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Abstract: - Renewable energy sources (RES) such as solar photovoltaic and wind are becoming the most 
attractive power generation options in many nations. Even while high penetration seems likely, power quality 
anomalies such as voltage fluctuation, harmonics, and frequency fluctuation associated with RES hinder 
seamless integration. The variability and unpredictability of these sources create the most oddities. In grid-tied 
renewable energy, monitoring power quality efficiently is crucial. Power grid monitoring solutions in related 
literature use sensor-based cloud and edge computing techniques. The existing systems struggle with excessive 
latency when delivering large amounts of generated data to the cloud. To fill this gap, a new approach for the 
detection and localization of voltage fluctuation is proposed in this study. The approach integrated three 
techniques namely; feed-forward neural network (FFNN), Stockwell transform, and anomaly-aware edge 
computing to detect and locate voltage fluctuation in a GtRE. Using MATLAB/Simulink, virtual emulation of a 
modified IEEE 33 Bus and a GtRE representing a section of Ado Ekiti (in Nigeria) low-voltage distribution 
grid are carried out for data generation and system evaluation. Feature extraction was carried out in a Python 
IDE using Stockwell transform. The voltage fluctuation events are detected and localized based on the 
extracted features using the trained FFNN model deployed and evaluated within three microcontroller-based 
computing devices. The proposed approach integrated anomaly-aware with edge computing to send only 
voltage data that are considered abnormal to a dedicated data center for visualization and storage. Performance 
evaluation of the proposed technique on the simulated GtRE demonstrates a significant decrease of 98% and 
90% in latency when compared to cloud computing and conventional edge computing respectively. 
Comparison of the proposed approach to two closely related solutions in literature also demonstrates a 50% and 
92.5 % reduction in latency. The contribution of the study is the reduced latency and minimal bandwidth 
utilization achieved by the implementation of the developed technique. 
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1 Introduction 
Fossil fuel-based power plants have major 
contributions to greenhouse effects which cause 
global climate change. The use of such plants has 
been declining globally over the past few decades, 
[1]. Emissions of carbon dioxide and nitrogen oxide 
from fossil fuels have great influence on climate, 
[2]. Apart from the effects of the conventional 
power system generation on climate, the motivation 
to consider renewable energy sources (RES) is 
derived from other factors such as rising demand for 

electricity and energy poverty, [3]. Alternative 
power generation resources such as solar and wind 
are often environmentally friendly and have 
advanced technologically, with the capability to 
generate electrical power without contributing to 
carbon footprint or having any adverse effects on 
people or animals, [3], [4]. The integration of the 
RES into the utility grid has led to the development 
of various Distributed Generation (DG) 
technologies as part of solutions to foster the 
implementation of the “Paris Agreement” to 
maintain global temperatures below 2 0C and 80% 
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carbon foot-print elimination by the year 2050, [5], 
[6]. 

Grid-tied renewable energy (GtRE), if carefully 
implemented, has a positive impact on the stability 
of the power system,  [6], [7]. One of the most 
recent developments in the power distribution 
system is the distributed generation (DG), which 
offers a decentralized approach to power grid 
architecture, [8]. DG involves producing a 
considerable amount of power close to the 
distribution network, with renewable generators as 
typical examples, [9], [10], [11]. Distributed 
generation has benefits that include: lower power 
loss, greater voltage support, peak shaving, 
increased system efficiency, stability, and 
dependability, [10], [12]. Meanwhile, the technical 
challenges of GtRE from certain sources such as 
solar photovoltaic and wind turbines are critical 
power quality issues, [11]. According to [13], [14], 
power quality (PQ) is how closely the parameters of 
a power supply system such as voltage, frequency, 
and waveform adhere to the predetermined 
standards which operate end-user equipment 
appropriately. 

Renewable energy sources have gained a lot of 
attention lately due to their ability to address issues 
like the rising need for electricity, air pollution, and 
the subsequent difficulties caused by global 
warming. The inherent characteristics of these 
renewable energy sources namely, fluctuations in 
wind speed and solar radiation have a big impact on 
power quality, dependability, and safety. Low PQ 
levels therefore run the risk of causing motor 
failure, line overheating, imprecise metering, early 
device aging, and disruptions in communication 
circuits. In addition to renewable energy sources, 
PQ anomalies (PQAs) caused by heavy interference 
to grid voltages and currents can also result from the 
operation of electronic appliances and equipment.  

