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Abstract: - Renewable energy sources (RES) like solar and wind are quite uncertain because of the 
unpredictable nature of wind and sunlight. As a result, there are at present several issues with system 
security and the transformed structure of the energy market due to the increasing utilization of 
renewable energy sources (wind and solar). Accurate forecasting of renewable energy production is 
extremely important to ensure that the produced energy is equal to the consumed energy. Any 
deviations have an impact on the system's stability and could potentially cause a blackout in some 
situations. The issue of the high penetration of RES is discussed in this study along with a novel 
method of predicting them using artificial neural networks (ANN). The SARIMA prediction model is 
contrasted with the ANN approach. The suggested ANN for wind power plants has a mean average 
prediction error (MAPE) of 3%–4.3%, whereas the SARIMA model has a MAPE of 5%–6.5%. In 
comparison, the present prediction approaches typically have a MAPE of 5%–10%. When the MAPE 
of solar power plants was calculated, it was also discovered that the SARIMA model had a MAPE of 
2.3%–4% and the suggested ANN had a MAPE of 1.4%–2.3%, whereas the MAPE of the present 
prediction methods was often about 9%.  
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1   Introduction 
The shortage of fossil fuel resources, [1], [2], as 
well as global strategic incentives to reduce carbon 
emissions in the environment, have led to the high 
penetration of renewable energy sources (RES), 
where wind and solar energy are crucial in this 
process, [3], [4], [5]. For the stable operation state 
of the power system there is a need for accurate 
forecast of the load, [6], [7], and the RES 
production. RES production is varying in time, as 
the weather processes on which it is dependent 
(solar radiation and wind speed) are also variant and 
difficult to be predicted. By aiding balance, accurate 
forecasting can help prevent the severe fluctuations 
that could be created in the power grid, [8], [9], 
[10], [11], and it can even cause a major blackout 
with an enormous impact on society and the 
economy, [12], [13], [14].  

Numerical weather prediction (NWP) tools, [15], 
which originated in meteorology and were directed 
to the energy sector after a couple of decades, have 
been developed because of collaborations between 
electrical engineering and meteorology. The aim of 
this collaboration was for these NWP models to 
cover the needs of the energy sector. These models 
are used to forecast wind, along with algorithms that 
give a non-linear transfer of wind speed into power 
while also considering other relevant meteorological 
and orographic influences, as well as wind turbine 
type and/or wind farm architecture, including 
shadow impacts. Grid operators employ such 
forecasts for intraday and near-real time grid 
operations, [16], day-ahead market clearance checks 
(24h), [17], and operational planning (many days 
ahead) depending on the forecast time horizon, [18]. 

In terms of RES forecasting, deterministic and 
probabilistic methodologies can be distinguished, 
[19]. In a deterministic technique, the variable to be 
forecasted is estimated with a specific value for each 
subsequent time step. A probabilistic strategy 
emphasizes providing information about the entire 
spectrum of likely power generation events, through 
a set of alternative scenarios or a collection of 
conditional probability density functions (PDFs). 
For example, ensemble models, that a model runs 
numerous times from radically altered initial 
conditions, [20], or statistical techniques, [21], can 
provide the basis for probabilistic predictions. This 
gives information about the predicted uncertainty 
impacting every single value forecast as well as a 
prediction about the probability of the occurrence of 
a specific event. While renewable energy 
forecasting based on deterministic approaches has 
been studied for almost three decades, probabilistic 
forecasting has only recently attracted attention. It is 

currently becoming more common, particularly in 
wind energy. 

Following the first published work on wind 
energy forecast, [22] many research works have 
been published on the subject in the following 
decades. The most representative ones in wind 
power forecasting are in [23], [24], while, [25], [26], 
[27], discuss a range of the most current uses for 
deterministic and probabilistic wind power 
forecasting. 

