References:
[1] Liu, W. X., Yin, R. P., & Zhu, P. Y. (2022).
Deep Learning Approach for Sensor Data
Prediction and Sensor Fault Diagnosis in
Wind Turbine Blade. IEEE Access, 10,
117225-117234.
[2] Li, Y., Hou, L., Tang, M., Sun, Q., Chen, J.,
Song, W., ... & Cao, L. (2022). Prediction of
wind turbine blades icing based on feature
Selection and 1D-CNN-SBiGRU. Multimedia
Tools and Applications, vol.81(3), pp.4365-
4385.
[3] Tuerxun, W., Chang, X., Hongyu, G., Zhijie,
J., & Huajian, Z. (2021). Fault diagnosis of
wind turbines based on a support vector
machine optimized by the sparrow search
algorithm. Ieee Access, vol.9, pp.69307-
69315.
[4] Yan, X., & Jia, M. (2022). Bearing fault
diagnosis via a parameter-optimized feature
mode decomposition. Measurement, vol.203,
112016.
[5] Hasanzadeh, N., Payambarpour, S. A., Najafi,
A. F., & Magagnato, F. (2021). Investigation
of in-pipe drag-based turbine for distributed
hydropower harvesting: Modeling and
optimization. Journal of Cleaner Production,
vol.298, 126710.
[6] Ma, L., Xiao, L., Meng, Z., & Huang, X.
(2020). Robust adaptive fault reconfiguration
for micro-gas turbine based on optimized T–S
fuzzy model and nonsingular TSMO.
International Journal of Fuzzy Systems,
vol.22, pp.2204-2222.
[7] Shi, Y., & Zhou, J. (2022). Stability and
sensitivity analyses and multi-objective
optimization control of the hydro-turbine
generator unit. Nonlinear Dynamics, vol.107,
pp.2245–2273 (2022).
https://doi.org/10.1007/s11071-021-07009-7.
[8] Trizoglou, P., Liu, X., & Lin, Z. (2021). Fault
detection by an ensemble framework of
Extreme Gradient Boosting (XGBoost) in the
operation of offshore wind turbines.
Renewable Energy, vol.179, pp.945-962.
[9] Luo, Z., Liu, C., & Liu, S. (2020). A novel
fault prediction method of wind turbine
gearbox based on pair-copula construction
and BP neural network. IEEE Access, vol.8,
pp.91924-91939.
[10] Wang, J., Liang, Y., Zheng, Y., Gao, R. X., &
Zhang, F. (2020). An integrated fault
diagnosis and prognosis approach for
predictive maintenance of wind turbine
bearing with limited samples. Renewable
Energy, vol.145, pp.642-650.
[11] Park, Y., Choi, M., Kim, K., Li, X., Jung, C.,
Na, S., & Choi, G. (2020). Prediction of
operating characteristics for industrial gas
turbine combustor using an optimized
artificial neural network. Energy, vol.213,
118769.
[12] Chen, H., Hsu, J. Y., Hsieh, J. Y., Hsu, H. Y.,
Chang, C. H., & Lin, Y. J. (2021). Predictive
maintenance of abnormal wind turbine events
by using machine learning based on condition
monitoring for anomaly detection. Journal of
Mechanical Science and Technology, vol.35,
pp.5323-5333.
[13] Tahir, M.Z., Nawi, M.N.M., Rajemi, M.F.
(2015). Building energy index: A case study
of three government office buildings in
Malaysia. Advanced Science Letters,
vol.21(6), pp.1798-1801.
[14] Tahir, M.Z., Jamaludin, R., Nawi, M.N.M.,
Baluch, N.H., Mohtar, S. (2017). Building
energy index (BEI): A study of government
office building in Malaysian public university.
Journal of Engineering Science and
Technology, vol.12 (Special Issue 2), pp.192-
201.
[15] Yu, W., Huang, S., & Wang, J. (2021). Fault
detection based on a combined approach of
FA-CP-ELM with application to wind turbine
system. Journal of Electrical Engineering &
Technology, vol.16, pp.547-557.
[16] Wang, X., Yan, X., & He, Y. (2020). Weak
fault detection for wind turbine bearing based
on ACYCBD and IESB. Journal of
Mechanical Science and Technology, vol.34,
pp.1399-1413.
[17] Wang, A., Pei, Y., Qian, Z., Zareipour, H.,
Jing, B., & An, J. (2022). A two-stage
anomaly decomposition scheme based on
multi-variable correlation extraction for wind
turbine fault detection and identification.
Applied Energy, vol.321, 119373.
[18] Ganthia, B. P., Barik, S. K., & Nayak, B.
(2022). Genetic Algorithm Optimized and
Type-I fuzzy logic controlled power
smoothing of mathematical modeled Type-III
DFIG based wind turbine system. Materials
Today: Proceedings, vol.56, 3355-3365.
[19] Erisen, B. (2018). Wind Turbine Scada
Dataset. Kaggle, [Online].
https://www.kaggle.com/datasets/berkerisen/
wind-turbine-scada-dataset (Accessed Date:
November 14, 2023).
WSEAS TRANSACTIONS on POWER SYSTEMS
DOI: 10.37394/232016.2023.18.30
P. Senthilkumar, Kasmaruddin Che Hussin,
Mohamad Zamhari Tahir, T. Padmapriya, S. V. Manikanthan