"The concept of powering and grounding 
sensitive equipment in a matter that is suitable to 
that equipment's operation" is how the IEEE defines 
PQ. A PQA is defined as any variation in voltage or 
current over a certain period from its nominal 
values. PQAs are defined as a temporary deviation 
from the nominal magnitude and/or frequency 
components. The voltage fluctuation caused by the 
integration of renewable energy sources, including 
solar photovoltaic, is the main focus of this study. 
One of the main problems with power quality that 
arises from RES integration with the grid is voltage 
fluctuation which is primarily caused by the 
intermittency of renewable energy sources, [15].  

The rest of this section provides a brief 
background of the power quality anomaly under 

investigation and the detection technique. The 
subsequent sections of this study are structured as 
follows: section two provides a concise overview of 
the power quality issues associated with grid-tied 
renewable energy. Section three provides 
comprehensive information regarding the 
methodologies and approaches utilized to address 
the identified issue. Section four presents the 
outcomes attained by the proposed solution and also 
includes a comparative analysis with other 
techniques and solutions. The study is concluded in 
section five with recommendations on possible 
adaption of the proposed technique. 

 
1.1  Voltage Fluctuation 
Voltage fluctuation is the variance in voltage 
amplitude from the nominal value. According to 
IEEE standards, it is a repeated voltage fluctuation 
with a magnitude of 0.9 to 1.1 pu, [15], [16], [17]. It 
is produced by sources whose output power varies 
over time. Voltage fluctuation is one of the key 
issues of power quality that emerges when RES are 
integrated with the grid. The significant prevalence 
of intermittent, uncontrollable RES is the main 
cause of voltage fluctuation. Voltage flicker is the 
major effect of voltage fluctuations. According to 
[15], [18] voltage fluctuations can be described 
using two metrics, short-term flicker severity and 
long-term flicker severity. Although, there are other 
inherent grid factors capable of causing voltage 
fluctuations, but are particularly heightened by 
renewable energy, which hurts power quality if not 
effectively monitored.  

Voltage may increase (swell) or decrease (sag) 
more than usual when there is an excess of 
renewable energy in certain locations. A power 
system phenomenon known as voltage sag causes 
the nominal RMS voltage to drop between 10% to 
90% for small intervals of time, lasting from 0.5 
cycles to 1 minute, [16], [17]. A voltage sag is 
defined by the IEC 61000-4-30 standard as a 
transient drop in the RMS voltage of 10% or more 
just below the rated system voltage during a period 
of 1/2 cycle to 1 minute [15]. The reverse of voltage 
sag is the voltage swell. In [19], voltage swell is 
defined as a brief rise in RMS voltage of 10% or 
more that lasts for up to one minute and occurs just 
over the rated system voltage, [20]. All appliances 
connected to electrical power that has unstable 
voltage are susceptible to damage. Such power 
supply hurts the efficiency and proper operation of 
electrical and electronic appliances.  

 
 
 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2024.19.29

Oladapo T. Ibitoye, Moses O. Onibonoje, 
 Joseph O. Dada, Omolayo M. Ikumapayi, 

 Opeyeolu T. Laseinde

E-ISSN: 2224-350X 339 Volume 19, 2024



1.2  Edge Computing 
The advent of the Internet of Things (IoT) has 
created a plethora of opportunities for complicated 
real-time systems. Industry 4.0 aims to process 
sensor data for practical applications using digital 
technologies, [20]. A distributed computing 
paradigm called edge computing places applications 
closer to data sources such as local edge servers and 
Internet of Things devices. This proximity to data 
sources provide significant benefits, such as quicker 
insights, enhanced response times, and increased 
bandwidth availability. Implementation of edge 
computing and IoT techniques requires machine 
learning integration, [21]. For voltage signal data, a 
time series prediction model such as a feed forward 
neural network (FFNN) is required. 