In terms of solar energy forecasting, the first 
published paper is found in [28]. [29], [30], give 
thorough assessments of the state of solar irradiance 
forecasts for energy generation throughout a range 
of time periods, whereas, [31], [32], examine and 
compare several forecasting strategies to anticipate 
solar power output. In [33], along with these 
references, it is offered an interesting overview of a 
variety of forecasting techniques as well as 
statistical and computational intelligence models, 
with a focus on forecasting electricity prices. In 
terms of comparing forecasting models and 
approaches, [34], [35], [36], offer an insightful 
investigation of the progress that has been made in 
terms of wind power forecasting. 

Plenty of researchers have examined the use of 
AI algorithms for solar radiation forecasting, which 
is a key factor affecting solar systems' output power, 
[37]. In [38], researchers found that ANN was the 
most useful method for estimating solar radiation 
when compared to other methodologies. In [39] it 
was discovered that the Gradient Boosting Tree 
(GBT) model performs better than other approaches 
regarding both precision as well as accuracy when 
estimating solar radiation. In [40], the authors 
proved that all the machine learning systems they 
evaluated could accurately forecast daily solar 
radiation data; the ANN method performed the best. 
Wind energy development uses Machine Learning 
(ML) and Deep Learning (DL) algorithms, just like 
solar energy does. Wind speed data and other 
pertinent information are used in this process. [41], 
presented hybrid SVM models and argued that the 
Support Vector Machine (SVM) model was better 
than other models. To improve predicting accuracy, 
Xiao proposed employing a self-adaptive Kernel 
Extreme Learning Machine (KELM), [42].  

There is research interest in the short-term 
prediction of RES presented in the current work for 
the following reasons. Firstly, while there have been 
many publications on load forecasting, the same has 
not been done on the forecasting of energy 
production from RES. Secondly, this gap is 
particularly major regarding the Greek electricity 
system, which has a particularly high share of 
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installed capacity in wind and photovoltaic plants. 
This becomes especially necessary given that due to 
the policy implemented by the European Union and 
the Greek governments, the size of RES will 
increase in the coming years (approval has already 
been given for the first offshore wind farms in the 
Aegean Sea), [43], [44], and Greece will become an 
exporter of green energy to Europe (with the new 
cross-border connections approved to be 
implemented), [45]. 

The main concern of this research work is the 
development and future implementation in the 
power systems of a prediction method for wind and 
solar power production. This prediction method is 
based on Artificial Neural Networks (ANNs) and it 
is applied to solar and wind power parks in the 
southern region of Greece. The contribution of this 
methodology has to do with the exact prediction that 
it gives, proving its efficiency with other prediction 
methods. Its outcome is even more significant 
taking into consideration that it will be a valuable 
tool for both the Transmission System Operators 
(TSOs) and the Distribution System Operators 
(DSOs), especially in Greece, where the penetration 
of RES will increase and the demand for an accurate 
prediction of the power produced by RES (wind and 
solar) will be vital for the power system’s stability. 

The proposed ANN methodology 
implementation has advantages such as scalability, 
interpretability, and the ability to capture non-linear 
relationships such as power production from solar or 
wind. Also, ANNs have the ability to perform many 
calculations simultaneously, which allows them to 
process large amounts of data quickly and 
efficiently, as data from wind or solar power plants. 
From this study, it was found that the accuracy of 
the ANN model improved the performance of the 
power system. Also, the proposed ANN has a fault 
tolerance, needed in the prediction of the RES 
production. Corruption of one or more cells of an 
ANN does not prevent it from generating output, 
making ANNs with this feature fault tolerant, since 
there is corrupted data from the Supervisory Control 
And Data Acquisition (SCADA), from where the 
input data are collected. The main reason for 
applying ANNs to our research is that ANNs can 
store information on the entire network. Therefore, 
the disappearance of a few pieces of information in 
one place does not prevent the network from 
functioning. Also, ANN is selected because of its 
ability to learn and use a non-linear relationship to 
map several input parameters to an output 
parameter. 

