
Abstract: - Navigating the secheduling of generation resources of energy in power systems marked by a
significant presence of renewable generation involves intricate optimization challenges. The conventional
tools for resolving such challenges include programming techniques and heuristic approaches, both contin-
gent upon a precisely articulated target function for optimization. Traditional optimization tools rely on
precisely defined target functions, but the evolving landscape of power systems introduces complexity, espe-
cially with unpredictable behaviors of renewable sources. The research specifically quantifies penalty costs
associated with photovoltaic (PV) generators, employing probabilistic methods for a robust mathematical
analysis. The developed analytical model enhances adaptability in economic dispatch problems, considering
uncertainty in decision-making. Validation using Monte Carlo simulation emphasizes uncertainty in PV
generation and highlights the advantages of the proposed analytic model. The quadratic form of the model
aligns coherently with simulation outcomes, contributing significantly to understanding uncertainty quan-
tification in solar power modeling. The research aims to refine controllable solar power models, establish
robust uncertainty cost functions, and improve the accuracy of economic dispatch strategies. Ultimately,
this work promotes the seamless integration of solar energy into diverse and dynamic energy grids.
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1 Introduction
The need for advanced modeling techniques

in the energy dispatch optimization in power
systems, particularly in the context of a substan-
tial presence of renewable generation, is due to
uncertainty quantification approaches in order to
solve this optimization problem, [1]. Heuristic
algorithms have served as tools to address these
uncertainty complexities, in order to get the
a robust energy dispatch, [2]. In these issues is
relevant to both relying on precisely defined target
functions for optimization and using uncertainty
model techniques for handling the variability of

renewable primary sources (wind speed and solar
irradiation), [3]. The modern power systems in
need of trace of uncertainty, with high penetration
of renewables, are characterized by complexity
due to variability of the sources with inherently
unpredictable behaviors. In this way, the power
system operator are in the need of having robust
modeling strategies, [2]. Thus, this study and
mathametical proposed approach intend to delve
into the intricacies of controllable solar power
technologies (solar generators with back-ups for
guaranteed a range of power in a time instance),
specifically focusing on the quantification of
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penalty costs associated with photovoltaic (PV)
generators in two conditions, underestimation and
overestimation of the available power, [3].
A review of the existing literature and high pene-
tartion of solar technologies in several countries,
reveals a increasing recognition of the challenges
posed by uncertainty in renewable energy systems
with a big capacity inside of the power systems,
particularly in the economic dispatch of power.
Traditional optimization techniques have been
employed, often relying on deterministic models
that struggle to capture the stochastic nature
of renewable resources, [4]. In response to this
need, our study proposes a rigorous mathematical
analysis that leverages the uses of probabilistic
methods, aiming a contrast to traditional deter-
ministic models, [5].
The importance of incorporating uncertainty
quantification into modeling frameworks are
recent advancements highlights, emphasizing the
need for robust cost functions to enhance the
accuracy of economic dispatch strategies, [6].
A comprehensive review of literature in the
adaptability and robustness indicates a need of
shift toward a paradigm integrating controllable
renewable systems into economic dispatch target
functions, [7], [8]. This shift aims to enhance the
operator process for decision-making, considering
the evolving nature of power systems with the
inclusion of renewable sources, [8].
To validate our proposed approach, based in
previous developments ( [9], [10], [11], [12]), we
draw upon Monte Carlo simulation techniques,
emphasizing the uncertainty associated with PV
generation, especially in the context of the whole
posiibilities capacity of energy storage, [9], [10].
The proposed formulation is a new development in
simulation-based validation methodologies, with
an emphasis on the importance of aligning analyt-
ical frameworks with simulation outcomes, [11].
Our study presented in this paper contributes to
this discourse by presenting a novel analytical
model, grounded in a uniform power distribution
(it is an extension of the study presented in [12],
with a variation of the ranges of the scheduled
power), and validating its performance against
Monte Carlo simulations. In this way, section
2 presents the analytical development; section 3
depicts the validation and application calculating
the energy to be stored to balance demand and
solar generation, and section 4 draws a discussion
and conclusion.

