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Abstract: - Due to the popularity of microgrids and power quality disturbances (PQD) induced by renewable 
energies, monitoring in microgrids has risen in popularity in recent years. For monitoring the PQD, many 
strategies based on artificial intelligence have been proposed. However, when the electrical parameters change, 
the need to retrain the Artificial neural network (ANN) becomes a significant issue. This paper presents a new 
approach to the power quality disturbance detection and monitoring of integrated solar microgrids. The power 
quality event detection is accomplished by analyzing the frequency signal with Wavelet transformation (WT). 
The classification of power quality disturbance is achieved based on the features. For the classification of 
PQDs, the retrieved features are fed into a Convolutional neural network (CNN) classifier. 
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1 Introduction 
The present advancement in technology necessitates 
an uninterrupted power supply. The uninterrupted 
power supply impedes because of the limitation of 
the grid due to numerous reasons. Micro-grid with 
natural resources integration plays a vital role in 
accomplishing this need. The integration of 
renewable resources causes the power quality issue 
to disturbance and instability. Due to power 
electronics devices and inverters connected to 
renewable energy (RE) sources, the grid 
incorporation of large-scale RE sources, particularly 
solar and wind energy, induces voltage and current 
harmonics. One of the major issues today is 
ensuring acceptable harmonics in the line currents 
of RE integrated power systems [1]. As the 
penetration capacity of the PV system increases, a 
greater level of harmonic distortion is injected into 
the grid. Therefore the PV system should only be 
integrated up to the network's full capacity. When a 
PV system is integrated beyond this maximum 
penetration level, it produces considerable harmonic 
distortion, which has a negative impact on the 
system's performance [2]. As the use of renewable 
energy grows, it has an adverse effect on the 
distribution system, generating overvoltage, voltage 
fluctuations, and reverse power flow to the grid. 

Maintaining the voltage and current sinusoidal 
waves at the rated frequency and magnitude is 
referred to as power quality. Any departure leads to 
a loss of power system efficiency, jeopardizing the 
power system's economy by putting undue strain on 
consumers and suppliers. Practical obstacles such as 
voltage control, flicker, harmonic distortion, 
stability, and other power quality issues occur when 
wind and solar energy are integrated into existing 
power systems [3]. Circuit breakers, switches, 
converters, and non-linear loads are all being used 
more and more these days. The electrical network's 
power quality disruptions (PQ) are a common cause. 
To avoid the network and its connected equipment 
from being disrupted, it is important to identify and 
classify the various PQ disturbances (single and 
mixed) [4]. This compels the microgrid's rapid and 
effective power quality detection and classification. 
Monitoring the power quality disturbance in order to 
take corrective action has become a hot topic, 
particularly in renewable energy source integrated 
micro-grid systems. The principal source of PQDs 
in today's distribution networks is rapid 
industrialization, the use of sensitive electrical 
equipment on a large scale, massive non-linear 
loads, and significant usage of power electronics 
devices. Due to the move from conventional 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2022.17.31

Debasish Pattanaik, Sarat Chandra Swain, 
Indu Sekhar Samanta, Ritesh Dash, Kunjabihari Swain

