[34] Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q.
A review of wind speed and wind power
forecasting with deep neural networks
Applied Energy 2021, 304, 117766, doi:
10.1016/j.apenergy.2021.11776.
[35] Tiwari, S.; Ling, J. -M. A Review of Wind
Energy Forecasting Techniques In Proceeding
of the 2021 International Conference on
Technology and Policy in Energy and Electric
Power (ICT-PEP), Jakarta, Indonesia, 2021,
pp. 213-218, doi: 10.1109/ICT-
PEP53949.2021.9600993.
[36] Zhao, L.; Nazir, M.S.; Nazir, H.M.J.; Abdalla,
A.N. A review on proliferation of artificial
intelligence in wind energy forecasting and
instrumentation management. Environmental
Science and Pollution Research 2022, 29,
43690–43709, doi: 10.1007/s11356-022-
19902-8.
[37] Fan, J.; Wu, L.; Zhang, F.; Cai, H.; Zeng, W.;
Wang, X.; Zou, H. Empirical and machine
learning models for predicting daily global
solar radiation from sunshine duration: A
review and case study in China. Renew.
Sustain. Energy Rev. 2019, 100, 186–212.
[38] Gürel, A.E.; A ˘gbulut, Y.; Biçen, Y.
Assessment of machine learning, time series,
response surface methodology and empirical
models in prediction of global solar radiation.
J. Clean. Prod. 2020, 277, 122353.
Sustainability 2023, 15, 7087 27 of 33
[39] Alizamir, M.; Kim, S.; Kisi, O.; Zounemat-
Kermani, M. A comparative study of several
machine learning based non-linear regression
methods in estimating solar radiation: Case
studies of the USA and Turkey regions.
Energy 2020, 197, 117239.
[40] Khosravi, A.; Koury, R.; Machado, L.; Pabon,
J. Prediction of hourly solar radiation in Abu
Musa Island using machine learning
algorithms. J. Clean. Prod. 2018, 176, 63–75.
[41] Zendehboudi, A.; Baseer, M.; Saidur, R.
Application of support vector machine models
for forecasting solar and wind energy
resources: A review. J. Clean. Prod. 2018,
199, 272–285.
[42] Xiao, L.; Shao, W.; Jin, F.; Wu, Z. A self-
adaptive kernel extreme learning machine for
short-term wind speed forecasting. Appl. Soft
Comput. 2020, 99, 106917.
[43] Delagrammatikas, G.; Roukanas, S. Offshore
Wind Farm in the Southeast Aegean Sea and
Energy Security. Energies 2023, 16, 5208,
doi: 10.3390/en16135208.
[44] Zafeiratou, E.; Spataru, C.; Bleischwitz, R.
Wind offshore energy in the Northern Aegean
Sea islanding region In Proceedings of the
IEEE 16th International Conference on
Environment and Electrical Engineering
(EEEIC), Florence, Italy, 2016, pp. 1-7, doi:
10.1109/EEEIC.2016.7555518.
[45] Ziozas, N.; Tsoutsos, T. Clean Energy
Transition in Southeast Europe: The Paradigm
of Greece from a Fossil Fuel Mediator to a
Community Energy Hub. 2021, In: Coenen,
F.H.J.M., Hoppe, T. (eds) Renewable Energy
Communities and the Low Carbon Energy
Transition in Europe. Palgrave Macmillan,
Cham., doi: 10.1007/978-3-030-84440-0_4.
[46] Mohsin, S.M.; Maqsood, T.; Madani, S.A.
Solar and Wind Energy Forecasting for Green
and Intelligent Migration of Traditional
Energy Sources. Sustainability 2022, 14,
16317, doi: 10.3390/su142316317.
[47] Shukri, N. b. M.; Jumaat, S. A. b. ANN -
Based Model for Prediction Electricity from
Wind Energy. In Proceedings of the 11th
IEEE Symposium on Computer Applications
& Industrial Electronics (ISCAIE), Penang,
Malaysia, 2021, pp. 36-41, doi:
10.1109/ISCAIE51753.2021.9431825.
[48] Siddhant, K.; Garg, H.; Saha, A.; Singh, N.;
Choudhary N. K.; Singh, D. K. Solar Energy
Forecasting using Artificial Neural Network.
In Proceedings of the IEEE Students
Conference on Engineering and Systems
(SCES), Prayagraj, India, 2022, pp. 1-5, doi:
10.1109/SCES55490.2022.9887754.
[49] Pavlatos, C.; Makris, E.; Fotis, G.; Vita, V.;
Mladenov, V. Utilization of Artificial Neural
Networks for Precise Electrical Load
Prediction. Technologies 2023, 11, 70, doi:
10.3390/technologies11030070.
[50] Rojek, I.; Jasiulewicz-Kaczmarek, M.;
Piechowski, M.; Mikołajewski, D. An
Artificial Intelligence Approach for
Improving Maintenance to Supervise Machine
Failures and Support Their Repair. Appl. Sci.
2023, 13, 4971, doi: 10.3390/app13084971.
[51] Tziolis, G.; Spanias, C.; Theodoride, M.;
Theocharides, S.; Lopez-Lorente, J.; Livera,
A.; Makrides, G.; Georghiou, G.E. Short-term
electric net load forecasting for solar-
integrated distribution systems based on
Bayesian neural networks and statistical post-
processing. Energy 2023, 271, 127018.
[52] Zhao, Z.; Tang, J.; Liu, J.; Ge, G.; Xiong, B.;
Li, Y. Short-term microgrid load probability
density forecasting method based on k-means-
deep learning quantile regression. Energy
Reports 2022, 8, 1386.
[53] Armstrong, J.S.; Collopy, F. Error measures
for generalizing about forecasting methods:
Empirical comparisons. Int. J. Forecast. 1992,
1, 69–80.
WSEAS TRANSACTIONS on POWER SYSTEMS
DOI: 10.37394/232016.2023.18.38
Georgios Fotis, Nenad Sijakovic, Mileta Zarkovic,
Vladan Ristic, Aleksandar Terzic, Vasiliki Vita,
Magda Zafeiropoulou, Emmanouil Zoulias, Theodoros I. Maris