The feed-forward neural network is classified as 
one of the two main categories of artificial neural 
networks, [22], [23], distinguished by how 
information is transmitted between its layers. The 
flow of the model is characterized as unidirectional, 
indicating that information within the model 
progresses solely in one way. This progression 
occurs from the input nodes, passing through any 
hidden nodes, and ultimately reaching the output 
nodes. Feed-forward networks are trained by the 
utilization of the backpropagation approach. 
 

 

2 Power Quality Challenges of Grid-

 Tied Renewable Energy 

The infrastructures for conventional power grids 
were designed to handle energy produced from 
conventional sources. Technologies behind these 
infrastructures can adjust their output to achieve an 
energy balance between supply and demand at all 
times to ensure the stability and reliability of the 
power grid. Due to the high penetration of RES like 
solar and wind, the operators in the power sector are 
worried about the stability of the grid, the quality of 
the power, and voltage regulation, [6], [11]. 

Three power quality challenges are prominent in 
renewable energy systems such as; voltage 
fluctuation, harmonics, and frequency fluctuation, 
[6], [16], [24]. Additionally, in the case of grid-tied 
RE, voltage and frequency changes may result from 
inherent power grid problems. Voltage and 
frequency, as specified by the IEEE Standard 519-
2022 in [25], are the two key factors to consider 
when evaluating the power quality of RES (PV and 
wind systems). Deviation of these parameters 
creates power quality problems. These problems can 
be discussed from two perspectives: The renewable 
energy perspective and the power grid perspective. 

This study focuses on the effective detection of 
voltage fluctuation in GtRE. According to IEEE 
standards, voltage fluctuation is a repeated voltage 
fluctuation with a magnitude of 0.9 to 1.1 pu, [15]. 
It is produced by sources whose output power varies 
over time. Voltage fluctuation is one of the key 
issues on power quality that emerges when RES are 
integrated with the grid. The significant prevalence 
of intermittent, uncontrollable RES is the main 
cause of voltage fluctuation. 

A typical mathematical representation of 
voltage fluctuation is presented in Equation 1. All 
appliances connected to electrical power that has 
unstable voltage are susceptible to damage. Such 
power supply hurts the efficiency and proper 
operation of electrical and electronic appliances. 
 

𝑉(1𝜑) =
2I(Rcosθ+Xsinθ)

1000
𝐿                                                  (1) 

 
where I is load current, R is wire resistance, X is 
wire impedance, L is wire length, θ is phase angle 
and 1𝜑 is single phase. 
 

 

3  Methods 
 

3.1  System Overview 
The proposed edge computing approach for 
monitoring power quality anomalies (voltage 
fluctuation) in grid-tied renewable energy (GtRE) is 
a four-layered system presented in Figure 1. In the 
first layer, the simulation of a GtRE is carried out 
using MATLAB/Simulink. This layer is designed 
and configured to generate data of normal voltage, 
and voltage fluctuations required to train and 
validate the feed-forward neural network (FFNN) 
model. Also, this layer is equally designed to 
generate data needed to evaluate the deployed edge 
computing system. The second layer is the sensor 
layer which directly obtains voltage fluctuation data 
from the simulated grid for onward transmission to 
the edge computing (EC) layer. In the third layer, 
the EC device performs four functions; feature 
extraction using Stockwell Transform, voltage 
fluctuation detection, voltage fluctuation location, 
and voltage fluctuation severity screening. The 
fourth layer is the cloud layer, where visualization 
of events monitoring takes place. 
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Fig. 1: System Overview 
 
