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Abstract: - Photovoltaic energy, wind energy, and plug-in electric/hybrid vehicles are being considered as 
sources and loads, reflecting the increasing importance of renewable energy resources in new microgrids. 
However, the stochastic behavior of variables such as wind turbine speed, solar irradiation intensity and, plug-
in electric vehicle dynamics, introduces uncertainties that could affect the economic dispatch of electric power. 
This paper employs a mixture of uniform probability distribution (UPDs) techniques to characterize the 
variability of the available power from renewable energy sources. We propose a new analytical expression 
derived from the mixture of UPDs to calculate Uncertainty Cost Functions (UCFs), thereby assessing their 
impact on the economic dispatch of power. Finally, we performed Montecarlo simulations to validate our UCF 
methodology and its potential applicability in economic dispatch of power. The results demonstrate that our 
methodology accurately calculates the underestimated and overestimated costs of uncertainty power generation. 
This methodology holds the potential to optimize economic dispatch, thereby reducing costs and maximizing 
power generation from the generators. 
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1   Introduction 
Photovoltaic energy generation (PVEG), wind 
energy generation (WEG), and energy from plug-in 
electric/hybrid vehicles (PEV/HEV) introduce 
variable and uncertain scenarios regarding power 
injection or demand on the grid. In traditional power 
generation and dispatch, these energy generators are 
typically treated without specific programming in 
the optimization of power system operations. 
However, these resources or loads can be effectively 
modeled using probability distribution functions 
(PDFs), [1] and integrated into the economic 
dispatch of power. The introduction of PEV/HEV 
into the power network further complicates the 
uncertainty in modern power systems and smart 
grids. These vehicles serve as energy storage 
sources, loads, or power generators, exhibiting 
probabilistic behaviors. To model this behavior 
mathematically, Probability Distribution Functions 
(PDFs) can be employed, specifically, we can use 

expected values of a mixture of uniform probability 
distributions (UPDs).  

The primary objective of our research is to 
mathematically formulate Uncertainty Cost 
Functions (UCFs), derived from a mixture of 
uniform probability distributions (UPDs). Through 
this approach, we can define and compute the 
analytical cost functions associated with 
photovoltaic power generation (PVEG) and wind 
power generation (WEG). Furthermore, this cost 
framework seamlessly extends to the integration of 
plug-in electric vehicles or hybrid electric vehicles 
(PEV/HEV). These analytical functions undergo 
rigorous validation via stochastic simulations of the 
UPD mixture, ensuring the robustness and reliability 
of our findings. 

The variables of uncertainty associated with 
economic dispatch in power systems become 
notably complex with the integration of renewable 
energy resources like PVEG, WEG, and PEV/HEV. 
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Evaluating the stochastic characteristics of these 
resources and loads within power systems can yield 
uncertainty cost functions as well as marginal 
expressions. The analytical elaboration of these 
functions, along with the derivatives of marginal 
costs, is detailed in [2]. 

Uncertainty management is also integrated into 
probability-controlled optimal power flow, 
distinguishing it from traditional optimal power 
flow control by incorporating the scheduling of 
power generation based on state variables with 
predefined limits. In contingency situations, where a 
renewable energy source with high uncertainty 
cannot meet the planned energy demand, the energy 
flow should remain unaffected, representing a 
preventive perspective. However, from a corrective 
standpoint, adjustments in power distribution 
become necessary to maintain the operating system 
within acceptable limits post-event. In [3], a strategy 
programmed and implemented through the 
Matpower software is employed to provide a 
preventive solution to optimal energy flow 
constrained by contingencies. Consequently, these 
software-based strategies can offer solutions for 
both preventing and addressing contingencies for 
ensuring optimal energy flow while accommodating 
uncertainties. 

UCFs are utilized to analyze the variability of 
solar energy, wind energy, and electric/hybrid 
vehicle resources, which can be effectively modeled 
using established probability cost functions, [1]. The 
stochastic effects of wind turbine speed, solar 
irradiation intensity, and drive knocks have been 
analyzed through the application of uniform cost 
functions (UCFs) in [4]. The novelty of this research 
lies in the analytical development of uncertainty 
cost functions and their deterministic verification 
based on the economic dispatch of power.  
Uncertainty Cost Functions derived from a mixture 
of uniform probability distributions (UPDs) are 
employed to validate the formulated analytical 
expected cost and penalty cost, [5]. Lastly, the 
expected value of the penalty cost can be 
determined based on the mean value of the available 
power histogram shown in Figure 1. 