E-ISSN: 2224-350X 306 Volume 17, 2022



distributed systems to smart distributed systems, the 
integration of non-conventional based distributed 
generators (DGs), energy storage systems (ESSs), 
power electronics converters, and electric car 
charging stations exacerbates this issue. PQ 
degradation leads to voltage sag, swell, impulse, 
oscillatory transients, and other operational 
difficulties in real-time circumstances. Power 
quality (PQ) issues in real-time systems can cause 
various control and protection devices to 
malfunction or fail, affecting the system's overall 
performance [4]. The signals of these PQDs are 
non-stationary and statistically time-varying in 
nature. Signal processing techniques are widely 
used to examine non-stationary signals in various 
power system challenges, including fault 
identification, islanding detection, differential 
protection, and the detection of PQEs. Fourier 
transforms (FT), discrete Fourier transform (DFT), 
and fast Fourier transform (FFT) were used in the 
early stages of signal processing applications for PQ 
analysis (FFT), short-time Fourier transform 
(STFT), Curvelet transform, Hilbert transform, 
Empirical mode decomposition (EMD), and 
variational mode decomposition (VMD) are gaining 
popularity as a computational approach for 
extracting spectra for stationary signals at various 
frequencies [5-13]. The power quality classification 
is equally essential in PQE monitoring. With 
minimal human intervention, automatic 
classification is critical in modern power quality 
classification. There are several techniques have 
been employed for the classification of PQEs. One 
of the most effective ANN approaches is ELM, 
frequently used to resolve classification difficulties 
[14-16]. Several other techniques, such as 
probabilistic neural networks and support vector 
machines, gained popularity for PQE classification 
[17-22]. Due to numerous advantages over other 
renewable energy sources, solar energy proved to be 
the optimum energy source among all existing 
renewable resources. The PV systems are a gift to 
modern society. Numerous power quality challenges 
develop when connecting an extensive PV system 
with the grid. Poor or insufficient power quality 
could lead to financial losses and end-user 
disturbance. The power system components become 
overheated and behave unfavorably due to the low 
power quality issue, resulting in substantial damage 
[23]. 
 
An increasing issue of power quality disturbances 
due to integration of renewable energy sources like 
solar and wind to micro-grids may have greater 

impact on the operation of end user equipments. For 
mitigation of PQDs, an efficient monitoring system 
is much needed. The monitoring system is mainly 
consists of the process of detection and 
classification of PQDs. Different signal processing 
techniques like FFT, ST, WT, EMD, and VMD are 
used for the feature extraction process and different 
machine learning techniques like ELM, PNN, SVM, 
DT, FL have been used for establishment of an 
efficient monitoring system. However, a better 
monitoring system is always a need for the 
conditions of real-time, non-stationary, noisy, 
robust, faster computation, and cost effectiveness. 
Here, the hybrid approach of CWT and CNN shows 
better results in many of the above mntioned 
conditions. 
Power quality is the measure of correctness of the 
power signal without any deviation from the 
specified range for amplitude, frequency, and phase. 
Different power quality disturbances are voltage 
sag, swell, interruption, flicker, transients, and 
harmonics etc. There is a possibility of simultaneous 
happening of multiple PQDs. The impact of these 
PQDs on consumer electronic appliances, power 
electronics and control instruments based on micro-
controllers is severe. To mitigate these disturbances, 
there is an urgent need of detection, classification, 
and monitoring of PQDs. Several research work 
have been done on this issue and this study is an 
alternative method to answer this issue. The 
proposed hybrid method is a novel technique 
consisting of CWT and CNN shows faster 
computation and better accuracy in comparison to 
contemporary methods. 
The micro-grid uses the environment friendly 
energy sources to reduce transmission loss, manage 
the power supply and demand, improve the 
operation and stability, and to provide dynamic 
responsiveness. However, the use of power 
electronics instruments and devices is one of the 
major reason of PQDs. To mitigate the PQDs, a 
robust monitoring system is required and for which 
detection, classification, and monitoring of PQDs 
are very much necessary. Here, the suggested 
method is a meaningful approach for the above 
processes to build a robust monitoring system for 
mitigation of PQDs. 
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This article presents the PQD event detection and 
classification using wavelet transform (WT) and 
Convolutional neural network (CNN). WT is 
utilized to extract the prominent features, and CNN 
is used to classify PQ events. The proposed 
methodology is validated in a physical real-time PV 
integrated microgrid.  
From decades and over, research work is going on 
the detection, classification, and monitoring for the 
mitigation of power quality disturbances efficiently. 
Here, in this study a hybrid approach consisting of 
Wavelet transform and CNN is considered for the 
above work due to the following reasons: (i) faster 
computation (ii) dealing a large data set (iii) for 
better classification accuracy (iv) to work on real-
time environment and noisy conditions. 
The background theory of the WT is presented in 
the next section. Section 3 describes CNN-based 
event classification. An experimental setup is 
presented in section 4. The result analysis is 
presented in Section 5, and the conclusion is given 
in the final section. 
 
