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Abstract: - In this work the parameters of an unbalanced three-phase component, such as a load or a 
transmission line, are described as random variables with known statistical properties. It is well-known that 
phase unbalancing leads to injected current in the negative-sequence circuit producing propagation of voltage 
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probabilistic terms as a function of the statistical properties of the component unbalancing. In particular, 
approximate expressions for the probability density function, the mean value, and the variance of the injected 
current are derived in closed form and numerically validated.  
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1 Introduction 

Three-phase power systems under steady-state 
conditions are commonly analyzed by resorting to 
the well-known Symmetrical Component 
Transformation (SCT), [1], [2], [3], [4]. The main 
advantage of the SCT consists in the derivation of 
three uncoupled circuits named 
positive/negative/zero-sequence circuits, with 
transformed voltages/currents named 
positive/negative/zero-sequence voltages/currents. 
 This result can be achieved because the SCT is 
able to decouple the originally coupled equations 
describing the given three-phase system, [4]. The 
main assumption underlying the effectiveness of 
the SCT is that the three phases are symmetrical, 
i.e., the passive part of the three phases is balanced 
(e.g., equal self-impedances, and equal mutual 
impedances). This is an ideal condition that can be 
only approximated in real-world applications by 1) 
using transposition of transmission lines, 2) 
distributing the loads uniformly between the three 
phases.  

In modern power systems, however, balancing 
the three phases is becoming more and more 
complicated, especially because of the increasing 
number of large single-phase loads. The main 
consequence of unbalanced phases is that the SCT 
leads to coupled sequence circuits. Thus, the 
positive-sequence circuit injects current in both the 
negative and the zero-sequence circuits, [5]. This is 

a critical point because negative and zero-sequence 
currents can easily cause malfunctioning of many 
electrical apparatus connected to the power system, 
[6]. For this reason, many research contributions can 
be found in the literature about modeling and 
calculation of voltages and currents due to 
unbalanced phases (i.e., asymmetrical lines and 
loads), [7], [8], [9], [10], [11], [12], [13], [14], [15], 
[16], [17], [18], [19]. Such contributions, however, 
assume a deterministic knowledge of system 
asymmetries. In many practical conditions it would 
be more useful to consider the statistical uncertainty 
of line/load parameters, [20].  

In this paper, it is assumed that unbalancing of 
the three phases of a given component is described 
in statistical terms. More specifically, it is assumed 
that the parameters of a three-phase component (i.e., 
line or load) can be treated as random variables with 
a given statistical distribution. Such an unbalanced 
component is responsible for injection of current in 
the negative-sequence circuit (the zero-sequence 
circuit is not involved since the analysis is limited to 
three-wire systems). The injected current, as a 
function of the unbalanced component parameters, 
is a random variable as well. The main objective of 
the paper is providing the probabilistic description 
of the injected negative-sequence current as a 
function of the statistical properties of the 
unbalanced component parameters. In particular, 
approximate analytical expressions for the 
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probability density function, the mean value, and the 
variance of the injected current are derived in closed 
form. 

The paper is organized as follows. In Section 2 an 
approximate expression for the negative-sequence 
current is derived as a function of the parameters of 
an unbalanced three-phase component. In Section 3 
the probabilistic modeling of the injected current is 
derived in closed form by assuming Gaussian 
distribution of the unbalanced component 
parameters. In Section 4 the analytical results are 
validated by means of numerical simulations. 

 
 

2 Negative-Sequence Current due to 

Unbalanced Phases 
Let us consider a basic three-phase radial network 
consisting of a voltage source, transmission line, 
and load (see Fig. 1). Under sinusoidal steady-state 
conditions, the system can be readily analyzed by 
means of the well-known SCT. In fact, under the 
crucial assumption of balanced (i.e., symmetrical) 
phases, the SCT leads to three uncoupled circuits in 
the transformed variables, i.e., the so-called 
positive/negative/zero-sequence circuits with 
corresponding sequence voltages and currents. Each 
sequence circuit can be solved independently from 
the other circuits through standard techniques. 
Finally, the inverse SCT can be applied to the 
sequence-domain solution to obtain the solution in 
the original a,b,c, domain.  

