1 shows the power profiles Wj for 
the years 2017 to 2021. The length of the vectors is 
52, the number of weeks in the year. Even when 
some smoothing was obtained by the summation of 
each week's demand, the general aspect is similar to 
a noisy hill that increases during the first semester 
and decreases during the second semester. The plot 
still contains multiple local peaks and valleys, and 
further smoothing can be achieved either 
by applying a smoothing algorithm such as Holt-
Winters or simply performing a polynomial fit to the 
data. The latter approach will be used in this work. 

The profiles of recent years can be averaged to 
obtain a representative profile, but because of the 
unique effect of the COVID-19 Public Health 
Emergency (PHE), the year 2020 is not accounted 
for as representative. For the construction of the 
2022 example, it will be based on the 2021 data, 
therefore, the 2021 power profile will be scaled 
according to some factor to be defined later, to 
obtain a first gross power profile for 2022. 

 

 
Fig. 1: Power demand profiles for 2017 to 2021 
 
2.1.2  Total Annual Power Demand Projection 

The integration of the power profile along one year 
produces the total demanded energy. An 
approximation to this integral is the sum of all the 
hourly power demand values per week. This sum 
can be written as the sum of all the partial sums Wi 
for a given year. 
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𝐸 = ∑𝑊𝑖

𝑛

𝑖=1

    𝑤ℎ𝑒𝑟𝑒 𝑛 = 52 (4) 

 
Figure 2 presents as small circles the area under 

the curve for the years 2017 to 2021. It is clear the 
effect of the COVID-19 PHE in 2020 and 2021. The 
green line represents a curve fit ignoring the 2020 
data, and similarly, the red line represents a curve fit 
ignoring the 2020 and 2021 data. From the curves, 
an expected value for 2023 is the average of the red 
and green lines at 2023, and it is 3.1733X108 Wh. 

The general shape profile must be scaled to 
account for the expected total energy demand during 
the year. It will satisfy a forecast criterion based on 
previous years. For each previous year, the known 
hourly power profile is integrated to obtain the total 
energy demand during the year. Then the vector 
containing the power demanded over the years is 
analyzed to identify a tendency and the next year is 
extrapolated and the value is used as a normalization 
factor for the final power profile. 

 
Fig. 2: Total energy demand for a year 
 

 
Fig. 3: Calculated smooth profile for the year 2022 

 
The smoothed profile obtained in the previous 

section us now scaled to generate 0.31733 GWh, 

and Figure 3 shows the base annual shape profile for 
the 2022 demand. According to the expected growth 
rate of the demand, the area under this curve is 
slightly greater than those of previous years. 

A figure of merit to evaluate a forecast is the 
Mean Absolute Percentage error (MAPE), and it is 
defined as: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑|

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
|

𝑛

𝑖=1

 (5) 

 
where Ai and Fi are the actual value and the 
forecasted value for time i. The MAPE is an average 
over a period of time, for the case of one day with 
hourly measurements, the summation will consider 
24 terms. This figure of merit will be used to 
evaluate the forecast in the next sections. 
 
2.2  Normalized Annual Shape Profile 
For a given weekday, the day demand profile 
changes throughout the year. In winter, it has a 
minimum at about 05:00 AM, and a maximum 
at about 20:00 hrs. For summer, the profile develops 
two successive maximums at about 16:00 and 21:00 
hrs. The behavior is cyclical, so at the end of the 
year, the profile shape for a given weekday is 
similar to that of the beginning of the year. 

From the hourly annual data, the information is 
grouped depending on the day of the week, that is, 
all the Sundays, Mondays, etc. are grouped and 
normalized to obtain the weekday profile. To 
account for the variation of the day profile along the 
year, the profile is grouped into 4-week periods, 
obtaining 13 periods for a total of 52 weeks. An 
extra day is added to the last period to complete the 
365 days of the calendar year. In case of a leap year, 
2 days are added, instead. An average shape is 
computed for every weekday and group.  

