
Model of Robot and Deep Learning,” J.
Robot., vol. 2022, no. 1: 9742815, 2022,
doi: 10.1155/2022/9742815.
[15] N. Medepalli, M. Joy, and R. Gorre,
“Mitigation of Power Quality Issues in Grid
Integrated Renewable Energy Resources,”
[Project report, Deakin University].
November, 2020, doi:
10.13140/RG.2.2.35224.21764.
[16] E. M. Molla and C. C. Kuo, “Voltage quality
enhancement of grid-integrated pv system
using battery-based dynamic voltage
restorer,” Energies, vol. 13, no. 21:
13215742, 2020, doi: 10.3390/en13215742.
[17] F. Nkado, F. Nkado, I. Oladeji, and R.
Zamora, “Optimal Design and Performance
Analysis of Solar PV Integrated UPQC for
Distribution Network,” Eur. J. Electr. Eng.
Comput. Sci., vol. 5, no. 5, pp. 39–46, 2021,
doi: 10.24018/ejece.2021.5.5.361.
[18] G. Wiczyński, “Determining location of
voltage fluctuation source in radial power
grid,” Electr. Power Syst. Res., vol. 180, no.
1:106069, 2020, doi:
10.1016/j.epsr.2019.106069.
[19] P. A. Gkaidatzis, A. S. Bouhouras, K. I.
Sgouras, D. I. Doukas, G. C. Christoforidis,
and D. P. Labridis, “Efficient RES
penetration under optimal distributed
generation placement approach,” Energies,
vol. 12, no. 7: 12071250, 2019, doi:
10.3390/en12071250.
[20] O. T. Ibitoye, M. O. Onibonoje, and J. O.
Dada, “A Review of IoT-Based Techniques
for Smart Power Systems Architectures,” in
2022 IEEE 7th International Energy
Conference (ENERGYCON), IEEE, Riga,
Latvia, May 2022, pp. 1–5. doi:
10.1109/ENERGYCON53164.2022.9830295
[21] V. N. Ogar, S. Hussain, and K. A. A.
Gamage, “The use of artificial neural
network for low latency of fault detection
and localisation in transmission line,”
Heliyon, vol. 9, no. 2: 13376, doi:
10.1016/j.heliyon.2023.e13376.
[22] M. Shafiullah, K. A. AlShumayri, and M. S.
Alam, “Machine learning tools for active
distribution grid fault diagnosis,” Adv. Eng.
Softw., vol. 173, no.1: 103279, 2022, doi:
10.1016/j.advengsoft.2022.103279.
[23] M. Jamil, S. K. Sharma, and R. Singh, “Fault
detection and classification in electrical
power transmission system using artificial
neural network,” Springerplus, vol. 4, no. 1:
1080, Dec. 2015, doi: 10.1186/s40064-015-
1080-x.
[24] E. Hossain, M. R. Tur, S. Padmanaban, S.
Ay, and I. Khan, “Analysis and Mitigation of
Power Quality Issues in Distributed
Generation Systems Using Custom Power
Devices,” IEEE Access, vol. 6, no. 1, pp.
16816–16833, 2018, doi:
10.1109/ACCESS.2018.2814981.
[25] IEEE, IEEE Standard for Harmonic Control
in Electric power systems, vol. 565, no. 1,
pp. 31–65, 2022, doi: 10.1007/978-3-662-
44160-2_2.
[26] IEEE Guide for Using IEEE Std 1547 for
Interconnection of Energy Storage
Distributed Energy Resources with Electric
Power Systems," in IEEE Std 1547.9-2022 ,
vol. 1, no.1, pp.1-87, 5 Aug. 2022, doi:
10.1109/IEEESTD.2022.9849493.
[27] C. Beuter and M. Oleskovicz, “S-transform:
From main concepts to some power quality
applications,” IET Signal Process., vol. 14,
no. 3, pp. 115–123, 2020, doi: 10.1049/iet-
spr.2019.0042.
[28] S. H. Dolatabadi, M. Ghorbanian, P. Siano,
and N. D. Hatziargyriou, “An Enhanced
IEEE 33 Bus Benchmark Test System for
Distribution System Studies,” IEEE Trans.
Power Syst., vol. 36, no. 3, pp. 2565–2572,
2021, doi: 10.1109/TPWRS.2020.3038030.
[29] S. H. Cho, H. C. Shin, J. B. Lee, H. S. Jung,
and S. K. Shin, “An Effective Detection
Method of Voltage and Frequency
Fluctuations Based on a Combination of
TEO/DESA and STFT Analysis,” J. Electr.
Eng. Technol., vol. 14, no. 2, pp. 985–991,
2019, doi: 10.1007/s42835-018-00074-w.
[30] S. Netsanet, D. Zheng, Z. Wei, and G.
Teshager, “Cognitive Edge Computing–
Based Fault Detection and Location Strategy
for Active Distribution Networks,” Front.
Energy Res., vol. 10, no.1, pp. 1–13, 2022,
doi: 10.3389/fenrg.2022.826915.
[31] Q. N. Minh, V.-H. Nguyen, V. K. Quy, L. A.
Ngoc, A. Chehri, and G. Jeon, “Edge
Computing for IoT-Enabled Smart Grid: The
Future of Energy,” Energies, vol. 15, no. 17:
15176140, 2022, doi: 10.3390/en15176140.
[32] D. Liu, H. Liang, X. Zeng, Q. Zhang, Z.
Zhang, and M. Li, “Edge Computing
Application, Architecture, and Challenges in
Ubiquitous Power Internet of Things,” Front.
Energy Res., vol. 10, no. 1, pp. 1–18, 2022,
doi: 10.3389/fenrg.2022.850252.
[33] C. Liu, X. Su, and C. Li, “Edge computing
for data anomaly detection of multi-sensors
WSEAS TRANSACTIONS on POWER SYSTEMS
DOI: 10.37394/232016.2024.19.29
Oladapo T. Ibitoye, Moses O. Onibonoje,
Joseph O. Dada, Omolayo M. Ikumapayi,
Opeyeolu T. Laseinde