3.2  System Requirement 
The system utilized hardware devices and software 
programs. A Laptop Computer running on 64-bit 
Microsoft Windows 10 Pro operating system (Intel 
corei7 CPU at 2.7GHz, with installed 16GB RAM, 
and 256GB SSD) played host to the software 
programs and the user interface for the model 
development.  
 Neural Network tools in MATLAB R2023a 
(version 9.14.0.2206163) were used to run the code 
extracted from the feed forward neural network 
model which was implemented using Replit Python 
IDE (version 0.3.2) running on Python 3.10. 
MATLAB was used to model the modified IEEE 
33-bus test feeder (a benchmark network) which 
was used to simulate voltage signal datasets for 
model training. Also, MATLAB was used to 
simulate grid-tied renewable energy (solar) where 
the developed system is evaluated. The edge 
computing devices are comprised of simulated 
voltage sensors and microcontrollers managed by a 
Raspberry pi 2 (b+). The Raspberry pi 
microcontroller is responsible for running the output 
weight of the edge-based neural network model and 
sending the captured data to the developed cloud 
platform. The cloud-based platform was designed 
using Java graphical user interface framework, to 
visualize the system performance. 
 
3.3   Data Collection 
Related literature on power quality anomalies in 
grid-tied renewable energy was explored. This study 
focused majorly on the most prominent power 
quality anomaly in grid-tied renewable energy 
(GtRE) which is voltage fluctuation. Training 
datasets of voltage fluctuation were generated from 
the simulated modified IEEE 33 Bus network using 
algorithmic codes. Data of normal voltage signals 
and fluctuated voltage signals were obtained from 
the simulated grid. The measured line voltages were 
collected and saved at the output side of the power 
system. 10000 data of voltage signals were collected 
and labeled. 

 Additionally, to obtain the large number of 
datasets required in training and validating the feed-
forward neural network model, voltage fluctuation 
signals were derived from the grid by inducing 
certain random noise to alter the simulated 
mathematical model presented in equation 2, the 
simulated random noise model is presented in 
equation 3. 
 

𝑉 = 𝐴 ∗ sin(2𝜋𝑓𝑡 + 𝜑)                                                 (2) 
 

𝑉𝑟 = 𝑉 + 10 ∗ 𝑟𝑎𝑛𝑑𝑛 (𝑠𝑖𝑧𝑒(𝑉))                                (3) 
 
where V is the voltage at time t, A is the amplitude, 
f is the frequency, 𝜑 is the phase and 𝑟𝑎𝑛𝑑𝑛 is the 
induced random noise. 
 
 In this study, an alternate current (AC) voltage 
of 230v is considered as nominal voltage with a 
tolerance range of +6% and -13%. This is by IEEE 
Standard 1547 of 2022, [26].  A voltage fluctuation 
signal is considered as any voltage signal outside the 
tolerance range. 
 
3.4  Data Feature Extraction  
Feature extraction is a commonly employed 
methodology in data analysis that aims to condense 
a voluminous input dataset into a set of pertinent 
features. Dimensionality reduction is employed to 
convert extensive input data into more compact and 
relevant clusters for subsequent analysis. Within the 
field of machine learning, feature extraction refers 
to the systematic procedure of converting diverse 
forms of data, such as signal, textual, or visual 
information, into numerical features that are 
amenable for utilization in machine learning 
algorithms. In this study, Stockwell Transform (S-
Transform) is used to extract useful numerical 
features from the voltage signals generated using 
equation 4, before feeding the dataset into the feed-
forward neural network model. The S-Transform 
algorithm was developed in this study utilizing the 
Python programming language.  
 The development of the S-Transform as a time-
frequency distribution for the analysis of geoscience 
data occurred in 1994, [22]. According to [22], the 
S-Transform can be considered a broader form of 
the short-time Fourier transform (STFT), as it 
encompasses the continuous wavelet transform 
while also addressing certain limitations associated 
with it. Firstly, it should be noted that modulation 
sinusoids exhibit a fixed relationship about the time 
axis. This characteristic allows for the localization 
of scalable Gaussian window dilations and 
translations within the S-Transform. Furthermore, it 
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is worth noting that the S transform does not suffer 
from the issue of cross-terms, making it a more 
effective method for achieving signal clarity 
compared to the Gabor transform,  [22]. The S-
Transform, adopted from [27] can be expressed 
comprehensively, elucidating its connection to other 
time-frequency transforms, including the Fourier, 
short-time Fourier, and wavelet transforms as shown 
in equation 4. 
 