The procedure outlined above is effective under 
the crucial assumption of balanced phases, i.e., a 
passive three-phase component characterized by a 
symmetrical matrix with equal elements on the main 
diagonal, and equal off-diagonal elements. For 
example, by considering a three-phase component 
characterized by an impedance matrix, the three 
self-impedances must be equal to each other, and the 
three mutual impedances must be equal to each 
other. In case this crucial assumption is not met, the 
SCT leads to coupled sequence circuits instead of 
uncoupled. By assuming that the system depicted in 
Fig. 1 is a three-wire three-phase system, only the 
positive and the negative-sequence   circuits   are   
involved   in   the analysis since the zero-sequence 
circuit is open. Therefore, an unbalanced three-
phase component in Fig. 1 results in coupled 
positive and the negative-sequence circuits (Fig. 2).  

 
 

 
Fig. 1: Three-phase radial network. 
 

 
Fig. 2: Positive and negative-sequence circuits. 
Balanced three-phase components result in the total 
sequence impedance Zs. Coupling is due to the 
unbalanced three-phase component with impedance 
matrix Zu.  
 

In general terms, the solution of the circuit in 
Fig. 2 requires the evaluation of coupled equations. 
Therefore, in this case the SCT does not lead to a 
simpler solution with respect to the original problem 
in the a,b,c variables. However, in [19] it was 
shown that, under proper and general assumptions, 
the circuit coupling in Fig. 2 can be regarded as a 
weak coupling. It means that an approximate 
approach can be adopted where the feedback from 
the negative to the positive-sequence circuit can be 
neglected. Thus, the positive-sequence current can 
be evaluated by neglecting circuit coupling, whereas 
the negative-sequence current can be evaluated by 
considering a simple controlled source taking into 
account the circuit coupling. This approximate 
approach can be easily explained by observing that, 
under ideal conditions, the negative-sequence 
current is zero. Thus, a component unbalance can be 
regarded as a perturbation of an ideal system where 
only the positive-sequence current is flowing. The 
unbalanced three-phase component injects current in 
the negative-sequence circuit. As a result, the 
negative-sequence current is normally a small 
fraction of the positive-sequence current. This point 
explains the above mentioned weak-coupling 
assumption. 

More specifically, let us consider an unbalanced 
three-phase component characterized by the 
following impedance matrix: 
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𝒁𝑢 = [

𝑍𝑎 0 0
0 𝑍𝑏 0
0 0 𝑍𝑐

] (1) 

 
By denoting with Z the balanced value of the 
impedances, we can write: 

 

 𝒁𝑢 = [
𝑍 0 0
0 𝑍 0
0 0 𝑍

] + [

𝛿𝑎 0 0
0 𝛿𝑏 0
0 0 𝛿𝑐

] = 𝒁 + 𝜹𝒁   (2) 

 
By using the SCT in (2), the balanced matrix Z 
remains unchanged, whereas the deviation 𝜹𝒁 in the 
sequence domain is given by: 

 

𝜹𝒁𝑠 = 𝑺 [

𝛿𝑎 0 0
0 𝛿𝑏 0
0 0 𝛿𝑐

] 𝑺−1 = [

𝛿𝑚 𝛿𝑛 𝛿𝑝

𝛿𝑝 𝛿𝑚 𝛿𝑛

𝛿𝑛 𝛿𝑝 𝛿𝑚

]   (3) 

 
where: 

 
 𝛿𝑚 =

1

3
(𝛿𝑎 + 𝛿𝑏 + 𝛿𝑐)       (4) 

 
 𝛿𝑝 =

1

3
(𝛿𝑎 + 𝛼𝛿𝑏 + 𝛼2𝛿𝑐)      (5) 

 
 𝛿𝑛 =

1

3
(𝛿𝑎 + 𝛼2𝛿𝑏 + 𝛼𝛿𝑐)      (6) 

 
and the SCT matrix S in rational form is defined as: 

 