The structure of this work is as follows. In 
Section 2, the proposed methodology using ANNs 

that estimates the power production from solar and 
wind parks is presented. Section 3 includes the 
results of the proposed methodology, and a 
comparison between the forecasted and the exact 
production is presented. The concluding notes are 
provided in the last section. 

 
 

2   RES Production Prediction 
In this section, the ANN method for the prediction 
of power production from RES is presented. There 
is also a short introduction to the SARIMA 
prediction model and, finally, a comparison between 
these two different prediction methods, proving the 
better performance of the ANNs. 
 
2.1  ANNs and RES Production Prediction 
What is already quite well known about ANNs is 
that they represent a relatively young technique that 
is based on machine learning principles, [46], [47], 
[48]. It is a technique designed to determine the 
optimal system output given a predetermined set of 
high-quality input data that are necessary to 
guarantee the ANN algorithm operates as intended. 
This algorithm is usually used when it is challenging 
to determine how the input and output values relate 
to one another. To determine that transfer function, 
the ANN algorithm uses a similar principle as the 
human nervous system for learning and 
implementing the experiences from the past for the 
new tasks, [49], [50], [51], [52]. The human nervous 
system contains many neurons that process 
information and communicate with one another 
through synapses. Basically, what happens there is 
that each of the neurons that receives some data 
processes it and then determines if it will forward it 
to other neurons to which it is connected and, if it 
will, to which of those neurons. ANN, on the other 
hand, represents the mathematical model of this 
system, formed out of the artificial neurons that 
transfer the information among themselves, and 
then, by trying to find the impact that each piece of 
information has on the outcome of the problem, 
proposes a solution of the analyzed problem based 
on the defined set of inputs.  

Figure 1 depicts the mathematical representation 
of a neuron in an ANN. Synapses connect the inputs 
that each neuron receives to that neuron. These 
inputs may come from the outside world or from the 
neurons in the previous layer. In Figure 1, xj 
represents j input, j=1,..,n. The synapses’ strength is 
defined through synaptic weight ωiј, where 
excitatory synapses are represented by a positive 
value of ωiј, and inhibitory synapses by a negative 
value. After multiplying the transfer function by the 
appropriate weight coefficients on all inputs, the 
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output is integrated and compared to the threshold 
value. The activation value would be 1 if the 
transfer function exceeded the threshold, otherwise 
it would be 0. Formally, it can be expressed as 
follows: 

 
𝜙 = 𝜙(∑ 𝑥𝑗 ⋅ 𝑤𝑖,𝑗 − 𝜃𝑗)𝑛

𝑗=1    (2) 
 
The sigmoid function, which is described by (3), 

is the most frequent activation function of a neuron. 
 
𝑜𝑗 =

1

1+𝑒−𝛼⋅𝜙     (3) 
 
However, what can be raised as the first 

problematic point here is the matter of determining 
the weighting factors that would be assigned to each 

of the input values to obtain the result of maximal 
accuracy. To resolve this issue, the mechanism can 
be established in cases in which both the input data 
and the measured output values are known. If that is 
the case, the neuron can be fed by the input data, 
after which the obtained output could be compared 
to the already available measured output value. 
Based on the difference between the calculated and 
measured values, the weighting factors can be 
modified to improve the precision of the described 
activity of the neuron. This process is iterative and 
can be repeated until there is sufficient accuracy 
(usually decided by the difference being low 
enough). The schematic of is shown in Figure 2 
below. 

 

 
Fig. 1: An ANN's mathematical representation of a neuron 

 

  
Fig. 2: Weighting factors tuning for the single neuron 
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The same logic can be applied to the layers, in 
which the neurons are grouped in the ANN. Usually, 
there are three types of layers, as can be seen in 
Figure 3: the input layers, the hidden layers, and the 
output layers. The first layer of the ANN is typically 
the input layer, with the only purpose of 
transmitting the signals further. The output layer is 
the final layer in an ANN. Its goal is to establish the 
overall ANN's outcome. The number of hidden 
layers, which compose the ANN and affect its 
accuracy, forms the pathway between the input and 
output layers. When the described method of 
determining the weighting factors is applied to the 
entire ANN instead of the single neuron, it is called 
"back propagation", as shown in Figure 3. 