𝑆(𝜏, 𝑓) = ∫ ℎ
∞

−∞
(𝑡) ∣ 𝑓 ∣

2

√2
𝑒−

𝑡−(𝜏)2𝑓2

2 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡        (4)   
 
where 𝜏 (tau) is time location, t is time, f is 
frequency, h(t) is signal concerning time. 
 
3.5  Description of the Studied Power Grids 
Due to the adverse effects of voltage fluctuations on 
other loads connected to the same network as the 
disruptive load, and the constraints of technical 
feasibility, the only viable method for experimental 
verification was through simulation. The IEEE 33-
bus test system is the first studied network in this 
study, the network, adopted from [28] is depicted in 
Figure 2. The network is modeled in 
MATLAB/Simulink environment. The modified 33-
bus test system is adapted from the IEEE 33-bus test 
system. The modified system integrates photovoltaic 
(PV) systems of 0.5MW each at three busses (11, 
18, and 22). The modified network is designed for a 
base frequency of 50 Hz and a nominal voltage of 
13.8 kV at the substation. The substation 
transformer at bus 1 has a capacity of 3 MW. 
 

 
Fig. 2: Line diagram of IEEE 33-bus test system, 
[28] 
 

The primary focus of this study is mainly on 
low-voltage networks, because voltage fluctuations 
most often occur in them. The majority of the low-
voltage networks in Nigeria are radial topologies 
with branches. The second studied power grid is a 
section of Ado Ekiti low-voltage distribution grid. 
Ado Ekiti is a city in the South Western region of 
Nigeria. A MATLAB simulation was conducted to 
model the grid with a base frequency of 50 Hz and a 

voltage of 11kV for secondary distribution. Three-
phase consumers were represented with a nominal 
voltage of 415V, while single-phase customers were 
represented with a nominal voltage of 230V. The 
system incorporates 0.5MW photovoltaic (PV) 
systems at each bus in the network. 
 
3.6  Description of the Trained FFNN Model 
The trained feed-forward neural network (FFNN) 
model was implemented using Python and Keras 
library with the TensorFlow backend engine. FFNN 
is considered in this study due to its ability to model 
complex non-linear relationships, which are often 
present in power systems. Another great feature of 
FFNN is its ability to adapt to new data, making it 
suitable for voltage fluctuation prediction where 
certain parameters may change over time. Also, 
FFNN is potent in handling inherent noise in input 
data, which is natural with voltage fluctuations, 
[29]. 

MATLAB is used to create the simulated time 
series dataset. Using an initial learning rate of 0.001, 
the model is trained with the aid of an Adam 
optimizer.  

The adaptive learning rate is employed to 
progressively reduce the learning rate by a factor of 
0.1 until learning ends. The total number of epochs 
used in the training process is 200 with a batch size 
of 25. This study exploits the capability of FFNN to 
reshape data into brief fixed-length segments and 
analyze the time sequence of the simulated sensors. 
The Holdout method of cross-validation was 
adopted with training and validation split of 80 to 20 
respectively. 

Feed-forward neural network is a type of 
artificial neural network characterized by the 
absence of loops among nodes. This particular 
neural network architecture is commonly referred to 
as a multi-layer neural network, as it exclusively 
propagates information in a forward direction. 
During the process of data flow, input nodes receive 
data, which subsequently traverse via hidden layers, 
and ultimately escape through output nodes. There 
are no available links inside the network that can be 
utilized to transmit information from the output 
node. The multi-layer feed forward neural network 
is presented in Figure 3.  X1, X2, Xn represent the 
external source input signal which represents the 
voltage fluctuation signals. Every input variable’s 
synaptic weight is represented by W1, Wn which 
permits the appraisal of their importance to the 
model’s performance.  
 As shown in Figure 3, the network has three 
layers, input, hidden, and output layers. In the input 
layer, the neurons receive incoming voltage 
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fluctuation signals and subsequently transmit them 
to the next layer within the network. It is imperative 
that the feature or attribute numbers inside the 
voltage signal dataset correspond to the number of 
neurons present in the input layer. The hidden layers 
of a neural network consist of several neurons that 
perform further processing on the input voltage 
signal before transmitting it to the subsequent layer 
(output). The weights of this network are 
continuously changed to enhance its voltage 
fluctuation predictive capabilities. The output layer 
simply represents the predicted voltage fluctuation 
events. 

