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Abstract: - Due to the inclusion of distributed generation (DG) in microgrids (MGs), the accelerated growth in 
demand, and environmental concerns, suitable management and operational strategies are imperative. The 
utilization of wind and solar energy has rapidly increased in MGs. However, due to the uncertainties these 
systems present, accurately predicting energy generation remains challenging. This necessitates modeling the 
system’s random variables (such as renewable resource output and possibly load demand) using appropriate 
and feasible methods. The primary objective of this article is to determine the optimal setpoints for renewable 
energy sources (RES) and all elements involved in the MG, minimizing the total operation cost. The system 
comprises wind turbines (WT), photovoltaic panels (PV), energy storage systems (ESS), and electric vehicles 
(EVs). Weibull distribution and the Hottel and Liu Jordan equations are employed to determine the potential 
available capacity of wind and solar energy generation, respectively. ESS is utilized to enhance MG 
performance. For optimal management, a comprehensive mathematical model with practical constraints for 
each MG element is extracted. An efficient Population-Based Incremental Learning (PBIL) metaheuristic 
method is proposed to solve the optimization objective in an MG, demonstrating that this energy management 
system optimizes and effectively coordinates DG and ESS energy generation considering economic 
considerations. Finally, PBIL is compared with a commonly used model, Particle Swarm Optimization (PSO), 
across various scenarios, analyzing and evaluating their outcomes, showcasing a reduction in operation costs. 
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1   Introduction 
The utilization of distributed generation (DG) 
technologies to address continuous improvement, 
efficiency, and reliability within the electrical 
system, coupled with the competition in the 
electricity market and the reduction of greenhouse 
gases, represents a relatively new market being 
adopted by both users and power-generating 
companies. DGs encompass renewable units such as 
wind turbines (WT), photovoltaic panels (PV), or 
biomass, alongside non-renewable units like fuel 

cells, microturbines, gas engines, diesel generators, 
etc. DGs eliminate the need for the transmission 
system by being installed close to the demand. The 
integration and control of DGs with storage devices 
and flexible loads can form a low-voltage 
distribution network, termed a microgrid (MG), 
capable of operating in isolated mode or 
interconnected with the main distribution grid as an 
entity. This implies functioning either for self-
consumption or facilitating energy import/export 
to/from the MG, [1], [2], [3], [4], [5], [6].  
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Today, the implementation of the MR concept, 
due to its low operational costs within the system 
and environmental aspects, is expanding across the 
distribution network. From the perspective of MR 
owners, economic operation is crucial. Given that 
MRs can participate in energy markets and provide 
ancillary services, appropriate scheduling becomes 
essential. Therefore, a suitable strategy for MR 
operation must be pursued, [2]. 

MRs often face difficulties meeting total demand 
due to energy shortages, as the energy generated by 
DG sources is sometimes insufficient. This 
challenge arises from the intermittent nature of 
certain renewable energy (RE) resources, 
necessitating an energy management system to 
address this issue. Energy management systems for 
a microgrid represent relatively new and popular 
topics that have recently garnered significant 
attention. 

One of the main challenges in managing certain 
renewable resources like wind and solar energies is 
the issue of uncertainty in their behavior. That is, 
the actual energy production from these resources 
differs from the forecasted values in real time. This 
can be defined as the probability of the difference 
between the predicted and actual values. In other 
words, owing to the uncertainty in energy 
production from these resources, the operator’s 
responsibility is to maintain a balance between 
production and consumption, which poses certain 
challenges. Therefore, system operators attempt to 
provide a certain amount of reserve energy through 
the energy storage system (ESS) to cover 
uncertainty in energy production and maintain 
system security at the desired level, [3]. 

MR users can indeed overcome this shortage by 
purchasing more energy from the utility company or 
by increasing the number of generating sources. 
However, these solutions often come with higher 
emission and energy costs, referring to either 
purchasing from the grid or the cost of the elements 
involved. Another solution to mitigate this problem 
and maintain a balance between system production 
and consumption is by reducing customer 
consumption during periods of energy scarcity. This 
practice of demand competing with offers made by 
production units is termed ’Demand Response’ 
(DR). DR is defined as changes in end-user 
electrical usage in their normal consumption 
patterns in response to changes in electricity prices 
over time or incentives designed to induce lower 
electricity usage during high wholesale market 
prices or when system reliability is compromised, 
[3]. 

To optimize MR operation, different objective 
functions have been considered, as in [2], [3], [4], 
along with the utilization of various types of RE 
sources. One such source is wind energy, which has 
emerged as a significant RE alternative. However, 
due to its fluctuations, various methods have been 
considered for energy generation forecasting for 
optimal scheduling of WT, [5]. In [2] and [6], a 
probabilistic method for wind speed prediction 
based on recorded values was proposed. This model, 
called ’Weibull Distribution,’ is used to model 
stochastic variables and has been employed by 
various authors for short-term wind speed 
prediction. Consequently, WT output power can be 
estimated based on the technical constraints 
specified by the manufacturer. 

Both wind and solar energy encounter challenges 
regarding fluctuation in power production. 
References as [7], [8], [9], [10], [11], address this 
issue based on certain established equations. For 
proper system functioning, configuring the optimal 
amount of purchased energy before system 
operation initiation is crucial. This is because 
without knowledge of the available PV power on an 
operational day, determining the exact quantity 
required from the grid becomes difficult. 
Photovoltaic energy is estimated by calculating solar 
energy radiation, using the modified Hottel equation 
and the Liu-Jordan equation. These equations also 
address the issue of partially cloudy/rainy weather, 
determining the site-specific climate for 
photovoltaic production. The authors in [12] and 
[13], analyzed the values behind these equations, 
such as solar constants, solar hours, declination, and 
zenith angle, among other data, to achieve the 
desired outcome. Therefore, to estimate 
photovoltaic output power, the method described in 
[14], [15], [16], [17], [18], [19], has been utilized, 
comprising a set of technical formulas supported by 
technical data specified by the PV manufacturer. 
Regarding the previously mentioned ESS in [3], the 
focus was on the State of Charge (SOC) limits for 
its proper operation within the MG. 