An atypical day has a different profile and it 
shifts the average shape from a typical 
representative value. Figure 4 shows the four 
normalized Mondays from a 4-week period. By 
inspection, the Monday shown as a magenta line has 
a different shape and corresponds to an atypical day, 
usually a holiday. The thick black line represents the 
average of all curves, and the thick green line 
represents the average of the remaining curves after 
the atypical day is discarded.  

There may be a number of methods to detect 
atypical days, for example, cross-correlation. In this 
work, a MAPE is computed for each day taking as a 
reference the average shape. An arbitrary limit is 
used to discard a day, in this case, if the MAPE is 
greater than 2.5%, the corresponding shape is 
discarded. 
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Fig. 4: Shape of Mondays during a period of four 
weeks 
 

The green line in Figure 4 is considered the 
typical shape function for Monday for that specific 
period. If the same procedure is applied to all the 
other weekdays, then a complete typical week is 
constructed, as shown in Figure 5. The typical week 
represents a period of time, and it changes over the 
year. Figure 6 shows the typical week shape for the 
start, the middle, and the end of the calendar year. 
The start and the end of the year shapes are similar 
(winter), but the middle is different (summer). The 
shape for a weekday may gradually develop one or 
two peaks, depending on the season. 

 
Fig. 5: A typical normalized week 
 

 
Fig. 6: A typical normalized week along the year 

With the typical days already defined, and 
knowing the weekday that starts a target year to 
forecast, the days are arranged to generate an initial 
base profile Si

base , shown in Figure 7. 
Combining the results of the base Si

base and the 
normalized Si

nrml profiles (Figure 3 and Figure 7), 
the first two vector terms of Equation (1) are 
obtained, and Figure 8 shows the plot of the 
obtained power demand profile. Comparing this 
profile with actual data, it is possible to evaluate the 
error and obtain an insight of its characteristics. 
Figure 9 shows the MAPE for all the days of the 
year, this MAPE values were obtained by equation 
(5) averaging over 24 hours for each day. The 
average MAPE of all 365 days is 4.88%, and the 
standard deviation is 4.62% for this initial base 
power demand profile. The dashed red line 
represents two times the standard deviation. 
 

 
Fig. 7: Normalized profile built with typical weeks 
 

 
Fig. 8: Combination of the base and normalized 
profiles for 2022 
 

Figure 10 shows the histogram of the MAPE 
values. The distribution is similar to hone-half 
normal distribution because of the absolute value of 
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the MAPE formulation. The dashed red line 
represents two times the standard deviation. 

Figure 9 shows a number of peaks on the MAPE 
values, these peaks are periodical and correspond to 
the MAPE for Saturdays and Sundays. This 
behavior suggests that a correction for the weekends 
is necessary to improve the demand profile. 

 

 
Fig. 9: Preliminary daily MAPE for 2022 
 

 
Fig. 10: Histogram for the 2022 MAPE 
 
2.3  Weekend Shape Profile 
The initial profile captures the shape of the different 
days of the week, but it does not capture the relative 
variation among those days, nor the demand 
decrease during a weekend. The daily MAPE plot 
shows a systematic and periodic error, this error is 
associated with the weekends. The term Si

wknd of 
Equation (1) is now introduced to model the 
weekends and reduce this periodic error. 
 
2.3.1  Weekend Modeling. 

As seen previously, the daily MAPE plot for the 
preliminary forecast profile has periodic peaks 
associated with weekends. Figure 11 shows the 
effect of the weekend on the power profile. The 

preliminary profile (blue) does not show a decrease 
in the real demand during the weekend (red). 
 

 
Fig. 11: Comparison of a normalized weekend with 
an actual weekend. 
 