 𝑺 =
1

√3
[
1 𝛼 𝛼2

1 𝛼2 𝛼
1 1 1

]         (7) 

 
where 𝛼 = 𝑒𝑗2𝜋 3⁄ .  
Since we assume the system in Fig. 2 as a three-wire 
system, only the positive and negative-sequence 
circuits must be considered. Thus, circuit coupling 
between those sequence circuits is described by the 
first two rows and columns of the matrix in (3): 

 

 [
𝑉𝑝

𝑉𝑛
] = [

𝑍 0
0 𝑍

] [
𝐼𝑝

𝐼𝑛
] + [

𝛿𝑚 𝛿𝑛

𝛿𝑝 𝛿𝑚
] [

𝐼𝑝

𝐼𝑛
]      (8) 

 
Notice that by assuming small impedance 
deviations, i.e.,  

 
 |𝛿𝑎|, |𝛿𝑏|, |𝛿𝑐| ≪  |𝑍|        (9) 

 
the terms 𝛿𝑚𝐼𝑝 and 𝛿𝑚𝐼𝑛 in (9) can be neglected. 
Moreover, the     above-mentioned    approximate 
approach based on the assumption of weak coupling 
between the two sequence circuits allows neglecting 

the term 𝛿𝑛𝐼𝑛 representing the feedback from the 
negative to the positive-sequence circuit. Thus, from 
(8) we obtain a voltage perturbation in the negative-
sequence circuit given by: 
 

 
Fig. 3: Approximate equivalent circuit for the 
unbalanced component Zu. Unbalancing is 
represented by a current-controlled voltage source in 
the negative-sequence circuit. 
 
 𝛿𝑉𝑛 ≅ 𝛿𝑝𝐼𝑝                           (10) 
 
Such perturbation can be represented as a current-
controlled voltage source (see Fig. 3). The negative-
sequence current is given by: 

 
 𝐼𝑛 = −

𝛿𝑉𝑛

𝑍𝑡
≅ −

𝛿𝑝𝐼𝑝

𝑍𝑡
                    (11) 

 
where 𝑍𝑡 is the total balanced impedance in the 
positive and negative-sequence circuits. Thus, the 
ratio between negative and positive-sequence 
currents is given by: 
 

 𝛽 = |
𝐼𝑛

𝐼𝑝
| ≅ |

𝛿𝑝

𝑍𝑡
|                     (12) 

 
The current ratio 𝛽 given in (12) will be analyzed as 
a random variable in the next Section.  
 
 
3 Probabilistic Modeling of Negative-

Sequence Current 
The negative-sequence current (normalized by the 
positive-sequence current) given by (12) can be 
regarded as a random variable when the impedance 
deviations 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 of the unbalanced three-phase 
component are given in statistical terms. For the 
sake of simplicity, in this paper we assume real 
impedance deviations 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 (i.e., we assume that 
only the resistive parts are deviating from the 
balanced value). Therefore, from (5) we obtain that 
(12) can be rewritten as: 

 

𝛽 =
1

3|𝑍𝑡|
|𝛿𝑎 + 𝛼𝛿𝑏 + 𝛼2𝛿𝑐| = 
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 =
1

|𝑍𝑡|
√1

9
(𝛿𝑎 −

𝛿𝑏+𝛿𝑐

2
)

2
+

1

12
(𝛿𝑏 − 𝛿𝑐)2 (13) 

 
Therefore, 𝛽 can be regarded as a function of the 
random variables 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐. In this Section the 
statistical properties of the random variable 𝛽 will 
be derived as functions of the statistical properties 
of the uncorrelated random variables 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐. To 
this aim, we study the following transformation of 
random variables: 

 
 𝑤 = √𝑥2 + 𝑦2               (14) 

 
where: 

 
 𝑥 =

1

3
(𝛿𝑎 −

𝛿𝑏+𝛿𝑐

2
) ,      𝑦 =

1

2√3
(𝛿𝑏 − 𝛿𝑐) (15) 