2 Controllable Photo-voltaic Cost
Function-Analytical Development
The mathematical uncertainty cost functions

considering uniform distributions for solar gener-
ators are derived considering a scheduled power
(Ps) in a determined range, normally from an ar-
bitary maximum and minimum value. In [12], it is
considered a range between a minimum power and
a maximum power, assuming that the probability
density function for the available generated power
f [P ] (from the technology used to convert primary
source (solar irradiation) in electric power) is de-
fined with an uniform distribution:

f [P ] =


1

Pmax−Pmin
for Pmin ≤ P ≤ Pmax,

0 for P < Pmin or P > Pmax

(1)
It is used a linear function in order to handle
the penalty cost due to an underestimation y =
Cu[P ] = Cu(P − Ps) (the same would be in the
overestimation case). In this way, it is possible to
determine the corresponding expected penalty cost
function as follows:

E[y] =

∫ ∞

−∞
yf(y)dy (2)

→ E[Cu(P )] =
Cu

Pmax − Pmin

(
P 2
s

2
−

PsPmax +
P 2
max

2

) (3)

On the other hand, the expected cost func-
tion for the overestimation with z = Co[P ] =
Co(Ps − P ) for controllable solar generation can
be obtained:

E[z] =

∫ ∞

−∞
zf(z)dz (4)

→ E[Co(P )] =
Co

Pmax − Pmin

(
P 2
s

2
−

PsPmin +
P 2
min

2

) (5)

The previous results (from [12]) make it pos-
sible to calculate the expected uncertainty cost
function (UCF), which describes a remarkable
quadratic pattern, something useful for conven-
tional economic dispatch softwares.

→ E[UCF ] = E[Cu(P )] + E[Co(P )] (6)

The need to broaden and continue develop-
ment of this framework of analysis come from the
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understanding that scheduled power is complex.
Recognizing that scheduled power (Ps) is not a
single variable but rather occurs in a variety of op-
erational states, the study presented in this section
intends to improve our comprehension by group-
ing Ps into three different areas (in [12], was used
only one area). The study conducted extends be-
yond the conventional distinction between Pmin
and Pmax to encompass areas where Ps is (i) less
than Pmin, (ii) between Pmin and Pmax, and (iii)
beyond Pmax but less than Pmin plus the back Bat-
tery Capacity Pbatterycapacity.

In this way, we expanded the work presented
in [12], in the following way:

• We consider that the scheduled power (Ps) not
only can vary from Pmin to Pmax, but instead
the scheduled power could be in three different
regions:
Region 1, Ps < Pmin
Region 2, Pmin < Ps < Pmax
Region 3, Pmax < Ps < (Pmin +Pbatterycapacity)

In this new development, we update the equa-
tions to be presented in three regions:

• One equation (there is not overestimation con-
dition) for Region 1 f1: For this region in
which Ps is less than Pmin, the UCF is de-
noted by:

f1(Ps) = E[UCF] → where{ Ps ≤ Pmin
P ∈ (Pmin, Pmin)

(7)

E[UCF] =
∫ Pmax

Pmin

(Cu(P − Ps)I(P > Ps)) dP

(8)

=
Cu

Pmax − Pmin

∫ Pmax

Pmin

(P − Ps) dP (9)

=
Cu

Pmax − Pmin
(
Ps

2

∣∣∣Pmax

Pmin

− PsPmax

∣∣∣Pmax

Pmin

) (10)

=
Cu

Pmax − Pmin
(
P 2
max

2
− P 2

min

2
− PsPmax + PsPmax)

(11)

=
Cu

Pmax − Pmin

(
(Pmax + Pmin)(Pmax − Pmin)

2

−PsPmax + PsPmin)
(12)

=Cu(
Pmax + Pmin

2
− Ps) (13)

• Two equations (overestimation and understi-
mation conditions) for Region 2 f2:

f2(Ps) = E[UCF] → where{ Pmin ≤ Ps ≤ Pmax

P ∈ (Pmin, Pmax)
(14)

=
Co

Pmax − Pmin
(
P 2
s

2
− PsPmax +

P 2
max

2
) (15)

+
Cu

Pmax − Pmin
(
P 2
s

2
− PsPmin +

P 2
min

2
) (16)

this is from

Equation A:

E[Co] =

∫ Pmax

Pmin

(Co(Ps − P )I(P < Ps)) dP (17)

=
Co

Pmax − Pmin
(Ps.P

∣∣∣Ps

Pmin

− P 2

2

∣∣∣Ps

Pmin

) (18)

=
Co

Pmax − Pmin
(P 2

s − P 2
s,min − P 2

s

2
− P 2

min

2
) (19)

=
Co

Pmax − Pmin
(
P 2
s

2
− PsPmin − P 2

min

2
) (20)

Equation B:

E[Cu] = Cu

∫ Pmax

Pmin

(P − Ps)(I(P > Ps)) dP

(21)

=
Cu

Pmax − Pmin

∫ Pmax

P
(P − Ps) dP (22)