 
Fig. 3: The Simplified FFNN Architecture 

 

3.7 Description of the Edge Computing 

 System 
Three model-based computing devices were 
deployed on a raspberry pi microcontroller to run 
the FFNN algorithm for voltage fluctuation 
detection in GtRE. The first computing device is 
configured to represent Cloud Computing (CC), and 
the second computing device is configured to 
represent Edge Computing (EC). The third 
computing device is configured to represent 
Enhanced Edge Computing (EEC), which is the 
solution that is being proposed in this study. Each 
computing device is designed to communicate with 
the simulated voltage sensors deployed to specific 
busses on the studied power distribution grid. The 
algorithm for CC was developed to transfer data 
from sensors, directly to a cloud platform. The 
algorithms for EC and EEC devices were developed 
to work within three layers, the first is sensor layer, 
the second is edge computing layer and the third is 
cloud layer.   
 In EEC, a voltage fluctuation-aware algorithm is 
introduced to capture and send only data considered 
by the trained model to be anomalies. Data from the 
sensors are processed within the edge computing 
layer, anomaly events are transmitted to the cloud 
layer which comprises of a dedicated Java-based 
graphical user interface. The algorithm of the cloud 
layer is programmed to perform adaptive deletion 
schemes on data streams. The architecture of the 
EEC system is shown in Figure 4. 

 
Fig. 4: Enhanced Edge Computing Architecture 
 
3.8  System Implementation 
The implementation of the entire system is depicted 
in the flowchart presented in Figure 5. The chart 
explicitly shows the various stages of the process 
from data acquisition to the final deployment of the 
edge-based neural network model for voltage 
fluctuation detection in GtRE. 

 
Fig. 5: System Implementation Flowchart 
 

3.9  System Evaluation 
Voltage fluctuation detection is typically considered 
in this study as a classification task rather than a 
regression task. In general machine learning, 
classification tasks are about predicting a discrete 
label, while regression tasks are about predicting a 
continuous quantity. In the case of voltage 
fluctuation detection, the task is to detect whether a 
fluctuation has occurred or not, which can be 
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represented as two classes, ‘fluctuation’ and ‘no 
fluctuation’. Performance metrics are crucial for 
evaluating the effectiveness of the developed model. 
For a voltage fluctuation detection task using a 
Feed-Forward Neural Network (FFNN), which is a 
binary classification problem, the following metrics 
were considered as defined in [30]. 
 
3.9.1  Detection Accuracy 

This is the most intuitive performance measure. It is 
simply a ratio of correctly detected voltage 
fluctuation events to the total events. Equation 5 
was programmed in the FFNN algorithm to carry 
out voltage fluctuation detection accuracy (DA) 
rate. 
 

DA =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝐸𝑣𝑒𝑛𝑡𝑠
∗ 100  (5) 

 
3.9.2 Precision 

Precision (P) looks at the ratio of correct positive 
detections to the total detected positives. It answers 
the question of what proportion of positive voltage 
fluctuations classification was correct. Equation 6 
was programmed in the FFNN algorithm to carry 
out voltage fluctuation detection precision rate. 

𝑃 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
∗ 100   (6) 

 
3.9.3 Recall (Sensitivity) 

Recall (R) calculates the ratio of correct positive 
voltage fluctuation detections to all observations in 
the actual voltage fluctuation class. It answers the 
question of what proportion of actual voltage 
fluctuations were detected correctly. Equation 7 was 
programmed in the FFNN algorithm to carry out 
voltage fluctuation detection recall rate. 

𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∗ 100     (7) 

 
3.9.4 F1 Score 

The weighted average of Precision and Recall 
constitutes the F1 Score. It attempts to strike an 
equilibrium between recall and precision. The 
FFNN algorithm was configured to perform voltage 
fluctuation detection with an F1 score using 
Equation 8. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                  (8) 

 
3.9.5 Latency 

In this study, the latency of all assignments is 
represented by ‘L’ which is used to determine the 
overall delay time in data transfer from the edge 
sensors to the cloud platform. L comprises four 
components: the interval separating data capture and 

transfer to the edge server, the delay in assignment 
queuing, the time taken by the edge to conduct 
operations, and the potential time required for the 
edge server to transmit data to the cloud. The 
mathematical expression of L, adopted from [31] 
and [32] is presented in equation 9. 