Currently, there is a growing trend towards the 
use and adoption of electric vehicles (EVs) due to 
fossil fuel depletion and increasing environmental 
concerns. Adopting electric vehicles as an 
alternative mode of transportation necessitates the 
development of a charging infrastructure. The 
behavior of the EV battery (BEV) in its SOC closely 
correlates with the ESS. Despite varying EV 
handling, displacement can be defined through a 
pattern, supported by the SOC, to predict the 
amount of stored energy due to such EV 
displacement, [20], [21], [22]. 
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Optimization involves handling variations using 
information from an initial concept to improve it. 
Many engineering industry problems, especially in 
manufacturing systems, are inherently complex and 
challenging to solve using conventional 
optimization techniques, [23]. Finally, an efficient 
metaheuristic method, Population-Based 
Incremental Learning (PBIL), is proposed to resolve 
the conflicting objective problem (cost and 
coordination) for optimal operation, employing a 
simple algorithm that utilizes a probability vector to 
generate the population, considering the highest 
evaluations of the vector, [24] and [25]. To evaluate 
the proposed algorithm, the management system is 
applied to a typical MR consisting of multiple ER 
generators, ESS, EVs, and electrical loads. The 
results showcase effective coordination of GD and 
ESS energy generation considering economic and 
environmental considerations. 

Many researchers have employed the Particle 
Swarm Optimization (PSO) algorithm for 
improvement purposes. The PSO algorithm is 
typically utilized to minimize the operational cost of 
distributed energy resources while considering 
network constraints, demand response, and the 
incorporation of renewable resources in electrical 
studies. Previous studies have not precisely 
addressed the uncertainties caused by wind turbines 
and solar panels from the demand side. Favorable 
results were obtained compared to the Probabilistic 
Binary Particle Swarm Optimization (PBIL) 
method. This study employs a programming model 
to minimize the total operating costs in a Microgrid 
(MR), encompassing energy generation with 
stochastic behavior of Wind Turbines (WT) and 
Photovoltaic (PV) panels along with associated 
uncertainties. Additionally, since implementing a 
real open electricity market is not feasible in many 
existing distribution and energy systems due to 
underdeveloped communication infrastructure, this 
paper interacts with demand bids for each element 
used to address this issue and create a competitive 
energy market. The analysis facilitates the operator's 
decision-making by observing the power behaviors 
and costs of all energies to be incorporated into the 
main system. This decision-making can assist the 
operator in anticipating whether certain energy 
sources can be practically utilized, minimizing risks 
or maximizing benefits, whether in terms of energy 
or economics. A multi-objective system considering 
the cost analysis of uncertainty due to the 
integration of renewable sources into the main 
system is a future-oriented approach related to the 
optimization of this work's system. A comparison 
between the PSO and PBIL methods is presented in 

the final section of the document, due to the greater 
use of PSO in such problems, noting some 
similarities in the methods. However, there is a 
certain error percentage in favor of the proposed 
method, reducing the estimated cost. 
 

 

2   System to Model 
In this section, the proposed stochastic model in the 
MG, shown in Figure 1, encompasses Renewable 
Energy Sources (RES) and user load demands. 
Additionally, random interruptions in DGs, 
variability in both the SOC of ESS and EV batteries 
(BEVs) and the grid market are modeled. The 
framework of the considered MG relies on planning 
units to supply demand optimally and suitably 
through wind and solar energy generation elements, 
primarily through natural stochastic behavior. The 
inclusion of EVs is an innovation that will likely 
become commonplace shortly, hence its 
fundamental incorporation. Energy is supplied 
within 24 hours by energy generation consisting of 
utility services, WT, PVs, and ESSs for EVs and 
user loads. Therefore, energy production calculation 
relies on operations with certain restrictions or 
limits. 

 
Fig. 1: Proposed Microgrid 
 

The forecasted amount of wind speed, solar 
irradiance, and load is generated through established 
and commonly used methods today, [7], [8], [9], 
[10], [11], supported by long-term historical data, 
although the latter was acquired through daily 
routine activities. All these values, considered as 
input values at the system’s outset, represent the 
average forecasted amount produced per hour in the 
day. Finally, the MG generates multiple scenarios 
involving possible stochastic quantities, aiming to 
optimize minimum operational costs in residential 
loads while considering specific constraints for each 
device to address uncertainties caused by wind and 
solar energy generation. 
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2.1 Photovoltaic System Modeling 
A simplified schematic of the developed system is 
depicted in Figure 2. The maximum nominal output 
of the PV or photovoltaic system used in the 
proposed system is 275W per module. The ESS 
consists of sufficient capacitor modules to meet 
demand, with each unit’s maximum capacity set at 
300 watts. To simulate different hourly load patterns 
throughout the day, an estimate of the usage for 
various electrical appliances commonly found in 
households today was applied, resulting in variable 
loads ranging from a minimum of 50W to a 
maximum of 1150W. 

The system’s output power is determined by 
user-provided data, in addition to the values from 
the following sections. This article focuses on the 
northern region of Mexico, specifically in 
Monterrey, Nuevo León. The city is located at 
latitude 25°40’ North and longitude 100°18’West, at 
an elevation of 537 meters above sea level, with a 
Peak Solar Hour (PSH) of 5.2 and temperatures 
around 30 degrees Celsius. 
 