 

2 Back Ground Theory of Wavelet 

Transform  
The wavelet transform could provide both the 
frequency and the time associated with signals, 
making it extremely helpful in a variety of 
applications. It gives an STFT generalization. Like 
DFT and STFT in signal theory, wavelet 
transformation can be thought of as the projection of 
a signal into a series of essential functions called 
wavelets. In the frequency domain, these basis 
functions provide localization. 
 
2.1 Wavelet Transform 
The ability of Wavelet transform (WT) to analyze 
the local discontinuities of the signals can be best 
used for steady-state analysis and the analysis of 
signals in various fields having non-stationary 
characteristics. The power quality events (PQEs) of 
the power system have non-stationary features; 
hence the WT is preferred as a suitable tool to apply 
for the PQEs detection. The continuous signal u(t) 
in the continuous Wavelet transform (CWT) form 
can be mathematically expressed with the wavelet 
function 𝜓𝑐(𝑡) as: 
 
CWT(a, b) =

1

√a
∫ u(t)

∞

−∞
𝜓𝑐 (

𝑡−𝑏

𝑎
) 𝑑𝑡  𝑎, 𝑏 𝜖 𝑅, 𝑎 ≠ 0        (1) 

In Eq. (1) the scale and translation parameters are 
represented by the constants a and b, respectively. 
The oscillatory frequency and wavelet length are 
provided by the scale parameter a. The shifting 
position is well represented by b, the translation 
parameter. Each scale has a series of wavelet 
coefficients at each scale which are the output and 
hence represent the comprehensive PQ signal. The 
superfluous information in practical applications of 
CWT makes it unsuitable for signal analysis. The 
discrete wavelet transform (DWT) is found more 
appropriate for analysis of the PQEs and can be 
expressed as in Eq. (2): 
 

𝐷𝑊𝑇(𝑚, 𝑛) =
1

√𝑎0
𝑚

∑ 𝑢(𝑘)𝜓 (
𝑛−𝑘𝑏0𝑎0

𝑚

𝑎0
𝑚 )𝑘      (2) 

 
where 𝑎0

𝑚 and 𝑘𝑏0𝑎0
𝑚 Represent the scaling 

parameter and the translation parameter, 
respectively. The discrete point sequences 
represented by 𝑢(𝑘) are the discrete form of the 
continuous-time signal u(t). Depending on the type 
of data used in WT applications, the type of mother 
wavelet selection has a significant role in analyzing 
the signal. Among different types of mother 
wavelets, the Daubechies mother wavelet at scale 4 
(db4) has a substantial role in feature extraction and 
is widely used for various applications. 
 

 

3 Classification using CNN   
CNN, a sub-class of artificial neural networks 
currently being extensively prominent in various 
computational vision processing, is increasing 
interest among researchers across different research 
areas comprising power systems. CNN is 
automatically and adaptively adjusted to 
hierarchical spatial features using backpropagation 
techniques implementing multiple building blocks, 
involving various stratified blocks as convolution 
layers, pooling layers, and fully connected layers. 
CNN is a sub-program of deep learning models for 
the computation of information employing a grid 
pattern as pictures, which can be correlated to the 
topology of the animal pictorial cortex and 
formulated to adjust to hierarchical spatial features 
automatically and adaptively from low- to high-
level patterns. CNN is usually made up of three 
types of layers such as convolution, pooling layer, 
and fully connected layers. The feature extraction 
process is involved in the first two layers of CNN 
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topology, whereas in the third layer, the features are 
mapped into the latest output. The first layer is a 
significant block in CNN, and It is made up of a 
series of mathematical processes involving 
convolution, a type of linear operation technique. If 
a square neuron layer of size 𝑁 × 𝑁 is followed by a 
convolutional layer, then the size of the output of 
the convolutional layer will be (𝑁 − 𝑚 + 1) ×
(𝑁 − 𝑚 + 1), where 𝑚 × 𝑚 is the size of the filter 
𝜔. The pre-nonlinearity input can be calculated as 
𝑥𝑖𝑗