𝐿 =   
∑ 𝑥𝑖,𝑗(𝑠𝑗/𝑏𝑖,𝑗 + 𝑡𝑒𝑗 + 𝑠𝑗/𝑣𝑒 + 𝑠𝑗/𝑏𝑒𝑗𝑝𝑖)

𝑛
𝑖=1

𝑛
    (9) 

 
where "n" denotes sets of monitoring sensors. Set 
“x” delegate the connection between edge devices 
and the edge server. The set “e” represents the 
collection of peripheral servers, while “ej” denotes 
each edge server within the distribution grid. The 
data magnitude produced by each monitoring sensor 
is denoted as “sj”, while “pi” represents the 
likelihood that the edge sensors will detect a voltage 
fluctuation. The term "edge conducting rate" (ve) 
refers to the number of frames that can be processed 
by each edge server within one second. The unit of 
time expressed in seconds is “t”. The bandwidth of 
the uplink from every peripheral server In the cloud, 
“Ej“ is denoted by the symbol “bej”. The bandwidth 
of upstream is “bi, j”. 
 
 
4 Results 
 

4.1  Voltage Signal Generation Output 
Voltage signals within the tolerance range of +6% to 
-13% of the nominal voltage of 230V, at a 
frequency of 50 Hz, were regarded as normal 
voltage signals, whereas voltage signals outside the 
tolerance range were regarded as voltage fluctuation 
signals. Figure 6 is an example of the normal 
voltage signal waveforms generated by the 
simulated grid without renewable energy 
integration, whereas Figure 7 is an example of the 
voltage fluctuation signal waveforms generated 
from the simulated grid when solar energy is 
integrated. 
 

 
Fig. 6: Sample of normal voltage waveform from 
grid without solar integration 
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Fig. 7: Sample of fluctuated voltage waveform from 
GtRE 
 

4.2  Model Training and Validation 
The training and validation of the FFNN model 
gives a promising result on precision, recall, and the 
f1-score with the attainment of an average of 92% 
and 94% for each of the three metrics programmed 
in the algorithm with equations 6, 7, and 8. The 
training and validation results are shown in Table 1. 
Figure 8 illustrates the curve depicting the accuracy 
of the model during both the training and validation 
phases as a function of the epoch. During the 25th 
epoch, there was a significant increase in accuracy, 
and the optimal fit was obtained beginning at epoch 
150. The curve in Figure 9 illustrates the 
progression of model training and validation loss 
over multiple epochs. The decline in loss 
commenced during the 25th epoch, and by the 150th 
epoch, the loss had diminished to a near-zero level. 
 

Table 1. Model Training and Validation Scores. 
Metrics Training Score (%) Validation Score (%) 
Recall 90 94 

Precision 92 92 
F1-Score 94 96 

 

 
Fig. 8: The accuracy curve of the model 

 
Fig. 9: The loss curve of the model 
 
4.2.1 The FFNN Test 

The test of the FFNN model gives a promising 
result on accuracy with the attainment of an average 
of 96% for detection accuracy programmed in the 
algorithm with equation 5. The detection accuracy 
results are shown in Table 2. 

 
 

Table 2. FFNN Detection Accuracy Results. 
Events Number 

of Signal 
Samples 

Number of 
Correct 

Prediction 

Number of 
Wrong 

Prediction 
Voltage Sag 500 482 18 

Voltage 
Swells 

500 480 20 

Interruption 500 481 19 
Flicker 500 484 16 
Normal 500 478 22 

 
 
4.3 Comparison of Enhanced Edge 

 Computing with Other Computing 

 Techniques 
Table 3 illustrates the time taken by the three 
computing devices to transfer data of voltage 
fluctuation events from certain buses on the 
network, to the cloud platform. The results of 
enhanced edge computing demonstrate a significant 
decrease of 98% and 90% in latency when 
compared to cloud computing and conventional 
edge computing respectively. 