 
Assuming 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 with zero mean values, the 
random variables x and y are also unbiased, i.e., 
𝜇𝑥 = 𝜇𝑦 = 0. The variances of x and y are given by: 

 

 𝜎𝑥
2 =

1

9
(𝜎𝑎

2 +
𝜎𝑏

2+𝜎𝑐
2

4
),   𝜎𝑦

2 =
1

12
(𝜎𝑏

2 + 𝜎𝑐
2 )    (16) 

 
Notice that even in the case of 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 with 
Gaussian distribution, the random variable w given 
by (14) is not a Rayleigh variable for two reasons. 
First, the two variances in (16), in general, are not 
equal. Second, since 𝛿𝑏 and 𝛿𝑐 are both involved in 
the definition of x and y in (15), the random 
variables x and y, in general, are correlated. The 
correlation coefficient 𝑟𝑥𝑦 can be readily evaluated, 
[21], [22], [23]: 

 

 𝑟𝑥𝑦 =
𝐸{𝑥𝑦}−𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦
=

1−(
𝜎𝑏
𝜎𝑐

)
2

1+(
𝜎𝑏
𝜎𝑐

)
2

1

√1+4
(

𝜎𝑎
𝜎𝑐

)
2

1+(
𝜎𝑏
𝜎𝑐

)
2

     (17) 

 
From (17) it can be observed that in the special case 
𝜎𝑏 = 𝜎𝑐 the random variables x and y are 
uncorrelated. In this case, the random variable w in 
(14) can be approximated by a Rayleigh random 
variable with parameter 𝜎2 given by the average 
value of the variances 𝜎𝑥

2 and 𝜎𝑦
2, i.e.,  

 

 𝑓𝑤(𝑤) ≅
𝑤

𝜎2 𝑒
−

𝑤2

2𝜎2               (18) 
 

where 𝑓𝑤 is the probability density function (PDF) 
of w, and  

 
 𝜎2 =

1

2
(𝜎𝑥

2 + 𝜎𝑦
2)              (19) 

In the general case, however, the random variables x 
and y are correlated, and the approximate PDF (18) 
cannot be used. In this case an approximate 
approach based on the Taylor expansion can be used 
to estimate the mean value and the variance of w, 
[24]. To this aim, in order to obtain simpler and 
consistent derivations, a further change of variables 
is used. By letting 𝑢 = 𝑥2 and 𝑣 = 𝑦2, from (14) we 
obtain: 

 
 𝑤 = √𝑢 + 𝑣                       (20) 

 
By assuming Gaussian distribution for the random 
variables 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐, the mean values and the 
variances of u and v are given by: 

 
 𝜇𝑢 = 𝜎𝑥

2,      𝜎𝑢
2 = 2𝜎𝑥

4              (21) 
 

 𝜇𝑣 = 𝜎𝑦
2,      𝜎𝑣

2 = 2𝜎𝑦
4              (22) 

 
Notice again that, in general, the random variables u 
and v are correlated since 𝛿𝑏 and 𝛿𝑐 are both in the 
definition of u and v. Therefore, the evaluation of 
the correlation coefficient 𝑟𝑢𝑣 is required. After 
simple algebra we obtain: 

 

 𝑟𝑢𝑣 =
𝐸{𝑢𝑣}−𝜇𝑢𝜇𝑣

𝜎𝑢𝜎𝑣
= (

1−(
𝜎𝑏
𝜎𝑐

)
2

1+(
𝜎𝑏
𝜎𝑐

)
2)

2

1

1+4
(

𝜎𝑎
𝜎𝑐

)
2

1+(
𝜎𝑏
𝜎𝑐

)
2

    (23) 

 
The correlation coefficient 𝑟𝑢𝑣 is the square of 𝑟𝑥𝑦 
because of the definition of u and v as the square of 
x and y, respectively. We can observe that 𝑟𝑥𝑦 keeps 
the information about the sign of the correlation, 
whereas 𝑟𝑢𝑣 is always positive. Also in this case we 
obtain 𝑟𝑢𝑣 = 0 when 𝜎𝑏 = 𝜎𝑐.   
The mean value and the variance of the random 
variable w can be estimated by resorting to the 
Taylor series expansion, [21], [22], [23], [24]: 