𝑙 = ∑ ∑ 𝜔𝑎𝑏
𝑚−1
𝑏=0

𝑚−1
𝑎=0 𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1  , where 𝑥𝑖𝑗
𝑙  is a 

unit of the layers and ∑ ∑ 𝜔𝑎𝑏
𝑚−1
𝑏=0

𝑚−1
𝑎=0 𝑦(𝑖+𝑎)(𝑗+𝑏)

𝑙−1  is 
the sum of contributions by weighted filter 
components. In digital images, pixel data is 
assimilated in a 2D grid, i.e., a number array (Fig. 
2), and a parameter of a small grid referred to as 
kernel, which is a feature extractor that can be 
optimized accordingly to requirements, which is 
used at every image position, which renders CNNs 
as being significantly effective in image processing, 
since a feature may arise at any stage in the image. 
As one layer relays the output data into the next 
layer, there can be a progressive complexity with 
increasing hierarchy being observed in extracted 
features. The process of optimizing parameters 
involved in kernel data arrangement is called 
training. It is the process of minimizing the 
difference between outputs and ground truth labels 
by employing optimization techniques such as 
backpropagation and gradient descent, among 
others. 
 

 
Fig. 1: CNN architecture and its training process.  
 
The performance characteristics of a learning model 
under specific kernel models and weights are 
computed using a loss function and a forward 
propagation technique applied to a training dataset, 
with parameters, such as kernels and weights, that 
are updated based on the loss value via 
backpropagation using the gradient descent 
optimization algorithm ReLU, rectified linear unit. 
 
3.1 Building Blocks of CNN Architecture 
The CNN topology comprises several 
building blocks such as convolutional, pooling, and 

fully connected layers. A typical CNN 
topology entails a stack of convolutional layer and 
pooling layers that repeats, followed by one or more 
fully connected layers. The phase in which the input 
data is processed into the output data by these layers 
is called forward-ing   propagation. This section 
describes the convolution and pooling procedures 
configured for 2D-CNNs, but similar operations can 
be applied for 3D-CNNs. 
 
3.2 Training a Network 
Network training includes calculating 
kernel data for convolutional layers and 
weights for fully connected layers to minimize 
differences between training dataset output 
predictions and specific ground truth labels. 
Backpropagation algorithms are commonly used 
in neural network training, where loss function 
and gradient descent optimizati-
on techniques are essential.The model's perfor-
mance characteristics under a given kernel and 
weights are estimated using the training dataset and 
the forward propagation loss function of the 
trainable parameters. The kernel and weights are 
calculated and updated with loss values 
by optimization techniques such as backpropa-
gation and gradient descent. 
The available data is generally divided into three 
sets: training, validation, and testing, but there 
are several variations on the following sets, such as 
cross-validation. It then trains the network using 
the training set, calculates the loss value using the 
forward propagation technique, and updates the 
parameters that backpropagation can 
learn. Validation sets are used to evaluate models, 
fine-tune hyperparameters, and apply 
model selection during the training phase. Ideally, 
the test set should be used only in the last stage of 
the project, and the training set and validation set 
should be used to evaluate the performance of 
the fini-shed model improved and selected during 
the training phase. 
Model training inevitably necessitates fine-tuning 
hyperparameters and model selection tasks, 
necessitating several validations and test sets. 
This method is calculated depending on the 
validation set's performance, so some info about this 
validation set is reflected  in the model. The model 
is not directly trained on trainable parameters 
but overfitting to the validation set. This ensures 
that a model with hyperparameters fine-tuned in 
a validation set will work appropriately in a similar 
validation set. Therefore, control datasets should be 
used to properly evaluate the performance of the 
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model. The model performance of the new random 
data is essential and requires a separate test set. 
 

 
Fig. 2: Available data are typically split into three 
sets: training, validation, and a test set 
 
Training sets train the network, calculate loss 
values with forwarding 
propagation techniques, and update 
trainable parameters with backpropagation 
techniques. Validation sets are used to 
monitor model performance during the ongoing 
training phase, fine-tune hyperparameters, 
and perform model selection. Ideally, the test 
set should be used only once at the end of the 
project to evaluate the performance of 
the finished model with a finely tuned and selected 
strategy after the training process with 
the training set and validation set. The available data 
is generally divided into three sets: training, 
validation, and testing. In the training the training 
process the training data and validation data are 
used to train the network. According to the training 
accuracy of the network, the selection and tuning of 
the parameters is done by selecting the optimized 
parameters of the network for enhanced 
performance. So, in the last phase of the process, the 
test set is used to find the accuracy of the CNN 
network. 
 