This research paper is structured into several 
sections. In Section 2, we introduce fundamental 
concepts regarding UCFs and UPDs. We explore the 
derivation of these functions from resulting 
histograms. Subsections within Section 2 show the 
mathematical aspects of uncertainty cost functions 
derived from a mixture of uniform probability 
distributions (UPDs). Through analytical 
development, we can determine the UCFs and 
estimate penalty costs associated with PVEG, WEG, 

and PEV/HEV. In Section 3, we present the 
validation and verification process of the 
analytically developed UCFs based on a mixture of 
uniform probability distributions. This validation is 
compared with Monte Carlo simulations to ensure 
accuracy and reliability. Finally, in Section 4, we 
summarize our findings and provide insights for 
future discussions and research directions. 
 

 

2 Problem Formulation and 

Analytical Solution: Development of 

Uncertainty Cost Functions 
There are several methods for function optimization 
including heuristic computational techniques like 
particle swarm optimization (PSO). Power flow 
optimization can also be done by injecting the 
reagents shunt capacitors or transformer taps, [6]. 

The PVEG, WEG and PEV/HEV resources and 
loads have uncertainty factors, so the uncertain costs 
are needed to integrate the injected variable power 
and its consumption. The variability of factors is 
based on the probability distribution of sources and 
loads, [7].  

While analyzing microgrids along with 
renewable energy resources, patent research about 
scientific and technological developments can be 
important characteristics to publish scientific and 
professional technology papers. Especially, 
international patent classification can impart 
important and valuable information about the 
microgrids used in power systems to develop the 
analytical perspective, [8].  

The cost of uncertainty of renewable energy 
sources and loads can be formulated in the form of 
uncertainty cost functions in the microgrids 
operations. Small hydropower plants in this context 
can be used in the distribution probability of the 
power plant. The analytical development for 
uncertainty cost functions of such microgrids can be 
formulated mathematically to 
underestimate/overestimate power availability. The 
validation in this regard is done by using Monte 
Carlo simulation process, [9]. 

In an islanded microgrid case, the inverters can 
surely provide droop control in frequency regulation 
and required power dispatch even based on 
reference values. The results of this control show 
the improvement in frequency regulation due to 
changes in networked microgrids’ inertia, [10]. 

To optimize the tension profiles and reagents 
controlling power distribution, we can optimize the 
capacitors’ location in the power system network. 
The exhaustive search technique is used to optimize 
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it. In this technique, the dimensions are used to 
evaluate several possibilities to find its solution and 
algorithm computational iteration visualizations 
give the solution optimum, [11]. 

Constrained handling rules in decomposition 
methodology can be used to provide optimal power 
flow during iterative computation for a security-
constrained problem. The stages for finding the 
optimal power flow solution are the bases case 
network and modification of potentially relevant 
contingencies by updating the constraint limits. The 
algorithm used is performing computations to find 
the results in such problems, [12]. 

Uncertainty of PVEG, WEG, and PEV/HEV 
generators/sources and loads in terms of economic 
dispatch is formulated to cost functions analytically. 
We can integrate these sources and loads to handle 
the uncertainty mentioned. These uncertainty cost 
functions for sources and loads can be verified and 
validated in two ways: 

o At any instant, the available power can 
be verified in the form of a mixture of 
uniform probability distributions.  

o The Uncertainty Cost Functions can be 
calculated with an analytical 
development (presented in subsection 
B), and they can be contrasted by 
Montecarlo simulations, we can use two 
and three uniform probability 
distributions. 

 
2.1 Power Histogram Description with Two 

Uniform Distributions 
To represent the available power of PVEG, WEG, 
and PEV/HEV, this research considers two 
uncertain representations: one with two uniform 
distributions and the other with three distributions. 
An example of the available power from renewables 
can be described by using the power histogram 
shown in Figure 1. 

For the representation with two uniform 
distributions, the scheduled power (𝑃𝑠) by the 
operator can be categorized into two regions as 
follows: 

Case: A; Region I: 𝑃𝑠 is less than b and bigger 
than a. 

Case: B; Region II: 𝑃𝑠 is less than c and bigger 
than b. 