=
Cu

Pmax − Pmin
(
P 2

2

∣∣∣Ps

Pmax

− Ps.P
∣∣∣Pmax

Ps

)

=
Cu

Pmax − Pmin
(
P 2
max

2
− P 2

s

2
− PsPmax + P 2

s )

=
Cu

Pmax − Pmin
(
P 2
s

2
− PsPmax −

P 2
max

2
) (23)
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• One equation (there is not underestimate
condition) for Region 3 f3:

f3(Ps) = E[UCF] → where

{ Pmax ≤ Ps ≤ Pmin + Pbatterycapacity

P ∈ (Pmin, Pmax)
(24)

E[Co] =

∫ Pmax

Pmin

(Co(Ps − P )I(P < Ps)) dP (25)

=

∫ Pmax

Pmin

(Ps − P ) dP (26)

=
Co

Pmax − Pmin
(Ps.P

∣∣∣Pmax

Pmin

− P 2

2

∣∣∣Pmax

Pmin

) (27)

=
Co

Pmax − Pmin
((PsPmax − PsPmin)−

P 2
max

2
+

P 2
min

2
)

(28)

=
Co

Pmax − Pmin
(Ps(Pmax − PsPmin)−

P 2
max

2
+

P 2
min

2
)

= Co(Ps −
Pmax + Pmin

2
) (29)

3 Validation and Application:
Energy to be stored to balance
demand and solar generation

If the uncertainty cost functions (developed in
the previous section), which has the following
units ($/hour), is multiplied by the system fac-
tor (k) that represents the inverse of the energy
cost (kWh/$), we obtain the expected value of the
power injected by the solar panels (this expected
value considers the probability distribution of the
solar power value available in the panels). This
study offers a baseline for assessing the financial
effects of solar power generation by concentrating
on the scheduled scenario and accounting for both
the system factor (k) and uncertainty cost func-
tions. In this way, it is possible to calculate the
energy to be stored (Eb) to balance power demand
(Pdemand) and solar generation (Psolar) in a sys-
tem:

Eb = −
∫ 24

0
Pdemanddt+

∫ 24

0
Psolardt

where

Eb = −
∫ 24

0
Pdemanddt+

∫ 24

0
E[UCF] ∗ kdt

It is possible to get the E[UCF ] and k from
the previous section (analytical method) and with
Montecarlo simulations. That is to say, we used
a random number generator that follows a uni-
form distribution between a minimum and max-
imum value for each time instance. The Monte
Carlo simulations descriptions can be described in
5 steps:

i) Solar power (green: schedule power, blue:
min, red:max)

The three main accounts situations maximum
power (red), scheduled power (green) and mini-
mum power (blue) are taken into consideration.
Considering the predictive modeling or operator
scheduling data, the scheduled power is displayed
by the green curve in the simulation. We present
two possible patters (Figure 1 and Figure 2) for
scheduling (green curve): A) mean value between
Pmin and Pmax; and B) an arbitary pattern. The
lower limits of solar power generation in our calcu-
lations are shown by the blue curve. This scenario
takes into consideration times when there is less
sunlight or unanticipated changes that cause so-
lar panels to produce the least amount of power.
The maximum solar power generation limits in
our Monte Carlo simulations are shown by the
red curve. In this scenario, ideal circumstances
are taken into account, where solar panels provide
power to the fullest extent possible.

Fig. 1: Solar Power (pattern A).

ii) Monte Carlo scenarios between max and
min values The study explores the complex dy-
namics between the maximum (red) and minimum
(blue) values of solar power generation in these
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Fig. 2: Solar Power (pattern B).

Monte Carlo simulations. The study captures the
subtle differences in solar power generation and
their associated economic repercussions by inves-
tigating scenarios within this range. The Monte
Carlo simulations carried out inside the dynamic
range, in contrast to the discrete average, mini-
mum, and maximum scenarios, take into account
a spectrum of solar power values between the max-
imum (red) and minimum (blue) criteria (Figure
3).

Fig. 3: Montecario scenarios between Max and
Min values.

iii) Random Escenario of Solar generation The
use of random solar generation scenarios in Monte
Carlo simulations has led to a more realistic and
flexible method of modeling controlled solar elec-
tricity, [3]. Decision-makers can increase the de-
pendability and financial sustainability of renew-
able energy systems by accepting and valuing
the unpredictability of solar power generation, [4].

This methodology generates completely random
situations, embracing the stochastic character of
solar power generation instead of focusing on spec-
ified average, minimum, or maximum values (Fig-
ure 4).