 
4 Experimental Setup 
Figure 3 shows the complete experimental setup for 
the proposed work. It consists of 550kwatt of 
rooftop solar PV array and 2200 PV cells, each 
250watt. A REFUsol three-phase inverter. A 
changer to switch between grid and solar power in 
case of insufficient solar power. Connection with 
the main grid. Three-phase loads. Three single 
phases step down transformer. National Instrument 

(NI) USB data acquisition card (DAQ). A personal 
computer with LabVIEW and MATLAB software. 
 

 
Fig. 3: Experimental setup 
 

Maximum power, voltage at maximum power, 
open-circuit voltage, maximum current, and short 
circuit current for each solar cell is 250Wp, 30.72V, 
37.05V, 8.15A, and 8.58A, respectively. The solar 
panels are connected in series and connected at the 
input terminal of the three-phase inverter. And the 
output of the inverter is connected to the loads 
through the changer switch. The role of the changer 
switch is to switch the load between inverter output 
and grid connections. By default, the loads are 
connected with inverter output utilizing solar power. 
The solar power is less than the load requirement 
due to clouds covering the panel or in the rainy 
season. The changer will switch the loads to grid 
mode. The three-phase voltage and current signals 
are captured by NI USB DAQ and continuously 
monitored. The NI USB DAQ is connected to the 
computer to analyze the power quality event using 
machine learning technique. NI LabVIEW is used to 
take the voltage signal through the NI USB DAQ to 
the computer. The machine learning algorithm is 
implemented in MATLAB. The data transfer 
between LabVIEW and MATLAB occurs using 
TCP/IP protocol. 
 
 

5 Result Analysis and Discussion 
 

5.1 Time-Frequency Representations 
The experiment was performed on 
the PQE signals obtained from the MATLAB 
simulation environment and the real-time 
signal obtained from the experimental setup. 
The time-frequency representation of a PQE signal 
is called a scalogram and represents the absolute 
value of the signal's CWT coefficient. Pre-
calculation of the CWT filter bank is required to 
create the scalogram data. The re-calculation of the 
CWT filter bank is preferabley selected to 
to acquire the CWTs of multiple signals using the 
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same parameters. The filter bank is used to get the 
CWT of the first 1000 samples of the signal, and the 
scalogram of the coefficients is taken. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4:   (a) Harmonic signal (b) Flicker signal (c) 
Impulsive transient signal 
 

 
Fig. 5: Scalogram 
 
5.2 Division of Data Into Training and 

Validation  
The scalogram image data is loaded into the 
program routine as saved image 
data. Image data store allows programs to store 
extensive image data, including data that cannot be 
allocated in memory space, and efficiently 
read batches of images during the ongoing training 
phase of the CNN. The images are then 
categorized and randomly divided into two 
separate groups. One is for the training dataset, and 
the other is for the validation dataset. 80% of the 
images will be used for CNN training, and the 
rest will be used for validation. 
 
5.3 GoogLeNet 
The pre-trained GoogLeNet neural network is 
loaded. The layer graph is extracted and displayed 
from the network. 

 
Fig. 6: GoogLeNet Layer Graph 
 

Evaluation of GoogLeNet Accuracy 
The network is then evaluated using the network 
data. 
GoogLeNet Accuracy: 100% 

 

 

Table 1. Initialization of input data normalization 
(GoogLeNet) 

*See the Table 1 at the Annex section 

 
 

 
Fig. 7: Training progress (GoogLeNet) 
 
It can be seen that the numbers obtained here are the 
same as the validation accuracy observed in the 
training visualization. Next, scale 

grams were divided into training and validation 
categories. Both category scalograms  
were used in GoogLeNet training. The ideal way to 
evaluate the results obtained after training is that the 
network is responsible for classifying data that 
has never been observed before. The 
calculated validation accuracy is referred to here as 
network accuracy because not enough data is 
needed for training, validation, and testing 
subroutines. The network accuracy is found out by 
using the data which the network never seen before, 
and it is done after training the network. The 
network accuracy found out in this method can be 
considered as the validation accuracy. 
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5.4 SqueezeNet 
SqueezeNet is a type of deep 
CNN whose architecture supports image 
sizes 227x227x3 pixels in size. GoogLeNet has 
different image dimensions but doesn't need to 
generate a new image in RGB format according to 
SqueezeNet's dimensional specifications. It can 
use the original RGB image. 
 