 
Fig. 1: Available power histogram (two uniform 
distributions) 
 
2.2 Mathematical formulation of Uncertainty 

Cost Functions 
The uncertainty cost function is a function in terms 
of the scheduled power, 𝑓(𝑃𝑠), coming from adding 
two parts. 

In this way, there are two components in the 
uncertainty cost, the overestimation part 
(𝑈𝐶𝐹𝑜𝑣𝑒𝑟𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛), where the scheduled power (𝑃𝑠) 
is bigger than the available power (𝑃), and the cost 
for having a difference between 𝑃𝑠 ∧ 𝑃 represents 
the use of energy storage systems for storage the 
difference, valued with an overestimation constant 
(𝐶0) and the probability of 𝑃 < 𝑃𝑠. 

The second part, the underestimation part 
(𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛), where the scheduled power 
(𝑃𝑠) is less than the available power (𝑃), and the cost 
for having a difference between 𝑃 ∧ 𝑃𝑠 represents 
the use of energy storage systems for inject to the 
network the difference, valued with an 
underestimation constant (𝐶𝑢) and the probability of 
𝑃 > 𝑃𝑠. 

The total uncertainty cost functions can have the 
following development cases based on the analytical 
development of a mixture of probability 
distributions (B1 and B2 subsections). 

 
Case A, Region I:  

If 𝑃𝑠 < 𝑏 
 

o Step – 1  

 

𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛= 𝑤1

𝑏−𝑎
∫ 𝐶0(𝑃𝑠 − 𝑃)𝑑𝑃

𝑃𝑠

𝑎
             (Ao-1) 

 
𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛= 𝑤1

𝑏−𝑎
∫ 𝐶𝑢(𝑃 − 𝑃𝑠)𝑑𝑃

𝑏

𝑃𝑠
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                             +
𝑤2

𝑐−𝑏
∫ 𝐶𝑢(𝑃 − 𝑃𝑠)𝑑𝑃

𝑐

𝑏
      (Au-1) 

 

o Step – 2  

 

𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑤1𝐶0

𝑏−𝑎
[𝑃𝑠𝑃|𝑎

𝑃𝑠 −
𝑃2

2 𝑎
𝑃𝑠]         (Ao-2)            

 

𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑤1𝐶𝑢

𝑏−𝑎
[

𝑃2

2
|

𝑃𝑠

𝑏

− 𝑃𝑠𝑃𝑃𝑠

𝑏 ] + 

                           
𝑤2𝐶𝑢

𝑐−𝑏
[

𝑃2

2
|

𝑏

𝑐

− 𝑃𝑠𝑃𝑏
𝑐]                (Au-2) 

 

o Step – 3  

 

𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛= 𝑊1𝐶0

𝑏−𝑎
[𝑃𝑠

2 − 𝑃𝑠𝑎 −
𝑃𝑠

2

2
+

𝑎2

2
] 

 = 𝑊1𝐶0

𝑏−𝑎
[

𝑃𝑠
2

2
− 𝑃𝑠𝑎 +

𝑎2

2
]                      (Ao-3) 

 
𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 == 𝑤1𝐶𝑢

𝑏−𝑎
[

𝑏2

2
−

𝑃𝑠
2

2
− 𝑃𝑠𝑏 + 𝑃𝑠

2] + 

                                                             
𝑤2𝐶𝑢

𝑐−𝑏
[

𝑐2

2
−

𝑏2

2
− 𝑃𝑠𝑐 + 𝑃𝑠𝑏] 

 
= 𝑊1𝐶0

𝑏−𝑎
[

𝑃𝑠
2

2
− 𝑃𝑠𝑏 +

𝑏2

2
] +  𝑤2𝑐0 [

𝑐+𝑏

2
− 𝑃𝑠]         (Au-3) 

                         
Case B, Region II: 

 
If 𝑏 < 𝑃𝑠 < 𝑐 
 

o Step – 1  

 

𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑤1

𝑏−𝑎
∫ 𝐶0(𝑃𝑠 − 𝑃)𝑑𝑃

𝑏

𝑎
            

                
                        + 𝑤2

𝑐−𝑏
∫ 𝐶0(𝑃𝑠 − 𝑃)𝑑𝑃

𝑃𝑠

𝑏
           (Bo-1) 

 
𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =

𝑤2

𝑐−𝑏
∫ 𝐶𝑢(𝑃 − 𝑃𝑠)𝑑𝑃

𝑐

𝑃𝑠
  (Bu-1) 