This process of deciding the weighting factors in 
the entire ANN is called the training of that ANN. 
To pull that off properly, the algorithm needs to be 
fed quite a large amount of input data, followed by 
the accompanying known output values. 
Meteorological data is what is most relevant for 
wind and solar power plants because the production 
power of those sources is directly related to that 
kind of data. To improve the prediction further, the 
initial database used for training has also been 
processed by adding a new entry for the seasons 

(summer, winter, autumn, and spring) and for the 
time of day (night or day). In this way, the ANN 
was enabled to recognize the patterns to predict the 
production even better. The dataset used for the 
training came from real-life measurements of the 
chosen weather and power system parameters for 
the current work. Training took up most of that 
dataset. Also, one smaller part of the dataset ended 
up being used for testing, and another one was used 
for the validation of the developed ANN. 

Three phases contribute to the ANN's training 
and testing process using the MATLAB neural 
network toolbox to train and develop neural network 
models. The training data is selected from the whole 
set of available data. 70% of the database is utilized 
for training, 15% is used for testing, and 15% is 
used for validation. These database events were 
produced and selected at random. This is very 
important because a uniform part of the base can 
lead to wrong conclusions. Next, to prevent 
saturation, the data is normalized. The back 
propagation algorithm has been used to train the 
artificial neural network. 

 
 

 

  
Fig. 3: Back propagation method of ANN training 
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In order to evaluate the prediction capability of 

the created ANN model, the parameter known as 
MAPE (Mean Average Prediction Error), was used, 
[53]. For the maximal precision of the created ANN, 
this parameter, calculated based on the results of the 
ANN and the measured values for the same set of 
input data, needs to be as small as possible. The 
difference between the measured and predicted 
value for the relevant period is what first calculated 
as the forecast or residual error (E): 

 
𝐸𝑡 = 𝑌𝑡 − 𝐹𝑡     (4) 
 
where Et denotes the variable's period t forecast 

error, Yt is the variable's period t measured value, 
and Ft denotes the variable's period t forecast 
variable. The accuracy metrics are dependent on the 
size of the variable because the forecast error Et is 
on the same scale as the data. The Mean Absolute 
Percentage Error (MAPE) is calculated in equation 
(5), to compare forecast performance between 
different datasets. 

 

𝑀𝐴𝑃𝐸 = 100 ∙
∑ |

𝐸𝑡
𝑌𝑡

|𝑁
𝑡=1

𝑁
   (5) 

 
The best way to achieve minimal error in the 

prediction of some power plant production is to 
have a good and well-organized database. The better 
input data gives better performance for ANN and 
better production prediction. Meteorological data 
are the most important for wind and solar power 
plants because they appear in the physical models of 
these renewable energy sources. To improve the 
prediction, the database is further processed by 
adding an entry for the seasons (summer, winter, 
autumn, and spring) and time of day (night or day). 
Also, it was tried to present ANN output and 
productions binary code, but this was unsuccessful. 
The next way to decrease the MAPE is to get the 
production from the same hour from the previous 
day and to get the production from the previous 
hour as inputs.  

The database consists of data from 1 January 
2018 up to 1 March 2023 (45,242 hourly data) for 
solar and wind power plants placed in Southern 
Greece, presented in Table 1. The meteorological 
data for Wind Power Plants (WPPs) are organized 
as: wind direction and wind speed and temperature. 
The meteorological data for Solar Power Plants 
(SPPs) are organized as: Global horizontal 
irradiance, temperature, and wind speed.  