 
Fig. 2: Photovoltaic system 
 
2.1.1  Hottel’s y Liu Jordan Equations  

The references in [7], [8], [9], [10], [11], the Hottel 
method allows for estimating global radiation under 
clear atmospheric conditions based on the location’s 
latitude, altitude, and climate characteristics, 
categorized into four types as shown the Table 1, 
[12]. This model expresses atmospheric 
transmittance for direct radiation, τb, as a function of 
the zenith angle, θz. 
 

Table 1. Climate characteristics 
Climate Type rO r1 rK 

Tropical 0.95 0.98 1.02 
Summer, mid-latitude 0.97 0.99 1.02 
Summer, sub-artic 0.99 0.99 1.01 
Winter, mid-latitude 1.03 1.01 1.00 

 
The daily output power of the PV has been 

estimated by calculating daily solar radiation. The 

calculation of beam radiation τb utilized the 
modified Hottel equation shown in Equation 1 

𝜏𝑏  =  𝛼0  + 𝛼1 +  ℯ
𝐾

𝑐𝑜𝑠(𝜃𝑧) (1) 
 
where a0, a1, and k are parameters depending on the 
altitude above sea level A in the geographical area 
under analysis (0.1736, 0.7097, and 0.3493, 
respectively). The zenith angle is represented by 
cos(θz). Subsequently, the modified Liu Jordan 
equation is used to find diffuse radiation τd in 
Equation 2. 

𝜏𝑑  =  0.2710 −  0.2939(𝜏𝑑) (2) 
 
The solar constant Gcs is used to obtain values in 
W/m2, as in [12], [13]. 
𝐺𝑜𝑛  =  𝐺𝑐𝑠  ∗ 

 (1 + (1 +  0.033 ∗ cos
360𝑛

365
)) (3) 

 
Using equations 1, 2, and 3, the value of total 

solar radiation is obtained. The Figure 3 show the 
values of irradiance. 

𝐺𝑡  =  𝐺𝑜𝑛  ∗  (𝜏𝑏  +  𝜏𝑑) (4) 
 

 
Fig. 3: Total solar irradiation on January 1st, 2020 
 
2.1.2  Solar Panel Power  

The output power Ppv of the photovoltaic module 
depends on solar energy, irradiance, ambient 
temperature of the location, and the characteristics 
of the module itself.  

𝑇𝑚  =  𝑇𝑎  + 𝐺𝑡 (
𝑁𝑂𝐶𝑇 −  20

𝐺𝑡𝑁𝑂𝐶𝑇
) (5) 

 

𝐼𝑚 = 𝐼𝑠𝑐 ∗ (
𝐺𝑡

𝐺𝑡𝑁𝑂𝐶𝑇
+ (1 + (

𝑇𝐼𝑠𝑐

100
)  ∗

                                                       (𝑇𝑚  −  25)))  
(6) 

 

𝑉𝑚  =  𝑉𝑜𝑐  − (
𝑇𝑉𝑜𝑐

100
) ∗  (𝑇𝑚  −  25) (7) 
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𝐹𝐹 =  
𝑉𝑚𝑝  +  𝐼𝑚𝑝

𝑉𝑜𝑐  + 𝐼𝑠𝑐
 (8) 

 
𝑃𝑝𝑣(𝑡)  =  𝐹𝐹 ∗  𝑉𝑚  ∗  𝐼𝑚 ∗  𝑁𝑀 (9) 

 
Where the values of Table 2 are provided by the 
manufacturer: 
 

Table 2. Characteristics of the manufacturer 
Tm = Module temperature in degrees Celsius °C. 
Ta = Ambient temperature in degrees Celsius °C. 
Gt = Total Irradiation (W/m2) at time t. 
GtNOCT = Normal Operation Cell Temperature (800 
W/m2). 
GtSTC = Standard Test Condition (1000 W/m2). 
Im = Current at maximum power in Amps. 
Isc = Module short-circuit current in Amps. 
Vm = Voltage at maximum power in volts. 
Voc = Module open-circuit voltage in volts. 
TIsc = Current temperature coefficient in °C. 
TVoc = Voltage temperature coefficient in °C. 
NM = Number of solar modules 
FF = Fill Factor. 
 

The Figure 4 shows the power behavior in watts 
due to the production of energy by the photovoltaic 
system. 
 
2.2  Wind System Modeling 
In this document, the concept of reliable capacity is 
used to model uncertainty, representing the 
availability of wind energy. The power fluctuation 
caused by wind speed variation is not extremely 
random in terms of magnitude and ramp speeds.  
 
 

 
Fig. 4: Estimated power of the modules on January 
1st, 2020 
 

The output of wind power will be based on the 
uncertainty presented by the wind speed in a region. 
The probability of wind speed occurrence, i.e., the 

frequency of each wind speed, is analytically 
expressed by the Weibull distribution, [3].  

The power curve is the most feasible method for 
annual production use and is much more accurate. 
For the study, an AW-1500/70 wind turbine model 
from the manufacturer Acciona was used (Table 3). 
 

Table 3. Technical characteristics of the AW 
1500/70 wind turbine 

Parameter 
 

Unit 

Manufacturer Acciona (Spain) 
Power 1500 watts 
Diameter 70 m 
Swept area 3849 m2 

Power density 2.57 m2/kW 
Number of blades 3 
 

The energy produced by a wind turbine is the 
result of adding all the products of the powers (Pi) 
delivered in each time interval (t) by the duration of 
each interval in hours during a given period (day, 
month, year, depending on the desired calculation). 
Therefore, the energy E is expressed in a simplified 
manner as shown in Equation 10. 

𝐸 =  ∑ 𝑃𝑖  ∗  ∆𝑡 (10) 
 
Where Pi is the power at each time interval in watts, 
and ∆𝑡 is the duration of each time interval in hours. 

This approach allows for a comprehensive 
understanding of wind energy generation over a 
specified period. 