 

o Step – 2  

 

𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑤1𝐶0

𝑏−𝑎
[𝑃𝑠𝑃|𝑎

𝑏 −
𝑃2

2 𝑎
𝑏]    +  

 
                           𝑤2𝐶0

𝑐−𝑏
[𝑃𝑠𝑃|𝑏

𝑃𝑠 −
𝑃2

2 𝑏
𝑃𝑠]           (Bo-2) 

 

𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑤2𝐶𝑢

𝑐−𝑏
[

𝑃2

2
|

𝑃𝑠

𝑐

− 𝑃𝑠𝑃 𝑃𝑠

𝑐 ]      

(Bu-2) 
 

o Step – 3  

 
𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑤1𝐶0

𝑏−𝑎
[𝑃𝑠(𝑏 − 𝑎) −

𝑏2

2
+

𝑎2

2
] +  

 

𝑤2𝐶0

𝑐 − 𝑏
[𝑃𝑠

2 − 𝑃𝑠𝑏 −
𝑃𝑠

2

2
+

𝑏2

2
] 

 

= 𝑊1𝐶0

𝑏−𝑎
[𝑃𝑠(𝑏 − 𝑎) +

𝑎2−𝑏2

2
] +  

 

𝑤2𝐶0

𝑐 − 𝑏
[
𝑃𝑠

2

2
− 𝑃𝑠𝑏 +

𝑏2

2
] 

 

 = 𝑤1𝑐0 [𝑃𝑠 −
(𝑏+𝑎)

2
] +

𝑤2𝐶0

𝑐−𝑏
[

𝑃𝑠
2

2
− 𝑃𝑠𝑏 +

𝑏2

2
]   (Bo-3) 

 
𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑤2𝐶𝑢

𝑐−𝑏
[

𝑐2

2
−

𝑃𝑠
2

2
− 𝑃𝑠𝑐 + 𝑃𝑠

2] +                                                     
 
                                  𝑤2𝐶𝑢

𝑐−𝑏
[

𝑃𝑠
2

2
− 𝑃𝑠𝑐 +

𝑐2

2
]    (Bu-3) 

 

 

3  Simulation and Validation for the 

Problem Solution  
To evaluate the analytical uncertainty cost 
functions, we performed Montecarlo simulations to 
obtain available power values from a mixture of  
two UDP, representing the variability of a PVEG. 
For each Ps value, we computed both 
overestimation and underestimation costs, thereby 
deriving the uncertainty cost for each specific 
scenario. Subsequently, separate histograms 
illustrating the costs attributed to underestimation 
and overestimation are depicted. 

The simulations were conducted to illustrate the 
two cases outlined in the mathematical formulation 
section. Figure 2 depicts the simulations for 
Ps=30MW, corresponding to Case A, Region I: 𝑃𝑠 is 
less than b and bigger than a (𝑃𝑠). Similarly, Figure 
3 presents the results for Ps=70MW, corresponding 
to Case B, Region II: 𝑃𝑠 is less than c and bigger 
than b. 

 

 
Fig. 2: Power histogram, costs histograms due to 
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underestimate and overestimate (Ps= 30 MW) 

Fig. 3: Power histogram, costs histograms due to 
underestimate and overestimate (Ps= 70MW) 

 
According to Figure 2, the uncertainty costs for 

underestimating the available power range between 
0 and approximately 1550$. There is a gradual 
accumulation of cases between 0 and 400$. In this 
scenario, the expected costs for underestimating and 
overestimating the available power are very similar. 
In Figure 3, it is observed that the costs of 
underestimating the available power range between 
0 and $300. However, the costs of overestimating 
the available power reach values of 4500$. A 
significant number of cases are concentrated at the 
highest cost values. In this instance, the expected 
costs of overestimating the available power are 
notably higher than the costs of underestimating. 

In Figure 4, the Montecarlo run shows the 
histogram illustrating the uncertainty cost for all 
scenarios with  𝑃𝑠= 30MW. The expected cost, 
derived from these Montecarlo simulations, amounts 
to 740.9090$. This value can be compared by 
employing the expressions outlined in Case A from 
the previous section: 

 
UCF=𝑈𝐶𝐹𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 
 
where a=6.6780 MW, b=43.7734 MW, c= 

80.8688 MW, 
w1= 0.6, w2= 0.4 and 𝑃𝑠= 30 MW. In this case, 

the analytical expressions yield $741.7588, 
indicating an error of 0.11%. 