In Figure 4 the flowchart of the classification 
process is depicted. From validation data, the 
optimal ANN hyperparameters are determined: 
network architecture, types of activation functions, 
regularization parameter, optimal moment for the 
end of training, etc. It is not possible to learn 
hyperparameters from a test set since this would 
result in inconsistent results when estimating 
network performance. Cross-validation is the 
process of learning hyperparameters by training the 
network for several combinations of 
hyperparameters on training data and measuring 
performance on validation data. The optimal 
combination of hyperparameters is determined by 
observing which combination yields the greatest 
results on the validation data. The measure of 
performance for the cross-validation procedure for 
regression problems may be the standard deviation. 
The maximum number of hyperparameters is 
determined by the range of the output variable 
(production WPP or SPP) and the number of input 
parameters and the size of the database of the 
training data set. Then the same number is 
distributed among the layers and the number of 
neurons in the layers. The optimal result is obtained 
based on experiential variation and in accordance 
with the minimization of the error (MAPE) on the 
test set. It starts with the maximum number of 
neurons in a smaller number of layers and comes to 
the decision that an ANN with more layers and a 
smaller number of neurons is better for predicting 
WPP and SPP. Of course, each power plant 
represents an ANN model with adjusted 
hyperparameters for itself. 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2023.18.38

Georgios Fotis, Nenad Sijakovic, Mileta Zarkovic, 
 Vladan Ristic, Aleksandar Terzic, Vasiliki Vita, 

Magda Zafeiropoulou, Emmanouil Zoulias, Theodoros I. Maris

E-ISSN: 2224-350X 378 Volume 18, 2023



 
Fig. 4: Flowchart of the classification process 

 
Table 1. Solar and Wind Power Plants in selected 

regions of Southern Greece 
Substation 

Name1 
Installed 

Capacity [MW] 
Type of power 

plant 

SPP-1 2.188 Solar 
SPP-2 4.9 Solar 
SPP-3 6 Solar 
SPP-4 9 Solar 
SPP-5 11.963 Solar 
WPP-1 7.65 Wind 
WPP-2 13.6 Wind 
WPP-3 18.4 Wind 
WPP-4 28.85 Wind 
WPP-5 43.7 Wind 

 
For reasons of information confidentiality, the 

names of the power generation substations are given 
coded and not with their actual names. 

 
2.2  The SARIMA Prediction Model  
The ARIMA model analyzes historical data, 
dividing it into three components: autoregressive 
(AR), integrated (I), which denotes linear or 
polynomial trends, and moving average (MA), 
which denotes a weighted moving average over 
prior mistakes, [54], [55], [56], [57], [58]. In order 
to create the ARIMA(p, d, q) model, it combines the 
three model parameters AR(p), I(d), and MA(q). 

p = AR order 
q = MA order 
d = I order (differencing) 

The multiplicative Seasonal ARIMA model 
namely SARIMA is a variant of the standard 
ARIMA model. It is typically written as 
SARIMA(p,d,q)(P,D,Q), where, p, d, q and P, D, Q 
are positive integers that refer to the polynomial 
order of the AR, I, MA parts of the seasonal and 
non-seasonal components of the model, 
respectively. This is done to account for the wind 
speed and the irradiation, which have a seasonal 
effect. The SARIMA model is described 
mathematically in (6). 

 
𝜑𝑃(𝐵)𝛷𝑃(𝐵𝑠)∇𝑑∇𝑠

𝐷𝑥𝑡 = 𝜃𝑞(𝐵)𝛩𝑄(𝐵𝑠)𝜀𝑡 (6) 
 
Where: xt is the predicted variable (i.e., wind 

speed), 𝜑𝑃(𝐵) is the regular AR polynomial of 
order p(), 𝜃𝑞(𝐵) is the regular MA polynomial of 
order q(), 𝛷𝑃(𝐵𝑠) is the seasonal AR polynomial of 
order P(), 𝛩𝑄(𝐵𝑠) is the seasonal MA polynomial of 
order Q, ∇𝑑 is the differentiating operator that 
eliminate the non-seasonal non-stationarity, ∇𝑠