 
2.2.1  Weibull Distribution  

To handle the uncertainty in wind energy generation 
due to wind speed, a statistical probability method 
like the Weibull Distribution is employed for a 
given time frame. Data is collected over a month, 
comprising 24-hour intervals, in a region where the 
installation of these wind turbines is planned. An 
anemometer captures these data points, as displayed 
in Figure 5, obtained from [24]: 
 

 
Fig. 5: Recorded wind speed data 
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When wind speed measurements are taken annually, 
the Weibull probability distribution function 
successfully describes frequency curves, [26]. The 
Weibull probability density function is expressed as: 

𝑓(𝜐)  =  
𝑘

𝑐
 ∗  (

𝜐

𝑐
)

𝑘−1

 ∗  ℯ
−(

𝜐

𝑐
)

𝑘

  (11) 

 
here, k is the shape parameter, and c is the scale 
parameter. The equation 11 provides the probability 
that the wind speed falls within a 1 m/s interval 
centered at that speed. To fit the frequency data to 
the Weibull function, the values of parameters k and 
c will be determined via a non-linear fitting process, 
show in Figure 6. This process aims to find suitable 
values for these parameters based on the wind speed 
data illustrated in Figure 5. 
 

 
Fig. 6: Fit Weibull graph 
 
2.2.2  Average Wind Power  

The turbine power is independent of the Weibull 
function; that is, analyzing wind speed at a location 
helps calculate the average velocity. The Weibull 
distribution accurately determines the probability of 
a specific wind speed occurring. When wind data is 
modeled using f(υ), the average wind power (Pυ) 
perpendicular to an area (A) is given by Equation 12 
[26]: 

𝑃𝜐 =  0.5𝐴𝜌 ∫ 𝜐3 𝑓(𝜐) 𝑑𝜐

∞

0

 (12) 

 
It can be shown that when f(υ) is the Weibull 

distribution function, the average power delivered is 
given by Equation 13: 

𝑃𝜐 =  
𝐴𝜌𝜐3Γ (1 +

3

𝑘
)

2 [Γ (1 +
1

𝑘
)]

3  (13) 

 
The power output constraints of a wind turbine 

utilized in this study are illustrated below: 

𝑃𝜐 = {

0

𝑝𝑤𝑟  (
𝜐 −  𝜐𝑖𝑛

𝜐𝑟  − 𝜐𝑖𝑛

)

𝑝𝑤𝑟

  

𝜐 < 𝜐𝑖𝑛 𝑎𝑛𝑑 𝜐 > 𝜐𝑜𝑢𝑡 
 

𝜐𝑖𝑛 <= 𝜐 <= 𝜐𝑟 
 
𝜐𝑟 < 𝜐 <= 𝜐𝑜𝑢𝑡 

(14) 

 
Here, 𝜐𝑖𝑛 and 𝜐𝑟 represent the cut-in and rated 

wind speeds of the turbine (m/s), respectively, while 
𝜐𝑜𝑢𝑡 signifies cut-out of wind velocity. 
 
2.3  Energy Storage System Modeling 
The Energy Storage System (ESS) consists of 
electrochemical batteries electrically connected to 
an energy source and the load, playing a vital role in 
managing an Interconnected Microgrid (IM). To 
optimize the operational planning of an IM, a 
suitable mathematical model for the ESS has been 
developed in [3], [5], [6].  

As per Equation 15, the battery’s charging and 
discharging rates in each one-hour interval over the 
operational period should stay within predetermined 
limits, as defined in Equation 16. 

The charge and discharge rate of the battery in 
each one-hour interval of the entire operation period 
must be within an estimated limit. 

|𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡|  ≤  𝑃𝑐
𝑚𝑎𝑥 

 
|𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡|  ≤  𝑃𝑑𝑖𝑠

𝑚𝑎𝑥 
(15) 

 
The state of charge (SOC) must not violate the 

default maximum and minimum value. 
𝑆𝑂𝐶𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶(𝑡)  ≤  𝑆𝑂𝐶𝑚𝑖𝑛  . . . ∀𝑡 ∈  𝑇 (16) 

 
The battery is authorized to change its state of 

charge and discharge only once per operating period 
within the specified period. 

The constraints regarding the power limits that 
the ESS can charge or discharge within a time t are 
depicted in Equation 17, considering the efficiency 
of the charging or discharging process (ηc and ηd), 
and the current and previous energy states (SOCSj (t) 
and SOCSj (t-1)). 

 
𝑆𝑂𝐶𝑆𝑗(𝑡) =  𝑆𝑂𝐶𝑆𝑗(𝑡 − 1) +

                  𝜂𝑐 ∑ 𝑃𝑆𝐶𝑗(𝑡)  −  
1

𝜂𝑑
𝑇
𝑡=1 ∑ 𝑃𝑆𝐷𝑗(𝑡)𝑇

𝑡=1   (17) 
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Fig. 7: ESS battery charge/discharge 
 

Figure 7 illustrates the behavior exhibited by the 
battery within the energy storage system over the 
course of the day. Typically, following 
manufacturer recommendations, the battery is 
designed with a certain tolerance in its design to 
prevent wear on its components, establishing a limit 
on its charge/discharge to preserve its lifespan. The 
energy storage system regulates the power output of 
the system in case of any disturbances in the 
Microgrid (MG), among other functions. Primarily, 
in this analysis, its usage is to supply residential, 
commercial, or industrial sectors in cases where the 
production from renewable sources is insufficient to 
meet the expected demand. Alternatively, depending 
on operational costs or market conditions, energy 
may be utilized as an auxiliary means for other areas 
of the system through exchange, benefiting both the 
prosumer and the main system. The troughs in the 
graph represent the maximum energy at that 
moment within the Energy Storage System (ESS) 
(not necessarily reaching 100% to preserve its 
lifespan), while the peaks represent the discharge of 
the ESS (not necessarily 0%), either due to usage 
within the area. Each area's behavior depends on 
various factors, primarily revolving around the sale 
and purchase of energy from the grid. In this study, 
random values were chosen to represent batteries 
with different initial capacities to visualize their 
charge/discharge behavior throughout the day, 
interacting with other sources that need to meet the 
user's demand. 