 

 
Fig. 4: UCF histogram (Ps= 30 MW). 

 
In Figure 5, Montecarlo run shows the histogram 

for the uncertainty cost for the whole scenarios in 
case 𝑃𝑠= 70 MW, the expected cost of these 
Montecarlo simulations is 2.157 $. This value can 
be contrasted by applying the expressions of case A 
of the previous section: 

 
UCF=𝑈𝐶𝐹𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑈𝐶𝐹𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 
 
where a=6.6780 MW, b=43.7734 MW, c= 

80.8688 MW, w1= 0.6, w2= 0.4 and 𝑃𝑠= 30 MW. In 
this case the analytical expressions give 2.159,2 $, 
indicating an error of 0.11%. 

Using the UCFs proposed in the previous section, 
we calculated the  uncertainty costs for different 
values of 𝑃𝑠, generating the total cost function. The 
results for each value of 𝑃𝑠 are detailed in Table 1 
and were compared with the Montecarlo 
simulations. in Figure 6 we analyze the behavior of 
the cost function in function of the variable 𝑃𝑠. 

 

 
Fig. 5: UCF histogram (Ps= 70 MW) 
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Table 1. UCF data, Montecarlo, and analytical cases 

 
 
According to the results presented in Table 1, the 

cost values calculated from the proposed UCFs 
closely align with those generated through Monte 
Carlo simulations, which validates the efficacy of 
the proposed approach. An advantage of this 
approach lies in its ability to calculate costs 
analytically, which simplifies the calculation 
process in contrast to the Montecarlo simulation-
based determination of uncertainty cost. Moreover, 
the proposed equations can provide detailed results 
concerning the costs related to overestimation and 
underestimation of available power. 

 

 
Fig. 6: UCF vs Ps 
 

Figure 6 provides a comprehensive view of the 
expected value of uncertainty costs across different 
Ps values. This analysis reveals distinct trends in the 

behavior of the proposed cost function. For low Ps 
values, uncertainty costs remain low, as evidenced 
in Figure 2, where the expected values of 
underestimation and overestimation costs are 
comparable. Furthermore, a specific Ps value is 
identified where uncertainty costs reach their 
minimum. This value has significant potential for 
optimizing economic dispatch, enhancing power 
availability, and mitigating uncertainty costs. 
Conversely, as Ps increases, a discernible upward 
trend is observed in uncertainty costs, consistent 
with the findings in Figure 3, where the cost of 
overestimation notably surpasses that of 
underestimation. This analysis provides valuable 
insights for generating agents and electricity market 
operators, allowing them to reduce generation costs 
and optimize economic dispatch more efficiently. 
 

 

4   Conclusion 
Please, follow our instructions faithfully, otherwise 
you have to resubmit your full paper. This will 
enable us to maintain uniformity in the conference 
proceedings as well as in the post-conference 
luxurious books by Press. Thank you for your 
cooperation and contribution. We are looking 
forward to seeing you at the Conference. 
      The economic dispatch of the energy scheduling 
of uncertain sources and loads (PVEG, WEG, and 
PEV/HEV) must include the tools and techniques to 
reduce the penalty costs connected with the 
scheduling. In this paper, an analytical development 
approach is presented which is better to use as a tool 
or technique. The mathematical formulation shows 
it as an optimization technique based on the 
stochastic economic dispatch technique. To 
schedule reliable power, the penalty costs can affect 
the supply of energy generating underestimate or 
overestimate of power availability by using such 
sources and loads. The uncertainty cost functions 
(UCFs) can be used mathematically to calculate the 
underestimated or overestimated costs of power 
generation making the power system more stable in 
electricity market. By using this research concept, 
simple uncertainty cost functions can be used to 
optimize the power flow because they have a 
quadratic shape in nature and consist of optimal 
solvers of power systems.   
      The analytically developed equations of 
uncertainty cost functions are based on parameters 
applied for several cases of PVEG, WEG, and 
PEV/HEV sources and loads. We can vary these 
parameters to optimize the economic dispatch of 
power based on a mixture of probability 
distributions and uncertainty cost functions to get 
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the maximum power from the generators. The 
stochastic behavior of these resources and loads can 
be used to estimate accurately the uncertainty costs 
to optimize the power generation. 
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