𝐷 is 
the seasonal differentiating operator that eliminate 
the seasonal non-stationarity, B is the backshift 
operator, making the observation at a specific shift 
in time xt (i.e. 𝐵𝑘(𝑥𝑡) = 𝑥𝑡−𝑘) and finally εt 

determines the seasonal period and is subjected to a 
white noise technique. These polynomials are 
explained in (7-12): 

 
𝜃𝑞(𝐵) = 1 − ∑ 𝜃𝑡𝐵𝑡𝑞

𝑡=1     (7) 
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θQ(Bs) = 1 − ∑ ΘtBs,tQ
t=1     (8) 

 
φp(B) = 1 − ∑ φtBtp

t=1     (9) 
 
Φp(Bs) = 1 − ∑ ΦtBs,tP

t=1                (10) 
 
∇d= (1 − B)d                (11) 
 
∇s

d= (1 − Bs)D                (12) 
 
The Akaike Information Criterion (AIC) is a 

statistic used to compare models to determine which 
one best fits the data. The AIC penalizes some 
models for complexity while rewarding those that fit 
the data well. It could be written as: 

 
AIC = 2k + ln (

RSS

n
)              (13) 

 
with n being the overall number of observations 

equal to 168, k being the number of free parameters 
and RSS is the residual sum of squares. At last, the 
forecasting of the intended period can be carried out 
utilizing the obtained valid model. Once the model 
was formulated, it was used to predict wind speed 
and solar radiation for the 1st of July 2023 to the 7th 
of July 2023 (the same time period as the proposed 
ANN). To evaluate the models' accuracy, the 
statistics for the 168-hour forecasting outcomes are 
then averaged. 

The next section contains the results obtained by 
using the developed ANN method in comparison to 
the SARIMA prediction model, particularly focused 
on the prediction of the power production of wind 
and solar power plants in the selected regions of 
southern Greece. 

 
 

3   Forecast Improvement Results 
The results given in this section have been obtained 
by using both the developed ANN and the SARIMA 
model for the forecast of the production of 
renewable energy sources, considering the time 
horizon of 168 hours into the future. This kind of 
generation power forecast has been done for the 
period from the 1st of July 2023 to the 7th of July 
2023, allowing its further comparison with the 
actual measured values of the same parameter. 
During this analysis, 10 separate renewable energy 
sources have been taken into consideration, as 
presented in Table 1. 

The obtained findings are crucial for the rest of 
the demonstration outcomes, as they provided an 
unprecedentedly accurate base for further 

investigations of their application in congestion 
management, mFRR and aFRR dimensioning and 
activations, as well as among the additional 
enhanced transmission and distribution system 
planning and operation procedures connected to 
weather forecasts. For the sake of easier 
understanding, the results will first be shown for the 
five considered wind power plants and then for the 
five solar power plants that were considered. 

 
3.1  Results for the Wind Power Plants 
Table 2 gives a comparison of the results obtained 
by the ANN forecast and the SARIMA model 
compared to the actual production values of the 
wind plants. MAPE has been calculated for each of 
the 168 hours for each of the WPPs. By that, it was 
calculated that the average MAPE for WPP-1 to 
WPP-5 was approximately between 3% and 4.3% 
for the proposed ANN methodology, while for the 
SARIMA model MAPE was approximately between 
5% and 6.5%. As a benchmark, the MAPE of WPP 
forecasts (market schedules) using GA, [59] or Deep 
Learning, [60], is typically around 9% and 7% 
respectively, highlighting the improvement made by 
the usage of ANN methods. The optimal ANN 
structure is with 5 layers with number of neurons: 
30 20 10 10 10. More layers lead to over fitting and 
increasing the error. 
Table 2. Obtained results for the wind power plants 
Substation 