 
2.4  Electric Vehicle Modeling 
The modeling of Electric Vehicle (EV) charging is 
highly stochastic due to the need to consider the 
driving patterns of EV users, in [20], [21], [22]. 
Parameters such as arrival time, departure time, 
distance covered by an EV user, charging rate, etc., 
are necessary to model EV demand. In this study, it 
is assumed that from 6 AM to 7 PM, the EV is 
disconnected from the Microgrid (MG), resulting in 

a certain percentage of power loss. Upon returning 
home at the specified time, the Battery Electric 
Vehicle (BEV) reconnects to charge overnight, and 
the State of Charge (SOC) of the EV evolves in an 
independent random pattern.  

The energy consumed due to the vehicle’s daily 
distance is determined by the Equation 18: 

 
𝑆𝑂𝐶𝑑 =  (1 −  (𝑑𝑖𝑠𝑡/𝑑𝑡)) (18) 

 
Here, SOCd represents the energy consumption 

due to the distance traveled by the EV in a day (dist) 
concerning the total range (dt) it can cover. The 
initial SOCE of the BEV during charging is 
calculated using Equation 19: 

 
𝑆𝑂𝐶𝐸 =  𝑆𝑂𝐶𝐸  (𝑡 − 1)  −  𝑆𝑂𝐶𝐸  (𝑡)  

∗  (1 − (𝑑𝑖𝑠𝑡/𝑑𝑡)) (19) 

 
Where dist and dt denote the traveled distance and 
the maximum range of the EV, respectively. 
Charging stops from 7 AM onwards. The algorithm 
saves the last state of charge, so when the EV 
returns home at 8 PM, the discharge ratio based on 
the distance covered from the last state determines 
the SOCE of the EV. 

Figure 8 depicts the electric vehicle battery 
behavior throughout the day. The scenario is utilized 
solely for the study in this article, where in the BEV 
does not exchange energy with the main grid, and 
the stored energy is utilized when renewable sources 
do not entirely meet the user's demand. However, 
for future endeavors, the intention is to explore 
energy exchange with the grid. 
 

 
Fig. 8: Battery EV charge/discharge 
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3   Microgrid Configuration 
 
3.1  Cost Minimization Function 
The operational cost function comprises cost 
summation functions for each production unit 
(DGs), energy reserve costs (ESS and EV), and 
utility exchange (grid), [3]. 
 

𝑀𝑖𝑛𝑓(𝑥) =  ∑ ∑ 𝐶𝑇𝐷𝐺(𝑡)  + 𝐶𝑇𝑆(𝑡)  

𝐷

𝑑=1

𝐷

𝑑=1

+  𝐶𝑇𝐸𝑉(𝑡)  + 𝐶𝑇𝐺(𝑡) 

(20) 

 
Each cost summation interval involves the costs 

of the involved DG sources (CTGD) in the Microgrid 
(Equation 21), the energy storage system costs 
represented by CTS in Equation 22, and the EV costs 
by CTEV E in Equation 23. Finally, the grid cost is 
denoted as CTG in Equation 24. Each equation 
specifies its bid (B) in the market as well as the 
power (P) being produced by the source at that 
moment, considering if it’s active ON/OFF (U). 

 

𝐶𝑇𝐷𝐺(𝑡) =  ∑ 𝑈𝑖

𝑁𝐷𝐺

𝑖=1

(𝑡)  ∗  𝑃𝐷𝐺𝑖
(𝑡)  ∗  𝐵𝐷𝐺𝑖

(𝑡) (21) 

 

𝐶𝑇𝑆(𝑡) =  ∑ 𝑈𝑗

𝑁𝑆

𝑗=1

(𝑡)  ∗  𝑃𝑆𝑗
(𝑡)  ∗  𝐵𝑆𝑗

(𝑡) (22) 

 

𝐶𝑇𝐸𝑉(𝑡) =  ∑ 𝑈𝑒

𝑁𝐸𝑉

𝑒=1

(𝑡)  ∗  𝑃𝐸𝑉𝑒
(𝑡)  ∗  𝐵𝐸𝑉𝑒

(𝑡) (23) 

 
𝐶𝑇𝐺(𝑡) =  𝑈𝐺(𝑡)  ∗  𝑃𝐺(𝑡)  ∗  𝐵𝐺(𝑡) (24) 

 
The flowchart in Figure 9 displays the algorithm 

used by the program when evaluating the objective 
function, where different systems within the 
Microgrid interact concerning time t. It 
demonstrates decision-making regarding the time t 
for the SOCS of the energy storage system battery 
and the SOCE of the electric vehicle, along with the 
generated power to meet the demanded load. The 
ultimate result is the total cost of the energies used 
at that moment. 
 

 
Fig. 9: Objective function evaluation. 
 
3.2  Energy Balance Constraints 
The total generated power in each interval must 
equal the total load demands, the energy stored in 
the battery bank (charge/discharge), electric vehicles 
(charge/discharge), and total feeder losses (Eq.25): 

∑ 𝑃𝐷𝐺𝑖
(𝑡)

𝑁𝐷𝐺

𝑖=1

 + ∑ 𝑃𝑆𝑗
(𝑡)

𝑁𝑆

𝑗=1

 +  ∑ 𝑃𝐸𝑉𝑒
(𝑡)

𝑁𝐸𝑉

𝑒=1

+ 𝑃𝐺(𝑡)  =  𝑃𝐿(𝑡)  (25) 

 
This equation considers each energy source 

used to meet the user’s demand, where PGD is the 
sum of all power sources i of DG (wind and solar), 
PS is the energy stored by batteries j at time t, PEV is 
the energy of BEVs e at time t, PG is the energy 
delivered by the main grid to the consumer due to 
the ER sources not entirely meeting the user’s 
demand, and finally PL is the total electrical load 
demand at time t. 