For the average week of a given period of four 
weeks in the year, Figure 11 shows the plot of the 
normalized measurements and the normalized 
profile as red and blue line plots, respectively. The 
blue and red circles correspond to the power 
profiles' daily average, respectively, and are plotted 
every noon. The black asterisks represent the ratio 
of the daily averages.  It is observed a tendency on 
the shape described by the asterisks, a smooth 
temporary reduction followed by a recovery of the 
daily average ratios. By inspection, the asterisks 
resemble an inverted normal distribution, but it is 
not symmetrical, so a better representation would be 
an inverted gamma distribution. Therefore, the 
following function is postulated to shape the 
weekend behavior: 

𝑆𝑤𝑘𝑛𝑑(𝑥) = 1 − 𝐾𝑓(𝑥) (6) 
 
Where f(x) is a Gamma distribution, [23] 
 

𝑓(𝑥) =
𝑥𝛼−1𝑒−𝑥/𝛽

𝛽𝛼Γ(𝛼)
 (7) 

 
Here, a shape function Swknd(x) is proposed as 

one minus a gamma distribution function. This 
function tends to one for x values located far from 
the mean value, therefore if it multiplies a power 
profile, it will affect only elements located relatively 
close to the mean, depending on the variance. Figure 
12 shows the shape function fitted to the power 
demand data plotted as small black circles in Figure 
11. The fitting of the average values for each day is 
shown only to illustrate the concept of defining a 
function that shapes the weekend profile. For a 
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better shape function calculation, a fitting is 
performed over all the hourly data points. The 
distribution mean and the variance control the shape 
and are chosen to fit the values inside a period of 
three days. The gain sets how deep the depression of 
the curve will be. 

For a Gamma distribution with parameters  
and , the expected value is  and the variance is 
2 [23], its density function can be algebraically 
rearranged to show a clear dependency on mean and 
variance, two key parameters that provide physical 
insight and facilitate the curve fitting to power data. 
Therefore, equations (7) and (6) are rewritten as  

𝑓(𝑥) =
𝑥

(
𝐸2

𝑉
−1)

𝑒
−𝐸𝑥

𝑉

(
𝑉

𝐸
)

𝐸2

𝑉
Γ(

𝐸2

𝑉
)

 (8) 

 

𝑆𝑤𝑘𝑛𝑑(𝑥) = 1 − 𝐾

[
 
 
 
 
𝑥

(
𝐸2

𝑉
−1)

𝑒
−𝐸𝑥

𝑉

(
𝑉

𝐸
)

𝐸2

𝑉
Γ(

𝐸2

𝑉
)]
 
 
 
 

 (9) 

 
where V is the variance and E is the expected value.  

 
To illustrate the application of equation (9) to 

the weekend demand modeling, a period of 4 
consecutive weeks from the 2021 demand 
measurements was selected, and the four-week 
period profile was averaged and is shown in Figure 
12 as the red line. Similarly, the normalized profile 
is averaged and plotted with a blue line. The average 
value for each week day is computed, and their 
ratios are presented as black circles. Those black 
circles shape-out a depression that is modeled as a 
shape function according to Equation (9). The 
determination of variance, gain and mean is based 
on the interpretation of the depression width, height 
and location along the x axis, respectively.  

Given the fact that for a normal distribution, 
95% of the area is located in the range from minus 
two to plus two standard deviations, a fast 
estimation of the variance is obtained assuming the 
gamma distribution is similar to a normal one. From 
Figure 12 most of the distribution should be located 
between hours 50 and 110 over a span of 4 standard 
deviations. Then (110 – 50) /4 should be an 
approximate value of the standard deviation. This 
gives a rough initial estimate of the variance as 225 
to start tuning the fit to equation (9). The tuned 
shape function is shown as the green line in Figure 
12. 

 

 
Fig. 12: Example of shape function for a weekend 
 
2.3.2  Weekend Profile Construction 

The example case of the previous section was 
presented as an illustration of the shape function 
application. For the actual profile construction, the 
selection of parameters for the shape functions are 
not based only on daily averages, but on all the 24 
points of each day. 

The Si
wknd profile is therefore composed of a 

successive application of the shape function along 
the annual profile with a periodicity of seven days. 
A segment of the resulting profile is shown as a 
green line in Figure 13. 
 