 
 𝜇𝑤 ≅ √𝜇𝑢 + 𝜇𝑣 + 

 +
1

2
(

𝜕2𝑤

𝜕𝑢2 𝜎𝑢
2 + 2

𝜕2𝑤

𝜕𝑢 𝜕𝑣
𝑟𝑢𝑣𝜎𝑢𝜎𝑣 +

𝜕2𝑤

𝜕𝑣2 𝜎𝑣
2) (24) 

 

𝜎𝑤
2 ≅ (

𝜕𝑤

𝜕𝑢
)

2

𝜎𝑢
2 + 

 +2 (
𝜕𝑤

𝜕𝑢
) (

𝜕𝑤

𝜕𝑣
) 𝑟𝑢𝑣𝜎𝑢𝜎𝑣 + (

𝜕𝑤

𝜕𝑣
)

2
𝜎𝑣

2    (25) 
 

where the derivatives are evaluated at 𝑢 = 𝜇𝑢 and 
𝑣 = 𝜇𝑣. Notice that if the same approach was used 
for w as a function of x and y, instead of u and v, all 
the derivatives in (24)-(25) were zero. This explains 
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the reason for the use of the variables u and v.  
From (24)-(25) after simple algebra we obtain: 

 

 𝜇𝑤 ≅ √𝜎𝑥
2 + 𝜎𝑦

2 −
𝜎𝑥

4+2𝑟𝑢𝑣𝜎𝑥
2𝜎𝑦

2+𝜎𝑦
4

4(𝜎𝑥
2+𝜎𝑦

2)
3 2⁄          (26) 

 

 𝜎𝑤
2 ≅

𝜎𝑥
4+2𝑟𝑢𝑣𝜎𝑥

2𝜎𝑦
2+𝜎𝑦

4

2(𝜎𝑥
2+𝜎𝑦

2)
          (27) 

 
where 𝜎𝑥

2, 𝜎𝑦
2, and 𝑟𝑢𝑣 are given by (16) and (23) as 

functions of 𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑐
2. 

Finally, it can be noticed that the above analytical 
results can be readily used for the original random 
variable 𝛽 given in (13). In particular, the 
approximate PDF (18) becomes: 

 

 𝑓𝛽(𝛽) ≅ |𝑍𝑡|
𝛽

𝜎2 𝑒
−

𝛽2|𝑍𝑡|
2

2𝜎2         (28) 
 

whereas the mean value and the variance (26)-(27) 
provide: 
 

 𝜇𝛽 ≅
1

|𝑍𝑡|
𝜇𝑤                   (29) 

 
 𝜎𝛽

2 ≅
1

|𝑍𝑡|2 𝜎𝑤
2                 (30) 

 
 

4 Numerical Validation 
Analytical results derived in Section 3 have been 
validated through numerical simulations. In 
particular, the formulas (17) and (23) for the 
correlation coefficient, (18) for the PDF, and (26)-
(27) for the mean value and the variance have been 
assessed against numerical simulations. Notice that 
the random variable w has been tested instead of 𝛽. 
Indeed, since 𝛽 = 𝑤 |𝑍𝑡|⁄  (see (13)), analytical 
results for 𝛽 and for w are related in a 
straightforward way as shown by (28)-(30). 

Numerical simulations were performed by 
selecting 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 as uncorrelated zero-mean 
Gaussian random variables with standard deviations 
𝜎𝑎, 𝜎𝑏 , 𝜎𝑐. The standard deviation 𝜎𝑐 was assumed 
as reference, with value 𝜎𝑐 = 0.1. Thus, the two 
ratios 𝜎𝑎 𝜎𝑐⁄  and 𝜎𝑏 𝜎𝑐⁄  were considered as 
parameters or variables. Repeated runs were 
performed (106 runs) to obtain the numerical 
estimate of each quantity to be validated (i.e., 
correlation coefficient, PDF, mean value and 
variance). In the following figures, numerical results 
from simulations are represented with dotted lines, 
whereas analytical results derived in Section 3 are 
represented with solid lines.  
 