 
3.3  Power Variable Constraints 
 
3.3.1  Distributed Generation Powers  

The powers generated by the DG sources establish 
limits on their values, as shown in Equation 26. 

𝑃𝐷𝐺𝑚𝑖𝑛
 ≤ 𝑃𝐷𝐺(𝑡)  ≤  𝑃𝐷𝐺𝑚𝑎𝑥

 (26) 
 
where 𝑃𝐷𝐺𝑚𝑖𝑛

 (t) y 𝑃𝐷𝐺𝑚𝑎𝑥
 (t) are the minimum and 
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maximum active power of distributed generation at 
time t, respectively. 

0 ≤ 𝑃𝑃𝑉(𝑡)  ≤  𝑃𝑃𝑉𝑘𝑤𝑝
 (27) 

 
0 ≤ 𝑃𝑊𝑇(𝑡)  ≤  𝑃𝑊𝑇𝑚𝑎𝑥

 (28) 
 
3.3.2  ESS and BEV Battery  

Both the State of Charge (SOC) and the 
charge/discharge power (PSC/PSD) have their 
respective limits established during the analysis. In 
practice, completely discharging a battery reduces 
its lifespan, so the battery should maintain a 
minimum energy capacity, and ideally, a maximum 
capacity 29. Charging/discharging powers must also 
adhere to the manufacturer’s specifications 30. 

𝑆𝑂𝐶𝑚𝑖𝑛  ≤ 𝑆𝑂𝐶 (𝑡)  ≤  𝑆𝑂𝐶𝑚𝑎𝑥 (29) 
 

𝑃𝑆𝑚𝑖𝑛
 ≤ 𝑃𝑆(𝑡)  ≤  𝑃𝑆𝑚𝑎𝑥

 (30) 
 

These values also apply to the electric vehicle’s 
battery, where, based on manufacturer data, the 
SOC and charge/discharge powers, considering their 
efficiency (η), play a significant role. 

1

𝜂𝐷
∑ 𝑃𝐸𝑉𝑗

(𝑡)

𝑇

𝑡=1

 + 𝜂𝐶  ∑ 𝑃𝐸𝑉𝑗
(𝑡)

𝑇

𝑡=1

   (31) 

 
Although the equations for the energy storage 

battery and the electric vehicle’s battery are similar, 
it all depends on the distance and times at which the 
electric vehicle connects to the grid. 
 
 
4 Method for Microgrid Optimization 

 and Case Studies 
 
4.1 Population-Based Incremental Learning 

 (PBIL) Algorithm 
Optimally managing energy in an MR involves 
solving a combination of problems using 
metaheuristic methods. The Population-Based 
Incremental Learning (PBIL) algorithm has been 
employed for its suitable capabilities in handling 
such issues. The authors in [23], [24], [25], mention 
that PBIL is an evolutionary algorithm that works 
by updating a vector describing univariate statistics 
of the best solutions. This straightforward model 
update is controlled by a parameter that sets the 
Learning Ratio (LR). The model is then used to 
generate new solutions. The optimal energy 
management procedure is illustrated in the Figure 
10. 
 

 
Fig. 10: Pseudocode PBIL 
 

The algorithm iteratively updates the probability 
values of the Vector Probability (VP), starting from 
neutral values. Each iteration or generation creates a 
population of individuals based on the current VP 
probabilities. The best individuals from a given 
generation update the VP values for the next 
generation. Algorithm execution stops when the VP 
converges, i.e., when all elements become zero or 
one, or when the specified iteration count is reached, 
[23]. 

The VP update follows the equation: 
𝑉𝑃 =  𝑉𝑃 ∗  (1 − 𝐿𝑅) +  𝐵𝑖𝑛𝑎𝑟𝑦𝑋𝑚𝑎𝑥  

∗  𝐿𝑅 (32) 

 
Where VP is the vector probability, LR is the 
learning ratio and the variable BinaryXmax is the best 
individual in binary form. 

Updating the VP considers the Learning Ratio 
(LR), a crucial factor in implementation that 
determines the speed and accuracy of obtaining 
results. In essence, LR is the important factor given 
to the best individual for VP update. 

 
4.2  Simulation and Results 
The Microgrid (MG) depicted in Figure 1, 
connected to the electric grid, was analyzed as the 
test system in this document. The system’s 
maximum demand is represented by the total energy 
of all loads contributing to the main system, akin to 
a typical household.  
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Hence, the daily load curve for the MG is 
showcased in Figure 11. The total energy 
consumption for the day equaled 42320 kWh. 
Constraints and data for the involved sources are 
presented in Table 4. 

 
Fig. 11: Daily demand curve for a residence 
 

Table 4. Limits of the Sources Involved. 
Units Minimum power 

(watts) 
Maximum power 

(watts) 
PV 0 8250 
WT 0 1500 
ESS -330 250 
EV -500 400 

 
The system integrates various technologies like 

WT, PS, ESS and EV, assuming real-time hourly 
market prices presented in Table 5. The output 
power of WT and PV systems is illustrated in Table 
6 based on predicted values. Distributed Generation 
(DG) systems are strategically placed in different 
branches to encompass diverse or hybrid systems. 
 
4.2.1  Case Studies 

Scenarios 1 and 2 consider the operational costs of 
all units alongside problem constraints. Scenario 1 
aims to minimize operational costs, integrating GDs 
at their maximum power. Scenario 2 involves all 
GDs using random power capacities. Scenarios 3 
and 4 focus on a single distributed energy source. 
Scenario 3 incorporates random power from PS with 
its storage system, while Scenario 4 employs WT 
power as the sole source. 
 