 
Fig. 13: Effect of the weekend shape profile Si

wknd 
 
Figure 13 shows a typical segment of the annual 

profile. The weekend compensation model works 
very well to reproduce the minimum values on 
Saturday nights, and reproduces well the Sunday 
nights, with some overestimation. In general, the 
model does a good job of representing the weekend 
reduction of power demand. 

With the weekend model, the average MAPE is 
reduced from 4.88 to 3.84 %. Similarly, the standard 
deviation is reduced from 4.62 to 2.91%. Figure 14 
shows the daily MAPE and Figure 15 shows the 
histogram. Compared with Figure 9 and Figure 10, 
the MAPE of Figure 14 and Figure 15 is more 
concentrated into the 2 standard deviations region. 
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Fig. 14: MAPE for weekend compensated power 
demand profile 
 

 
Fig. 15: MAPE histogram for weekend compensated 
power demand profile 
 
2.4  Holiday Shape Profile 
The demand behavior observed during the weekends 
is similar for public holidays, where the span of 
measurements affected by Eq. (9) is limited to one 
day. The Holy Week can also de described using a 
bigger time span. 
 
2.4.1  General Holiday Modeling 

Every calendar holiday can be modeled using the 
same approach with a compensation shape function. 
Figure 16 shows a holiday example, Friday 
September 16, where the blue line is the real 
demand, the red line is the base profile and the 
green line is the base profile with the application of 
a shape function. A time span of 48 hours bounding 
September 16 and 17 is represented as vertical 
dashed lines. It can be seen that the load reduction 
spans more than Friday, affecting also the early 
hours of the next day. The effect of the shape 
function is to allow the profile to follow the real 
demand. This function is prepared with an 

adaptation of equation (9) over a time span of 48 
hours. For this case, the adaptation is achieved with 
the statistical parameters: mean 20.0, variance 
200.0, and gain 4.5. The effect on the last 12 hours 
is small. 

There are some special days that do not closely 
behave like a holiday, such as May 10th (Mother’s 
Day) and December 12 (a religious holiday), 
important in Mexican society. For these days the 
gain of the shape function is reduced to 50% of that 
of a standard holiday. As a result of analyzing the 
error values along the profile, it was found that 
when a holiday occurs during a weekend, it is not 
necessary to be modeled because all the weekend 
days are compensated by the weekend model and an 
additional compensation would result in an over-
damping of the profile. 

The shape function for all the year Si
hldy contains 

the individual shape functions for each of the 
calendar year holidays. 
 

 
Fig. 16: Example of Holiday: September 16 (Friday) 
 
2.4.2  Holy Week Modeling 

The Holy Week reflects a clear effect on the power 
profile. The decrease in the demand for this period 
is similar to the weekend model, but the demand 
decrease spans more than two days. For this case, a 
shape function for a total length of seven days is 
prepared. Figure 17 shows the shape function for the 
Holy Week, which has a length of 168 hours, it is 
obtained from Equation (9) with a mean of 85, a 
variance of 300, and gain of 5.0. The plot shows that 
the first day is practically unchanged, as well as the 
last day. Figure 18 shows the effect of the Holy 
Week shape function, which is integrated into Si

hldy . 
 
2.4.3  Other Considerations 

The demand decreases during the last days of the 
year and the first days of the next year. The shape 
function in this case is divided into two segments. 
Christmas is similar to a holiday, and it is modeled 
with a two-day span shape function. 
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Fig. 17: Shape function for Holy Week 
 
 

 
Fig. 18: Demand during Holy Week 
 
 
3  Final Results 
The final power profile involves all terms of 
Equation (1). All the multiplicative compensation 
profiles have the effect of reducing the demand, and 
also reducing the area under the curve. After all the 
multiplicative compensations are considered, the 
whole profile is scaled to meet the expected 
generation energy. Figure 19 shows the finished 
demand profile for 2022 (red) as well as the real 
profile (blue). 
 