Loading 
The pre-trained Squeeze Net neural network is then 
loaded. 
 

 
Fig. 8: First Convolutional Layer Weights 
 
5.5 Preparation of RGB Data for Squeeze 

Net 
RGB images have a size suitable for the GoogLeNet 
architecture. Next, the extended image data is 
created, and the existing RGB image resized for 
the Squeeze-Net architecture data is automatically 
saved.  
 

The setting of Training Options and Training 

Squeeze Net 
Next, new training options will be created 
for use with SqueezeNet. Then the 
random seed value is set to the default value, and 
the network is trained. The training 
process typically takes  1-5 minutes on a well-
designed desktop CPU. 
Next, the network's last layer is inspected to see 
if the classification output layer contains three 
classes. 
During the training process 80% of the data (image) 
are used for training the SqueezeNet. For the 

reproduceable purpose the random seed value is set 
to the default value. The neural network training 
process is an iterative process which minimizes the 
loss function. In iteration the used gradient descent 
alogorithm evaluates the loss function and updates 
its own weights. 
Squeeze Net Accuracy: 93.75% 

 

 

Table 2. Initialization of input data normalization 
(Squeeze Net) 

*See the Table 1 at the Annex section 

 

 

Evaluation of Squeeze Net Accuracy 
The network is then to be evaluated using 
network data. 

 
Fig. 9: Training Progress(Squeeze Net) 
 

5.6 Discusion 
The suggested method is a hybrid method of CWT 
and CNN. The scalogram obtained from the wavelet 
coefficients are fed to the GoogLeNet and 
SqueezeNet for classification of PQDs. The 
GoogLeNet and SqueezeNet are pretrained CNN, 
which are trained with 1000 different kinds of 
images. The classification accuracy for GoogLeNet 
is 100% and for SqueezeNet is 93.75%. This 
classification accuracy is found for a solar 
integrated micro-grid in real-time environment. This 
proposed method gives a higher classification 
accuracy and having a faster computational time. A 
comparison table is given for the comparison of the 
suggested method with available present day 
alternative methods. The limitations, suggested 
improvements, and future scope of this study is 
highlighted in the conclusion section. 
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5.7 Comparison of Classification Accuracy 

 
Table 3. Overall Accuracy Comparison Statistics 

with other Conventional Methods 
Classification Methods Accuracy Percentage  

DWT with ANN 
DWT with NFS 

WPT with MSVM 
DWT with RBES 

ST with DT 
ST with RBES 
ST with PNN 

Proposed CWT with 

CNN (GoogLeNet) 

Proposed CWT with 

CNN (SqueezeNet) 

 

94.37 
96.5 
96.8 
98.7 
98.5 
98.2 
97.4 
100 

 

93.75 

 
 

6 Conclusion 
The above studies show the use of transfer learning 
and continuous wavelet analysis to classify three 
classes of PQE signals using pre-trained CNNs 
i.e., GoogLeNet and SqueezeNet. The wavelet-
based time-frequency 
representation of the PQE signal is used to create 
scalograms. RGB images of scalograms are plotted 
using a computer. The image is then processed 
for fine-tuning of both deep 
CNNs. Various network layer activations 
were also investigated. The above study also shows 
a workflow that can be used to classify signals using 
a pre-trained CNN model. The above studies also 
show the efficiency of a hybrid model based on 
CWT and CNN for detecting power 
quality events in a solar-integrated microgrid 
environment with 100% and 93.75% accuracy 
of GoogLeNet and SqueezeNet, respectively. Here, 
GoogLeNet and SqueezeNet are two deep CNNs 
pretrained to recognize the images for classification 
of PQD signals based on time-frequency 
representation. This network architecture of CNN is 
reused for the classification of PQD signals based 
on images obtained from CWT of the time series 
data. 
The limitation of this study is that its SqueezeNet 
accuracy is only 93.75%. Further research can be 
done on the use of efficient feature extraction 
techniques and parameter optimization of CNN to 
have better efficiency and lesser computational time 
in a real-time environment. The detection and 
classification process of PQDs to be done by deep 
learning alone may be the future direction of 
research of this study. 
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Annex 
 