 
 
 
 
 
 
 
 
 

Table 5. Market price, Hourly rates 
Time PV WT ESS Grid 
1 0 0.0210 0.1192 0.033 
2 0 0.0170 0.1192 0.027 
3 0 0.0125 0.1269 0.020 
4 0 0.0110 0.1346 0.017 
5 0 0.0510 0.1423 0.017 
6 0 0.0850 0.1500 0.029 
7 0 0.0910 0.1577 0.033 
8 0.0646 0.1100 0.1608 0.054 
9 0.0654 0.1400 0.1662 0.215 
10 0.0662 0.1430 0.1677 0.572 
11 0.0669 0.1500 0.1731 0.572 
12 0.0677 0.1550 0.1769 0.572 
13 0.0662 0.1370 0.1692 0.215 
14 0.0654 0.1350 0.1600 0.572 
15 0.0646 0.1320 0.1538 0.286 
16 0.0638 0.1140 0.1500 0.279 
17 0.0653 0.1100 0.1523 0.086 
18 0.0662 0.9250 0.1500 0.059 
19 0 0.0910 0.1462 0.050 
20 0 0.0830 0.1462 0.061 
21 0 0.0330 0.1431 0.181 
22 0 0.0250 0.1385 0.077 
23 0 0.0210 0.1346 0.043 
24 0 0.0170 0.1269 0.037 
 

Table 6. Predicted values for WT and PV 
Time WT 

(watts) 
PV 
(watts) 

Time WT 
(watts) 

PV 
(watts) 

1 249.5 0 13 17.5 5931.9 
2 399.0 0 14 60.7 5120.9 
3 519.5 0 15 140.3 3866.7 
4 727.1 0 16 252.0 2362.2 
5 503.8 0 17 496.0 1095.6 
6 324.3 0 18 611.4 0 
7 138.6 1094.4 19 412.7 0 
8 87.7 2361.8 20 327.3 0 
9 89.0 3866.2 21 183.3 0 
10 17.5 5120.0 22 133.6 0 
11 6.4 5931.4 23 96.7 0 
12 8.1 6211.2 24 138.6 0 
 

The management of ESS entails specific 
schedules for charging and discharging towards the 
MR or the main grid. Charging occurs when energy 
prices are relatively low, irrespective of user 
demand. Conversely, during high energy prices, the 
battery supplies the demanded load. Surplus 
renewable energy might charge these batteries if the 
production exceeds user demand. 

In all the above scenarios, BEVs are solely 
considered as loads, not contributing energy to the 
residence. Their restricted hours were mentioned in 
Section 2. 
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4.2.2  Scenario 1 and 2: Comparative Analysis 

The outcomes of Scenario 1, outlined in Table 7, 
reveal the configuration of participating units with 
their optimal power generation. Notably, the ESS 
contributes to the MR during high market prices and 
to the grid during lower price periods. Meanwhile, 
the BEV acts purely as a load, showing no 
participation. These power outputs originate from 
randomly assigned values in the photovoltaic and 
wind systems. 
 
Table 7. Scenario 1 with random power in WT and 

PV 
Time PV WT ESS EV Grid 
1 0 250 0 0 1200 
2 0 399 0 0 1051 
3 0 519 0 0 931 
4 0 727 0 0 723 
5 0 0 0 0 1450 
6 0 0 0 0 1450 
7 1094 0 0 0 17106 
8 0 0 0 0 10450 
9 3866 89 330 0 165 
10 5120 17 330 0 1483 
11 5931 6 330 0 682 
12 6211 8 330 0 401 
13 5932 17 330 0 31171 
14 5121 61 330 0 31939 
15 3867 140 330 0 8613 
16 2360 250 327 0 8513 
17 1096 0 0 0 2854 
18 0 0 0 0 3950 
19 0 0 0 0 3950 
20 0 0 0 0 11450 
21 0 183 0 0 8267 
22 0 134 0 0 8316 
23 0 97 0 0 6853 
24 0 139 0 0 2361 
 

Figure 12 depicts the generated power (red line) 
versus the power used (blue bars) by the 
photovoltaic system. On the other hand, Figure 13 
illustrates the power generated (red line) by the 
wind turbine against the power consumed by the 
user (blue bar) sourced from wind energy. 

Scenario 2 (Table 8) showcases the optimal 
power configuration of renewable sources when 
operating at maximum capacity. Minimal reliance 
on the main grid is observed, as it entirely fulfills 
the demand, leading to a considerable reduction in 
energy costs. 
 

 
Fig. 12: Random powers PV 
 

 
Fig. 13: Random powers WT 
 

Table 8. Scenario 1 with maximum power in WT 
and PV 

Time PV WT ESS EV Grid 
1 0 1450 0 0 0 
2 0 1450 0 0 0 
3 0 1450 0 0 0 
4 0 1450 0 0 0 
5 0 1216 0 0 234 
6 0 251 0 0 1199 
7 1094 57 0 0 17049 
8 2362 611 0 0 7477 
9 3866 412 330 0 159 
10 5120 617 330 0 883 
11 5931 1022 -3 0 0 
12 6211 0 330 0 409 
13 5932 0 330 0 31188 
14 5121 0 330 0 31999 
15 3867 1533 330 0 7220 
16 2362 1533 330 0 7225 
17 1096 1533 0 0 1321 
18 0 1533 0 0 2417 
19 0 1533 0 0 2417 
20 0 1533 0 0 9917 
21 0 840 0 0 7610 
22 0 252 0 0 8198 
23 0 0 0 0 6950 
24 0 17 0 0 2483 
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The complete utilization of energy generated by 
the GD systems is depicted in Figure 14 and Figure 
15. 
 