 
Fig. 4: Correlation coefficient (17) between 
variables x and y as defined in (15), as a function of 
𝜎𝑏 𝜎𝑐⁄ , for four different values of 𝜎𝑎 𝜎𝑐⁄ . 
Numerical results (not visible in this figure) are 
perfectly overlapped by the solid lines 
corresponding to analytical results.  
 

 
Fig. 5: Correlation coefficient (23) between 
variables u and v as defined before (20), as a 
function of σb σc⁄ , for four different values of 
σa σc⁄ . Numerical results (not visible in this figure) 
are perfectly overlapped by the solid lines 
corresponding to analytical results.  
 
Fig. 4 shows the behavior of the correlation 
coefficient 𝑟𝑥𝑦, given by (17), as a function of 𝜎𝑏 𝜎𝑐⁄  
by assuming 𝜎𝑎 𝜎𝑐⁄  as a parameter. The solid lines 
corresponding to (17) overlap the dotted lines 
corresponding to numerical results. Therefore, 
dotted lines are not visible in Fig. 4. Notice that all 
the curves provide 𝑟𝑥𝑦 = 0 for 𝜎𝑏 = 𝜎𝑐 as it was 
clearly shown by (17). Moreover, according to (15), 
correlation becomes negative as 𝜎𝑏 increases, and 
vice versa. From (15), it is also clear that by 
increasing 𝜎𝑎 correlation decreases because the 
random variable 𝛿𝑎 is involved only in the definition 
of x.  
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Fig. 5 shows the behavior of the correlation 
coefficient 𝑟𝑢𝑣, given by (23), as a function of 
𝜎𝑏 𝜎𝑐⁄ , by assuming 𝜎𝑎 𝜎𝑐⁄  as a parameter. As 
already mentioned 𝑟𝑢𝑣 = 𝑟𝑥𝑦

2 , thus Fig. 5 is strongly 
related to Fig. 4.  
 

 
Fig. 6. Probability density function of the random 
variable w given by (20) for 𝜎𝑎 = 0 and three 
different values of 𝜎𝑏 𝜎𝑐⁄ . 
 

 
Fig. 7: Probability density function of the random 
variable w given by (20) for σa = σc and three 
different values of σb σc⁄ . 
 
Indeed, the information about the sign of the 
correlation is lost, but from Fig. 5 the magnitude of  
the correlation coefficient allows a quantitative 
evaluation about the assumption of weakly 
correlated random variables. In fact, in case of weak 
correlation the random variable w given by (20) can 
be approximated by a Rayleigh random variable. 
This point is investigated in Fig. 6 where the PDF of 
w is reported in the case 𝜎𝑎 = 0. In Fig. 5 the curve 
for 𝜎𝑎 = 0 shows a wide excursion of the 
correlation coefficient which equals zero for 
𝜎𝑏 𝜎𝑐⁄ = 1, whereas it takes increasing values as 
𝜎𝑏 𝜎𝑐⁄  moves away from 1. In Fig. 6 three values 

were selected for 𝜎𝑏 𝜎𝑐⁄ , i.e., 0.5, 1, 2. It can be 
noticed that for 𝜎𝑏 𝜎𝑐⁄ = 1 the Rayleigh PDF (18) is 
a good approximation of the numerical PDF because 
the random variables u and v are uncorrelated. On 
the contrary, for 𝜎𝑏 𝜎𝑐⁄ = 0.5 and 𝜎𝑏 𝜎𝑐⁄ = 2 the 
strong correlation between u and v leads to a worse 
approximation of the Rayleigh PDFs to the 
numerical results. This is what we expected on the 
basis of the correlation coefficient in Fig. 5.  
 

 
Fig. 8: Mean value of w, given by (26), as a function 
of 𝜎𝑏 𝜎𝑐⁄ , for three different values of 𝜎𝑎 𝜎𝑐⁄ , 
compared with numerical simulations. 
 