Table 1. Initialization of input data normalization (GoogLeNet) 
Epoch    Iteration   Time Elapsed 

(hh:mm:ss)     

 

Mini-batch  

Accuracy    

Validation 

Accuracy 

 Mini-batch   

Loss      

Validation Loss   

1 1 00:00:21 33.33%        46.88%       1.7424     1.2343      

2 10  00:01:27         46.67%        59.38%        1.3216     1.0275     

3            20      00:02:38        40.00%         65.62%        1.0883       0.7985       

4           30     00:03:45     60.00%      75.00%      0.6761       0.5229 

5          40        00:04:51        86.67%         78.12%        0.2971        0.4800       

7          50        00:05:57        86.67%         71.88%        0.3501        0.4566 

8            60        00:07:05        80.00%         81.25%        0.2811 0.3469 

9           70         00:08:10       100.00%        84.38%        0.2021        0.3480       

10           80         00:09:13       100.00%        96.88%        0.1737        0.2811 

12           90         00:10:10        93.33%        96.88%        0.3201        0.2464 

13         100        00:10:58        93.33%         84.38% 0.1404        0.2614 

14           110        00:11:47        86.67%         96.88%        0.2538        0.1880       

15          120        00:12:35        93.33%         96.88%        0.2127        0.1942       

17          130        00:13:22       100.00%        96.88%       0.0712        0.1986 

18          140        00:14:10        93.33%         96.88%        0.1597        0.2011       

19          150        00:14:57       100.00%        84.38%        0.0674        0.2103 

20           160        00:15:45       100.00%       100.00%      0.0546        0.1405       

Here the base learning rate in all cases of input data normalization is taken to be 1.0000e-04 

 
Table 2. Initialization of input data normalization (Squeeze Net) 

Epoch 

number   

Itera-

tion   

Time Elapsed 

(hh:mm:ss)     

Mini-batch 

Accuracy  

Validation  

Accuracy 

Mini-batch   

 Loss      

Validation 

Loss      

t  1         00:00:07         20.00%         53.12%      4.2032        1.2722 
1           13          00:00:27         60.00%         62.50%        0.9195        0.9299 

2 26       00:00:48  60.00%         59.38%        0.7726        0.8316 

3           39        00:01:09        60.00%         62.50%        0.7032        0.7386           

4           50        00:01:26       90.00%                         0.7458                    

4           52      00:01:30            70.00%         87.50%         0.5993        0.6630 

5           65        00:01:51        90.00%         84.38%         0.4828       0.5314  

6           78        00:02:12        90.00%         87.50%         0.3731        0.3828           

7           91       00:02:33        90.00%         84.38%         0.2220        0.3695           

8          100        00:02:47        90.00%                        0.3257                    

8|          104        00:02:54        90.00%         90.62%        0.2096        0.3013  

9          117        00:03:15       100.00%        90.62%        0.0694        0.2194           

10          130        00:03:36        90.00%        90.62%        0.2280        0.1890           

11          143        00:03:57       100.00%        90.62%        0.0280        0.1959           

12     150        00:04:07       100.00%                        0.1082                      

12           156      00:04:18        90.00%       90.62%        0.1536 0.3638 

13           169        00:04:39        80.00%        81.25%        0.7354         0.7383            

14           182        00:04:59       100.00%         90.62%        0.0744         0.2016           

15          195        00:05:20       100.00%         93.75%        0.0211         0.1672           

Here the base learning rate in all the cases is taken to be of the value of 0.0003 
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