Fig. 4: Random scenario of solar generation.

iv) Expected energy from Montecarlo scenar-
ios When computing predicted energy in Monte
Carlo simulations of solar power generation, one
must estimate the average or mean power out-
put value over a number of simulation iterations,
and it is possible to get the histogram (Figure 5).
Because the model is stochastic, every time the
Monte Carlo simulation runs, a new solar power
scenario is generated, [3]. Next, by adding together
all of these iterations’ power numbers and figuring
out their average, the predicted energy is found.
With regard to the predicted average power out-
put, this expected energy value is a useful indicator
for decision-makers because it takes into account
the inherent unpredictability in solar power gener-
ation. Mathematically, the expected energy (Ex-
pected) can be calculated as the mean of the power
values across all simulation iterations.

v) Constant k to convert UCF in Ps The Sys-
tem Factor, which is commonly expressed as (KW
hour / $), is the inverse of the energy cost. The
constant k should be adjusted based on the par-
ticular units and scale needed for the application
in question, [2]. In order to meaningfully com-
prehend the financial consequences in a setting
of energy generation and consumption, the fac-
tor of conversion k basically fills the distinction
between the physical features of planned power
and the economic considerations in uncertainty
cost functions (UCF), [3]. The relation is termed
by Ps = k×E[UCF ] in which Ps represents the
scheduled power, UCF represents the uncertainty
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Fig. 5: Expected energy from Monetecarlo scenar-
ios.

cost function, whereas k is the conversion constant.
Each scheduling pattern (A and B) will have a dif-
ferent behaviour in the differente time instances.
In Figure 6 and Figure 7 are showed the k constant,
where it is depicted the results of the analytical
calculation (red) and the montecarlos simulation
(green).

Fig. 6: Constant k to convert UCF in Ps (pattern
A).

vi) Uncertainity cost functions (analytical and
Montecarlo simulation) An essential tool for eval-
uating the financial effects of uncertainties related
to variables in a system is the Uncertainty Cost
Function (UCF). While Monte Carlo simulations
offer a more in-depth examination of the stochastic
nature of uncertainties, the analytical model offers
a rapid insight into the overall functioning of the
system, [3]. The specific characteristics of the sys-

Fig. 7: Constant k to convert UCF in Ps (pattern
B).

tem itself, the uncertainties (such solar power fluc-
tuations) and related economic factors will deter-
mine the details of the uncertainty cost functions.
Each scheduling pattern (A and B) will have a dif-
ferent behaviour in the differente time instances.
In Figure 8 and Figure 9 are depicted the results
of the UCF analytical calculation (red) and the
UCF montecarlos simulation (green).

Fig. 8: Uncertianity cost function (Analytical and
Monetecario simulation).

4 Discussion and Conclusion
We acknowledge the necessity to update the vari-
ance and statistical factors regulating the analyti-
cal model in conjunction with our scheduled power
classification. The fluctuation, a crucial factor in
determining the stability of the system, and re-
lated statistical measures need to be in line with
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Fig. 9: Uncertianity cost function (Analytical and
Monetecario simulation).

the changing face of power generation. These ana-
lytucal developments (Equations (7) through (29)
are revised in light of this realization, guarantee-
ing that the mathematical framework will con-
tinue to be accurate and flexible enough to accom-
modate the dynamic conditions of contemporary
power systems.

In this way, unlike the traditional model, that
somewhat was considering the scheduled power
within the range of Pmin to Pmax, this expanded
approach, presented in this paper, categorizes the
Ps into three major regions. In summary, the three
regions will conduct the following formulation:

f1(Ps) =Cu(
Pmax + Pmin

2
− Ps)

f2(Ps) =
Co

Pmax − Pmin

(
P 2
s

2
− PsPmin − P 2

min
2

)
+

Cu

Pmax − Pmin

(
P 2
s

2
− PsPmax −

P 2
max
2

)

f3(Ps) = Co(Ps −
Pmax + Pmin

2
)

Keeping into consideration the likelihood of
distribution of the solar power that is accessible;
this computation produced the predicted value of
the electricity that the solar panels will inject. The
next stage was to use Monte Carlo simulations,
which are strong computational methods that al-
low the investigation of various possibilities by in-
troducing unpredictability and randomness.

It is difficult to optimize the distribution of en-
ergy in power networks that have a large amount
of renewable generation. The unpredictability of
renewable sources makes it difficult to achieve
the precise target functions that conventional
optimization techniques demand. Our research
presents a fresh analytical model that has been
verified by Monte Carlo simulations.
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