 
Fig. 9: Standard deviation of w, given by the square 
root of (27), as a function of σb σc⁄ , for three 
different values of σa σc⁄ , compared with numerical 
simulations. 
 
Fig. 7 is similar to Fig. 6, but in this case 𝜎𝑎 𝜎𝑐⁄ = 1 
was assumed. From Fig. 5 we see that for 𝜎𝑎 𝜎𝑐⁄ =
1 the correlation coefficient has a lower excursion. 
Therefore, we expect that the Rayleigh PDF is a 
better approximation to the numerical PDF with 
respect to Fig. 6. Moreover, we expect that for 
𝜎𝑏 𝜎𝑐⁄ = 1 we obtain the best approximation 
because in this case the correlation coefficient is 
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zero. This is confirmed by the three curves depicted 
in Fig. 7. 

Fig. 8 shows the behavior of the mean value of 
w, given by (26), as a function of 𝜎𝑏 𝜎𝑐⁄ , for three 
different values of 𝜎𝑎 𝜎𝑐⁄ , compared with numerical 
simulations. The approximation provided by (26) is 
satisfactory, even if it always provides a slight 
underestimation with respect to numerical values.  
Fig. 9 shows the behavior of the standard deviation 
of w, given by the square root of (27), as a function 
of 𝜎𝑏 𝜎𝑐⁄ , for three different values of 𝜎𝑎 𝜎𝑐⁄ , 
compared with numerical simulations. In this case, 
the approximation provided by (27) is less 
satisfactory with respect to the mean value 
approximation. The reason is likely due to the fact 
that the Taylor approximation (25) for the variance 
takes into account only the first derivatives, whereas 
the approximate mean value (24) takes into account 
the second derivatives. Nevertheless, the maximum 
error in Fig. 9 is lower than 20%.  
Finally, the case where the random variables 
𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 are uniform instead of Gaussian was 
investigated. Fig. 10 shows the behavior of the PDF 
of w by assuming uniform 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 with 𝜎𝑎 = 𝜎𝑐, 
and three different values for 𝜎𝑏 𝜎𝑐⁄ . The figure 
should be compared with the analogous Fig. 7 
where the same standard deviations were 
considered, but the underlying random variables 
𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 were Gaussian. Notice that, contrary to 
Fig. 7, in Fig. 10 even the case 𝜎𝑏 𝜎𝑐⁄ = 1 is 
deviating from the ideal Rayleigh behavior (solid 
line) because of the uniform instead of Gaussian 
distribution of 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐.  
 
 
5 Conclusions 
In the paper it was shown that by assuming 
Gaussian distribution for the parameters of an 
unbalanced three-phase component, the current 
injected in the negative-sequence circuit is 
approximately distributed as a Rayleigh variable. 
The degree of this approximation is strictly related 
to the correlation coefficients between the real and 
the imaginary parts of the injected current. 
Therefore, the evaluation of the correlation 
coefficient is crucial in the estimation of the 
accuracy of the Rayleigh distribution. Moreover, 
approximate expressions for the mean value and the 
variance of the injected current have been derived. 
The analytical result for the mean value is 
satisfactory, whereas the analytical results for the 
variance is affected by a larger error since only the 
first derivatives are retained in the Taylor 
expansion. Using higher order derivatives, however, 

would lead to much more complicated analytical 
expressions. 

Future work will be devoted to extending the 
derivations to a more general unbalanced three-
phase component instead of a simple resistive 
component. Moreover, different kinds of statistical 
distributions of the unbalanced component 
parameters will be considered beyond the Gaussian 
distribution. Future research will be also conducted 
in order to extend the proposed approach to typical 
power system loads characterized in terms of active 
and reactive power instead of impedance.  
 

 
Fig. 10: Probability density function of the random 
variable w given by (20) for 𝜎𝑎 = 𝜎𝑐 and three 
different values of 𝜎𝑏 𝜎𝑐⁄ , assuming uniform 
distributions for 𝛿𝑎 , 𝛿𝑏 , 𝛿𝑐 instead of Gaussian as in 
Fig. 7. 
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