 
Fig. 19: Calculated Demand Power profile for 2022 
 

Considering the calendar holidays, the average 
MAPE of all daily MAPEs of the final profile is 
3.28%. Figure 20 shows the daily MAPE results. 
The standard deviation is 2.38%  
 

 
Fig. 20: MAPE for weekend and holiday 
compensated profile 
 

Figure 21 shows the histogram of the MAPE. 
The red line at 4.75% represents two times the 
standard deviation. 

By classifying the year's days into Mondays, 
Tuesdays, etc., it is possible to find the MAPE for 
each specific day of the week. Figure 22 shows the 
average MAPE for all the 52 Mondays, Tuesdays, 
etc. Sundays present the highest error in the 
forecast. 
 

 
Fig. 21: MAPE histogram for power demand 
preliminary profile 
 

The load duration curve is useful for electricity 
generation planning. Because it is defined by sorting 
the hourly demand profile from highest to lowest 
values, it provides additional information such as 
how many hours loads will have a value in a given 
power interval, [24]. The distribution of loads 
provides the planner information for determining the 
proper mix of base, intermediate, and peaking 
capacity.  
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Fig. 22: Average MAPE by day of the week 
 

Figure 23 shows the load duration curve for the 
constructed and the real 2022 profile. The computed 
load duration curve tends to be higher than the real 
one. This is due to the overestimation of the total 
area under the 2022 profile (see the projection for 
2022 in Figure 2). If the estimated profile is scaled 
according to the real area, the curves would almost 
match. 
 

 
Fig. 23: Load duration curve comparison 
 

The resulting model considers a generic 
weekend model that is applied to all 52 weeks of the 
year, a holiday model to model holidays, and a half-
holiday model to handle special dates such as 
Mother´s Day. Each model involves a fitting of 
equation (9) using three statistical parameters. 
Therefore, the final model for the year profile keeps 
the number of tuning parameters to a minimum of 9, 
which are manually adjusted based on the historical 
data. 

For the application to construct the 2022 
demand profile, all the multiplicative shape profiles 
of Equation (1) contribute to reducing the demand 

forecast error, and the MAPE was progressively 
reduced from 4.88% for the base profile to 3.84% 
with the weekend model, and finally 3.28% with the 
weekend and holiday models. 

All the programming for the power demand 
profiles was developed in Matlab, [25].  
 
 
4  Conclusions and Future Work 
The present work describes the calculation of a 
yearly power demand estimation using profiles to 
shape a normalized power demand curve. These 
profiles are:  a base annual shape that provides the 
general tendency of the annual power demand 
curve; a normalized annual shape, that provides 
demand details for each week of the year; a 
weekend shape profile, to model the demand 
decrease during weekends; and a holiday shape 
profile, that compensates for the demand decrease 
during holidays. 

The weekend compensation profile is computed 
using a multiplicative function that allows the 
modeling of the demand decrease effect observed on 
Saturdays, Saturdays, and part of Mondays. This 
effect is systematically applied to all weekends of 
the year. 

Grouping the annual data into 4-week periods 
allows us to implicitly consider weather conditions. 
The resulting power profile contains the basic 
information expected in a forecast and can be 
systematically constructed with low computational 
effort.  

The constructed power profile takes into 
account expected components, such as weekends, 
holidays, and Holy Week characterization. The 
results are satisfactory and show it is possible to 
build a yearly profile with an average MAPE of less 
than 4%. An example hourly power profile with an 
average daily MAPE of 3.3% was achieved for the 
2022 power demand profile. 

Results show a tendency of the MAPE to be 
higher during weekends. Because this work 
computes and applies a unique weekend shape 
function for all 52 weeks of the year, additional 
work could be conducted to analyze the adequacy of 
the weekend gamma statistical parameters for 
different periods of time along the year. Having 
variable statistical settings throughout the year could 
improve the forecasts for weekends. Furthermore, 
the adaptation of the statistical parameters for the 
shape functions was made manually. A better 
calculation of these statistical parameters could be 
achieved using an optimization algorithm to 
minimize an error expression or applying techniques 
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such as machine learning or artificial intelligence 
(AI).  
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