Selected screenshots of the computing model 
curves as logged on the web platform are presented 
in Figure 10, Figure11 and Figure12. The vertical 
axis represents the voltage signal while the 
horizontal axis represents data transfer delay. 
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Table 3. Comparison of the three computing devices 
concerning data transfer delay for selected buses. 

Buses Cloud 
Computing 
Transmitted 

Time 
(Seconds) 

Edge Computing 
Transmitted 

Time 
(Seconds) 

Enhanced Edge 
Computing 
Transmitted 

Time 
(Seconds) 

Bus 3 120s 40s 2s 
Bus 4 125s 30s 1s 
Bus 6 133s 32s 1s 
Bus 7 140s 38s 1s 
Bus 8 137s 37s 2s 
Bus 9 138s 32s 1s 

Bus 10 138s 39s 1s 
Bus 11 129s 38s 2s 
Bus 17 130s 40s 1s 
Bus 30 136s 32s 2s 
 

 
Fig. 10: Bus 4 Cloud Computing Curve  
 

 
Fig. 11: Bus 4 Edge Computing Curve  
 

 
Fig. 12: Bus 4 Enhanced Edge Computing Curve  
 

It is evident from the bus 4 curves that the data 
transfer delay for the proposed enhanced edge 
computing technique offered the shortest time of 
1second in comparison with an average of 32 
seconds  offered by edge computing and an average 
of 125 seconds offered by cloud computing. 
 
4.4 Comparison of Latency and Detection 

 Accuracy of Selected Edge Computing 

 Techniques 
Table 4 illustrates the latency and detection 
accuracy recorded with selected Edge Computing 
Techniques in related literature as compared with 
the proposed Enhanced Edge Computing 
Techniques. The proposed edge computing 
technique outperformed the existing solutions by 
offering latency reduction of 50% and 92.5% when 
compared with the performance of the two related 
solutions. 
 

Table 4. Comparison of Latency and Detection 
Accuracy of Selected Edge Computing Techniques. 
Technique 

Used 
Input Signal 

Considered 
Average 

Latency 

Recorded (s) 

Detection 

Accuracy 

(%) 
Edge 

Computing 

[33] 

Sensor Data 20 84 

Edge 

Computing 

[34] 

Voltage Signal 3 94.5 

Proposed 

Enhanced 

Edge 

Computing 

Voltage Signal 1.5 96 

 
 
5 Conclusion 
This study examines the application of an enhanced 
edge computing technique for monitoring voltage 
fluctuations in grid-tied renewable energy. 
Significant emphasis was placed on guaranteeing 
that the system functions with the least possible 
delay. The methodology employed a combination of 
three techniques: feed-forward neural network 
(FFNN), Stockwell transform, and anomaly-aware 
edge computing, to identify and localize voltage 
fluctuations in a GtRE.  

The trained FFNN's output weight is deployed 
as three computing devices on a microcontroller, 
allowing it to identify and localize voltage 
fluctuation occurrences based on extracted 
attributes. The proposed solution used edge 
computing and anomaly-aware operations to send 
only anomalous voltage data to a designated data 
center for storage and presentation. The 
performance evaluation of the developed technique 
on the simulated GtRE reveals a significant 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2024.19.29

Oladapo T. Ibitoye, Moses O. Onibonoje, 
 Joseph O. Dada, Omolayo M. Ikumapayi, 

 Opeyeolu T. Laseinde

E-ISSN: 2224-350X 346 Volume 19, 2024



reduction in latency when compared to cloud 
computing and conventional edge computing.  

Adoption of the proposed technique will 
result in improved power quality monitoring in 
GtRE. The developed technique is not limited to 
monitoring voltage fluctuation in GtRE, it can be 
adapted to monitor other power quality anomalies. 
In addition, the technique can also be adapted to 
other power-related events such as monitoring the 
rate or quality of power generation from hydrogen-
powered fuel cells, and monitoring of the rate of 
charging of electric vehicle energy storage systems.  
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