Name 
MAPE [%] 

 ANN 
SARIMA 

model 

GA 

[59] 

DL 

[60] 

WPP-1 3.02 4.92 

≈9 ≈7 

WPP-2 3.27 6.31 

WPP-3 3.68 6.52 

WPP-4 4.16 5.83 

WPP-5 4.28 6.39 
 
To make the examination of the results easier for 

the reader, those results have been used to create 
diagrams, on which the exact measured production 
power is given in blue, whereas the ANN forecast 
results, and the SARIMA model are shown in red 
and purple, respectively. These diagrams for the 
substation names presented in Table 1 can be seen 
in Figure 5, Figure 6, Figure 7, Figure 8 and Figure 
9. A brief observation of the three curves shown for 
WPP also indicates that the results of the ANN 
forecast matched the measured production values 
well, thus confirming the assumption of ANN being 
able to significantly improve the quality of the 
WPPs’ power forecast. 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2023.18.38

Georgios Fotis, Nenad Sijakovic, Mileta Zarkovic, 
 Vladan Ristic, Aleksandar Terzic, Vasiliki Vita, 

Magda Zafeiropoulou, Emmanouil Zoulias, Theodoros I. Maris

E-ISSN: 2224-350X 380 Volume 18, 2023



 

Fig. 5: Comparative analysis (7-days period) for WPP-1 
 

 

Fig. 6: Comparative analysis (7-days period) for WPP-2 
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Fig. 7: Comparative analysis (7-days period) for WPP-3 
 

 

Fig. 8: Comparative analysis (7-days period) for WPP-4 
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Fig. 9: Comparative analysis (7-days period) for WPP-5 
 

3.2  Results for the Solar Power Plants 
Table 3 gives a comparison of the results obtained 
by the ANN forecast and the SARIMA model 
compared to the actual production values of the 
solar plants and other AI techniques. MAPE has 
been calculated for the 168 hours for each of the 
SPPs, both for the ANN forecast and the SARIMA 
method as well. From the aspect of energy 
balancing and long-term plans, ANN provided very 
good results and was better than the SARIMA 

model. ANN can monitor the changes in production 
more accurately and therefore generate a more 
realistic production plan for solar power plants than 
any of the classic planning methodologies. Figure 
10, Figure 11, Figure 12, Figure 13 and Figure 14 
give the same level of insight but cover the exact 
and forecasted production power values for the 5 
SPPs. The smallest error MAPE of 1.39% and it is 
achieved for a structure with 3 layers with 60, 30 
and 20 neurons per layer. 

 
Table 3. Obtained results for the solar power plants. 

Substation Name MAPE [%] 

 ANN SARIMA model GA [59] DL [60] 

SPP-1 2.28 3.20 

5-10 5-10 

SPP-2 1.66 3.95 

SPP-3 1.39 2.26 

SPP-4 1.85 2.70 

SPP-5 1.92 3.21 
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Fig. 10: Comparative analysis (7-days period) for SPP-1 
 

 

Fig. 11: Comparative analysis (7-days period) for SPP-2 
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Fig. 12: Comparative analysis (7-days period) for SPP-3 
 

 

Fig. 13: Comparative analysis (7-days period) for SPP-4 

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160

So
la

r 
P

o
w

e
r 

P
ro

d
u

ct
io

n
 [

M
W

]

Time [h]

Hourly prediction (7 days period) for the SPP-3

ANN Prediction

Exact production

SARIMA model

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

So
la

r 
P

o
w

e
r 

P
ro

d
u

ct
io

n
 [

M
W

]

Time [h]

Hourly prediction (7 days period) for the SPP-4

ANN Prediction

Exact production

SARIMA model

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2023.18.38

Georgios Fotis, Nenad Sijakovic, Mileta Zarkovic, 
 Vladan Ristic, Aleksandar Terzic, Vasiliki Vita, 

