Journal of Energy Storage, vol.49, p.104056, 2022.
DOI: 10.1016/j.est.2022.104056.
[5] Panda, D. K., & Das, S., “Smart grid architecture
model for control, optimization and data analytics of
future power networks with more renewable
energy”, Journal of Cleaner Production, vol.301,
p.126877, 2021. DOI:
10.1016/j.jclepro.2021.126877.
[6] Dileep, G., “A survey on smart grid technologies
and applications”, Renewable energy, vol.146,
p.2589-2625, 2020. DOI:
10.1016/j.renene.2019.08.092.
[7] Selvam, M. M., Gnanadass, R., & Padhy, N. P.,
“Initiatives and technical challenges in smart
distribution grid”, Renewable and sustainable
energy reviews, vol.58, p. 911-917, 2016. DOI:
10.1016/j.rser.2015.12.257.
[8] Khoury, D., Keyrouz, F., “A predictive
convolutional neural network model for source-load
forecasting in smart grids”, WSEAS Transactions
on Power Systems, vol.14, p.181-189, 2019.
[9] Mollah, M. B., Zhao, J., Niyato, D., Lam, K. Y.,
Zhang, X., Ghias, A. M., Koh, L. & Yang, L.,
“Blockchain for future smart grid: A comprehensive
survey”, IEEE Internet of Things Journal, vol.8,
No.1, p.18-43, 2020. DOI:
10.1109/JIOT.2020.2993601.
[10] Liu, D., Zhang, Q., Chen, H., & Zou, Y., “Dynamic
energy scheduling for end-users with storage
devices in smart grid”, Electric Power Systems
Research, vol.208, p.107870, 2022. DOI:
10.1016/j.epsr.2022.107870.
[11] Yapa, C., de Alwis, C., Liyanage, M., & Ekanayake,
J., “Survey on blockchain for future smart grids:
Technical aspects, applications, integration
challenges and future research”, Energy Reports,
vol.7, p.6530-6564, 2021. DOI:
10.1016/j.egyr.2021.09.112.
[12] Fan, D., Ren, Y., Feng, Q., Liu, Y., Wang, Z., &
Lin, J., “Restoration of smart grids: Current status,
challenges, and opportunities”, Renewable and
Sustainable Energy Reviews, vol.143, p.110909,
2021. DOI: 10.1016/j.rser.2021.110909.
[13] Ashrafi, R., Amirahmadi, M., Tolou-Askari, M., &
Ghods, V., “Multi-objective resilience enhancement
program in smart grids during extreme weather
conditions”, International Journal of Electrical
Power & Energy Systems, vol.129, p.106824, 2021.
DOI: 10.1016/j.ijepes.2021.106824.
[14] Shobole, A. A., & Wadi, M., “Multiagent systems
application for the smart grid protection”,
Renewable and Sustainable Energy Reviews,
vol.149, p.111352, 2021. DOI:
10.1016/j.rser.2021.111352.
[15] Emmanuel, M., Rayudu, R., & Welch, I.,
“Modelling impacts of utility-scale photovoltaic
systems variability using the wavelet variability
model for smart grid operations”, Sustainable
Energy Technologies and Assessments, vol.31,
p.292-305, 2019. DOI: 10.1016/j.seta.2018.12.011.
[16] Ullah, K., Hafeez, G., Khan, I., Jan, S., & Javaid,
N., “A multi-objective energy optimization in smart
grid with high penetration of renewable energy
sources”, Applied Energy, vol.299, p.117104, 2021.
DOI: 10.1016/j.apenergy.2021.117104.
[17] Babar, M., Tariq, M. U., & Jan, M. A., “Secure and
resilient demand side management engine using
machine learning for IoT-enabled smart grid”,
Sustainable Cities and Society, vol.62, p. p.102370,
2020. DOI: 10.1016/j.scs.2020.102370.
[18] Mukherjee, R., & De, A., “Development of an
ensemble decision tree-based power system
dynamic security state predictor”, IEEE Systems
Journal, vol.14, no.3, p. 3836-3843, 2020. DOI:
10.1109/JSYST.2020.2978504.
[19] Tiwari, S., Jain, A., Ahmed, N. M. O. S., Alkwai, L.
M., Dafhalla, A. K. Y., & Hamad, S. A. S.,
“Machine learning‐based model for prediction of
power consumption in the smart grid‐smart way
towards the smart city”, Expert Systems, p. e12832,
2021. DOI: 10.1111/exsy.12832.
[20] Breviglieri, P., Erdem, T., & Eken, S., “Predicting
Smart Grid Stability with Optimized Deep Models”,
SN Computer Science, vol.2, no.2, p.1-12, 2021.
DOI:10.1007/s42979-021-00463-5
[21] Massaoudi, M., Abu-Rub, H., Refaat, S. S., Chihi,
I., & Oueslati, F. S., “Accurate Smart-Grid Stability
Forecasting Based on Deep Learning: Point and
Interval Estimation Method”, In 2021 IEEE Kansas
Power and Energy Conference (KPEC), p. 1-6,
2021. DOI: 10.1109/KPEC51835.2021.9446196
[22] Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q.
V., Reddy, M. P. K., & Gadekallu, T. R., A
multidirectional LSTM model for predicting the
stability of a smart grid. IEEE Access, 8, p.85454-
85463, 2020. DOI: 10.1109/ACCESS.2020.2991067
[23] Song, Y., Li, M., Luo, X., Yang, G., & Wang, C.,
Improved symmetric and nonnegative matrix
factorization models for undirected, sparse and
large-scaled networks: A triple factorization-based
approach. IEEE Transactions on Industrial
Informatics, vol.16, no.5, p.3006-3017, 2019.
DOI:10.1109/TII.2019.2908958
[24] Massaoudi, M., Chihi, I., Sidhom, L., Trabelsi, M.,
Refaat, S. S., & Oueslati, F. S. (2019, November).
Performance evaluation of deep recurrent neural
networks architectures: Application to PV power
forecasting. In 2019 2nd International Conference
on Smart Grid and Renewable Energy (SGRE) (pp.
1-6). IEEE. DOI:
10.1109/SGRE46976.2019.9020965
[25] Zhang, Y., Xin, J., Li, X., & Huang, S., Overview
on routing and resource allocation-based machine
learning in optical networks, Optical Fiber
Technology, vol.60, pp.102355, 2020. DOI:
10.1016/j.yofte.2020.102355.
[26] Ibrahim, M. S., Dong, W., & Yang, Q., “Machine
learning is driven smart electric power systems:
Current trends and new perspectives”, Applied
WSEAS TRANSACTIONS on POWER SYSTEMS
DOI: 10.37394/232016.2022.17.30