 
Fig. 14: Maximum powers PV 
 

 
Fig. 15: Maximum powers WT 
 
4.2.3 Scenario 3 and 4: Comparative Analysis 

In Scenario 3, as indicated in Table 9, the energy 
generation from a DG source, specifically the WT, 
is crucial. The absence of PV production during the 
early hours necessitates total reliance on the main 
grid. However, post-noon, the ESS is compelled to 
operate at maximum capacity due to substantial 
power output from the WT. 

There’s a similarity between Scenario 3 and 
Scenario 4 due to the absence of a power-generating 
source. This is evident in Figure 19, where a 
significant reduction in the optimal cost is observed. 
 
 
 
 
 
 
 
 
 
 
 

Table 9. Scenario 1 with maximum power in PV 
Time PV WT ESS EV Grid 
1 0 0 0 0 1450 
2 0 0 0 0 1450 
3 0 0 0 0 1450 
4 0 0 0 0 1450 
5 0 0 0 0 1450 
6 0 0 0 0 1450 
7 1094 0 0 0 17106 
8 2362 0 0 0 8088 
9 3866 0 330 0 254 
10 5120 0 330 0 1500 
11 5931 0 330 0 689 
12 6211 0 330 0 1409 
13 5932 0 330 0 31188 
14 5121 0 330 0 31999 
15 3867 0 330 0 8753 
16 2362 0 330 0 8758 
17 1096 0 0 0 2854 
18 0 0 0 0 3950 
19 0 0 0 0 3950 
20 0 0 0 0 11450 
21 0 0 0 0 8450 
22 0 0 0 0 8450 
23 0 0 0 0 6950 
24 0 0 0 0 2500 
 
4.3  Optimal Cost Analysis 
The graph in Figure 16 demonstrates the 
participation of all involved sources. However, due 
to minimal energy generation, there was an 
exchange of energy with the main grid, resulting in 
the algorithm finding an optimal cost of $950. 
 

 
Fig. 16: Optimal cost with random powers in PV 
and WT 
 

In contrast, the optimal cost for Scenario 2 is 
depicted in Figure 17, showcasing a notable 
reduction compared to Scenario 1. 
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Fig. 17: Optimal cost with maximum powers in PV 
and WT 
 

The highest cost is exhibited in Scenario 4 in 
Figure 18, attributed to the null PV production 
during peak hours when the market price is high. 
This necessitates additional wind power generation. 
However, Scenario 3 showcases behaviour where 
the power configuration is more suitable, resulting 
in the lowest optimal cost range (Figure 18). 

 

 
Fig. 18: Optimal cost with maximum power in PV 
without WT 
 

 
Fig. 19: Optimal cost with maximum power in WT 
without PV 
 

4.4 Comparative Analysis. Particle Swarm 

 Optimization 
With the aim of juxtaposing the PBIL method 
against one of the most widely cited metaheuristic 
approaches in the academic domain, particularly 
pertinent in addressing optimization challenges 
involving operational costs, emissions reduction, 
and optimal power allocation, the Particle Swarm 
Optimization algorithm (PSO) emerged as the most 
fitting candidate for this comparative analysis, [6], 
[7], [9], [13], [14]. Noteworthy for its adeptness in 
optimal resource management, PSO operates as an 
intelligent swarm algorithm predicated on the 
collective movement of particles traversing the 
solution space. Each constituent entity, or 'particle,' 
within the PSO framework navigates the search 
space with a velocity dynamically modulated in 
response to its own exploration history and that of 
its neighboring particles. 
 

 
Fig. 20: Optimal cost with random powers in PV 
and WT using PBIL 
 

 
Fig. 21: Optimal cost with random powers in PV 
and WT using PSO 
 

Figure 20 and Figure 21 show the comparison 
made between the proposed method PBIL and the 
most used method for this type of problem, which is 
PSO. For this study, it was concluded that the 
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computational response time with the PSO method 
is slightly slower than the PBIL method, under the 
same conditions (equal number of iterations). 
However, PSO converges faster than PBIL. The 
advantage of PBIL lies in its practicality in 
modelling, clearly illustrating the behavior of the 
graphs in the process. The methodology of the 
applied methods depends on the programmer and 
variables, limits, and factors such as the population 
or chromosomes to be selected. It is worth 
mentioning that the speed of the response goes hand 
in hand with the objective function that was 
proposed. Figure 20 and Figure 21 use the 
maximum power of solar and wind energy. 
 
 
5   Conclusion 
The proposed method for optimizing operating costs 
and optimal values within a microgrid composed of 
various renewable energy sources is conducive to 
such analysis and may offer equal or greater 
reliability compared to alternative methodologies 
commonly employed for this purpose. The results 
obtained across different scenarios provide insights 
into the behavior of generation systems within the 
microgrid and their interaction with the main 
system. The algorithm functions effectively within 
the proposed scenarios, successfully fulfilling its 
purpose of providing optimal values that benefit the 
user in terms of both cost and power. Scenarios 1 
and 2 demonstrate a reduction in optimal costs 
attributable to the management performed by the 
algorithm in adjusting power levels, a phenomenon 
evident with each iteration as new populations are 
generated to find the most suitable solution. 

Scenarios 3 and 4, on the other hand, exhibit 
enhanced responsiveness, with the system 
converging in approximately half the iterations 
compared to Scenario 1. It is worth noting that 
initiating with relatively high or maximum power 
values leads to decreased iterations and costs, albeit 
contingent upon how the algorithm optimizes its 
values to align with the objective function being 
addressed. This algorithm affords an equal or 
superior perspective on the step-by-step process of 
searching for potential solutions aimed at achieving 
optimal values for efficient system operation. 

The outcomes presented in this study underscore 
how adjustments to operational limits, chromosome 
and population selection, as well as the learning rate 
(LR), directly impact the magnitude and swiftness 
of the results obtained. 
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