
radiation forecasting,” Applied Energy, vol.
305, pp. 1-23, 2022. doi:
10.1016/j.apenergy.2021.117912.
[7] L. Yang, X. Gao, Z. Li, and D. Jia, “Intra-day
solar irradiation forecast using machine
learning with satellite data,” Sustainable
Energy, Grids and Networks, vol. 36, pp. 1-
12, 2023. doi: 10.1016/j.segan.2023.101212.
[8] Z. Bounoua and A. Mechaqrane, “Hourly and
sub-hourly ahead global horizontal solar
irradiation forecasting via a novel deep
learning approach: A case study,” Sustainable
Materials and Technologies, vol. 36, pp. 1-17,
2023. doi: 10.1016/j.susmat.2023.e00599.
[9] Y. Y. Hong and J. J. F. Martinez, “Forecasting
solar irradiation using convolutional long
short-term memory and feature selection of
data from neighboring locations,” Sustainable
Energy, Grids and Networks, vol. 38, pp. 1-
13, 2024. doi: 10.1016/j.segan.2023.101271.
[10] K. Irshad, N. Islam, A. A. Gari, S. Algarni, T.
Alqahtani, and B. Imteyaz, “Arithmetic
optimization with hybrid deep learning
algorithm based solar radiation prediction
model,” Sustainable Energy Technologies and
Assessments, vol. 57, pp. 1-8, 2023. doi:
10.1016/j.seta.2023.103165.
[11] R. Qiu, L. Li, Li. Wu, E. Agathokleous, C.
Liu, B. Zhang, Y. Luo, and S. Sun, “Modeling
daily global solar radiation using only
temperature data: Past, development, and
future,” Renewable and Sustainable Energy
Reviews, vol. 163, pp. 1-16, 2022. doi:
10.1016/j.rser.2022.112511.
[12] Y. Lu, R. Zhang, L. Wang, X. Su, M. Zhang,
H. Li, S. Li, and J. Zhou, “Prediction of
diffuse solar radiation by integrating radiative
transfer model and machine-learning
techniques,” Science of the Total
Environment, vol. 859, pp. 1-19, 2023. doi:
10.1016/j.scitotenv.2022.160269.
[13] V. D. Gil-Vera, Solar Radiation Dataset,
2024, [Online].
https://raw.githubusercontent.com/victorgil77
7/SOLAR_IRRADIATION/main/Solar_Irradi
ation.csv (Accessed Date: October 1, 2024).
[14] V. Z. Antonopoulos, D. M. Papamichail, V.
G. Aschonitis, and A. V. Antonopoulos,
“Solar radiation estimation methods using
ANN and empirical models,” Computers and
Electronics in Agriculture, vol. 160, pp. 160–
167, 2019. doi:
10.1016/j.compag.2019.03.022.
[15] H. Suyono, R. N. Hasanah, R. A. Setyawan,
P. Mudjirahardjo, A. Wijoyo, and I. Musirin,
“Comparison of solar radiation intensity
forecasting using ANFIS and multiple linear
regression methods,” Bulletin of Electrical
Engineering and Informatics, vol. 7, no. 2, pp.
191–198, 2018.
[16] U. Nalina, V. Prema, K. Smitha, and K. U.
Rao, “Multivariate regression for prediction of
solar irradiance,” in Proc. 2014 International
Conference on Data Science & Engineering
(ICDSE), Cochin, India, pp. 177–181, 2014.
doi: 10.1109/ICDSE.2014.6974633.
[17] R. Kumar, R. K. Aggarwal, and J. D. Sharma,
“Comparison of regression and artificial
neural network models for estimation of
global solar radiations,” Renewable and
Sustainable Energy Reviews, vol. 52, pp.
1294–1299, 2015. doi:
10.1016/j.rser.2015.08.021.
[18] M. R. Rietveld, “A new method for estimating
the regression coefficients in the formula
relating solar radiation to sunshine,”
Agricultural Meteorology, vol. 19, no. 2, pp.
243–252, 1978. doi: 10.1016/0002-
1571(78)90014-6.
[19] I. Daut, M. Irwanto, Y. M. Irwan, N. Gomesh,
and N. S. Ahmad, “Combination of
Hargreaves method and linear regression as a
new method to estimate solar radiation in
Perlis, Northern Malaysia,” Solar Energy, vol.
85, no. 11, pp. 2871–2880, 2011. doi:
10.1016/j.solener.2011.08.026.
[20] M. A. Hassan, A. Khalil, S. Kaseb, and M. A.
Kassem, “Potential of four different machine-
learning algorithms in modeling daily global
solar radiation,” Renewable Energy, vol. 111,
pp. 52–62, 2017. doi:
10.1016/j.renene.2017.03.083.
[21] V. D. Gil-Vera, Python code of the research
Solar Radiation Prediction Level, 2024,
[Online].
https://github.com/victorgil777/Irradiation/blo
b/main/Predicting_the_value_of_solar_radiati
on.ipynb (Accessed Date: October 1, 2024).
[22] G. Etxegarai, A. López, N. Aginako, and F.
Rodríguez, “An analysis of different deep
learning neural networks for intra-hour solar
irradiation forecasting to compute solar
photovoltaic generators’ energy production,”
Energy for Sustainable Development, vol. 68,
pp. 1–17, Jun. 2022. doi:
10.1016/j.esd.2022.02.002.
WSEAS TRANSACTIONS on POWER SYSTEMS
DOI: 10.37394/232016.2024.19.35
Gil-Vera V. D., Quintero-López C.