Magda Zafeiropoulou, Emmanouil Zoulias, Theodoros I. Maris

E-ISSN: 2224-350X 385 Volume 18, 2023



 

Fig. 14: Comparative analysis (7-days period) for SPP-5 
 
 

As can be seen from Figure 10, Figure 11, Figure 
12, Figure 13 and Figure 14, the forecasted values 
follow the exact measured production power well 
even for the SPPs. From the above presented 
diagrams, it is confirmed that the ANN forecasting 
method can be used efficiently and reliably for both 
main types of renewable energy sources. In Table 3 
the average MAPE for SPP-1 to SPP-5 for the ANN 
forecast and the SARIMA model was approximately 
1.4%-2.3% and 2.3% - 4%, respectively. MAPE of 
the SPP forecast using GA, [56], or DL, [57], is 
typically between 5% and 10%, highlighting the 
improvement made by the usage of the ANN 
methods. 

It can be seen from the findings shown in that 
there is not much of a difference between the 
ARIMA model and the ANN model's predicting 
accuracy level. Based on the very modest forecast 
errors of both models, one could claim that they 
both performed well in terms of forecasting. 
Nonetheless, the ANN model consistently 
outperforms the ARIMA model in terms of 
forecasting accuracy using the test data. 
Nevertheless, ANN is superior. As a result, this 
research project also contributes to the clarification 
of views expressed in the literature about the 
advantages of the ANN model over the ARIMA 
model for time series prediction, [55]. 

From the aspect of energy balancing and long-
term plans, ANN gives very good results. ANN can 
better and more accurately monitor changes in 

production and therefore generate a more realistic 
production plan for SPP and WP than classic 
planning methodologies. 

 
 

4   Conclusions 
The main goal of this work is to recommend and 
evaluate a new production forecasting technique for 
wind and solar power plants. It is trying to deal with 
the challenges of balance management that System 
Operators (SOs) face in the era of renewable energy 
sources. The paper presents a technique for 
forecasting wind and solar production that presents 
extremely high variability, creating problems for the 
distribution and transmission systems, which can 
lead the system out of its stable operation. The 
technique was based on ANN, and the forecast 
provided for wind and photovoltaic production was 
extremely accurate, proving that it is better than 
other forecasting techniques. Calculating the MAPE 
for the wind power plants and for the proposed 
ANN, it was found between 3% and 4.3%, when 
usually the current prediction methods have a 
MAPE of 5%–10%. Doing the same for solar power 
plants, it was also found that for the proposed ANN, 
the MAPE was between 1.4% and 2.3%, when 
usually the current prediction methods have a 
MAPE of around 9%. Also, the ANN forecast was 
almost the same regardless of the size of the 
installed wind or solar generation capacity. This 
fact, combined with the cooperation between the 
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operators, will help to deal with the failures in the 
forecasting of production from renewable energy 
sources and the reliable and stable operation of the 
Greek Power System. 

In this work, there was also a comparison 
between the proposed ANN and the SARIMA 
model. From their comparison, the proposed ANN 
is better than the SARIMA model since the MAPE 
for the SARIMA is approximately twice as high as 
the MAPE of the ANN. This proves that the 
proposed ANN is more efficient than the other 
prediction model (SARIMA). Also, SARIMA 
although is less efficient than the proposed ANN, is 
more efficient compared to the current prediction 
methods. This is something that needs further 
examination and perhaps a future hybrid method 
combining ANNs and the SARIMA method 
probably will show even better remarks. 

The SOs, the MOs, and the flexible resources 
must work together effectively. Future research 
should combine the implementation of the proposed 
methodology with energy storage. Since the RES 
production prediction will be accurate enough, the 
energy storage will be held in an optimal way, 
depending on the power system’s needs. Also, for 
the better accuracy of the proposed method, more 
data is needed, and at this time, this is limited. 
However, real-time data in the future can be 
collected using the Internet of Things, which will be 
available in the Greek TSO and DSO. 
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