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Abstract: - Smart grids refer to a grid system for electricity transmission, which allows the efficient use of 

electricity without affecting the environment. The stability estimation of this type of network is very important 

since the whole process is time-dependent. This paper aimed to identify the optimal machine learning technique 

to predict the stability of these networks. A free database of 60,000 observations with information from 

consumers and producers on 12 predictive characteristics (Reaction times, Power balances, and Price-Gamma 

elasticity coefficients) and an independent variable (Stable / Unstable) was used. This paper concludes that the 

Random Forests technique obtained the best performance, this information can help smart grid managers to 

make more accurate predictions so that they can implement strategies in time and avoid collapse or disruption 

of power supply. 

 

Key-Words: analysis; artificial intelligence; control, machine learning; smart grid; stability. 

 

Received: June 28, 2021. Revised: July 15, 2022. Accepted: September 16, 2022. Published: October 6, 2022.    

 

1 Introduction 
Smart grids are networks that control power 

delivery and provide several advantages, including 

the development and effective management of 

renewable power sources [1]. They are primarily 

used to solve energy supply problems by ensuring 

the transfer of information and electricity between 

power plants and appliances [2]; they also enable 

devices to communicate between suppliers and 

consumers, thus managing demand, preserving the 

distribution network, reducing costs, and saving 

energy [3].  

In essence, a smart grid has advanced technology 

and incorporates information and communication 

technologies (ICT), utilizing technology for 

metering, communications, and control in the 

facilities' generating, transmission lines, substations, 

feeders (circuits), and meters [4]. The objectives of 

smart grids are; to generate faster performance for 

the benefit of the end consumer (services, tariffs, 

quality, and continuity of supply), reduce power 

outages, increase security and energy efficiency, 

reduce pollution, help control energy consumption, 

reduce and prevent outages by anticipating 

equipment damage and making changes in the 

electrical transmission path, reduce the vulnerability 

of transmission networks to attacks or failures and 

facilitate their rapid location in urban and rural areas 

[5].  

According to [6], modern electric power systems' 

technical and commercial disturbances are often 

referred to as "smart grid", encompassing everything 

integrated into them, what uses the grid services and 

what interacts with them. On the other hand, [7] 

defines them as a complex system of technological, 

electricity trading, and service subsystems 

articulated to the business, legislative, political, and 

social sectors. Technically speaking, smart grids are 

comprised of transmission and distribution 

networks, production, consumption, and storage 

facilities, as well as related operational and 

investment decision-making systems. They also 

have close ties to other energy sources and domains 

due to the coupling of sectors and electrification of 

energy domains like building heating and cooling, 

transportation, and industrial processes [7]. The key 

to making the best use of abundant energy resources 

is smart grid engineering, which enables the 

efficient dispatching of power generated by hybrid 

renewable energy sources (RES) over long distances 

via DC transmission lines using high voltage DC 

(HVDC) transmission technology [8]. 

Smart grids enable efficient and dependable 

energy access using computing and digital 

communication technologies by integrating 

renewable energy generation technologies into the 

transmission system [9]. The reality in which 

utilities operate, coupled with innate values like 

business culture, technology, process maturity, and 

the current market, as well as the socioeconomic and 

environmental situation of their concession region, 

are what drive the deployment of smart grids [10]. 

These generate benefits for utilities, better grid 

management, increased customer choice, greater 

understanding of energy use, reduced electricity 

cost, increased communication with customers and 
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their appliances, use of more renewable energy 

sources, and integration of electric vehicles [11]. 

They can offer various advantages that lend 

themselves to a more stable and effective system, 

and their primary functions include real-time 

monitoring and reaction, allowing the system to 

constantly change to an ideal condition. This is one 

of its key qualities [12]. Self-healing enables them 

to identify anomalous signals, carry out adaptive 

reconfigurations, and isolate disturbances, reducing 

or eliminating electrical disturbances during storms 

and disasters. They can also reduce power outages 

and shorten their duration when they do occur [13]. 

Rapid isolation enables the system to quickly isolate 

affected portions of the network from the rest of the 

system to prevent the spread of outages and enable 

faster restoration. Anticipation enables the system to 

automatically search for issues that could cause 

greater disturbances [14]. 

While grid operators manage the system's 

balance, provide supply stability and security, 

physically connect producers and consumers and 

facilitate energy transactions, smart grids also 

provide services that enable an electricity system's 

efficient and secure running [15]. Smart grids aim to 

improve the functioning of energy markets, use 

existing transmission infrastructures more 

effectively, increase the capacity of renewable 

energy sources, electric vehicles, heat pumps, and 

other energy-saving technologies, and give all 

stakeholders—including small-scale actors like 

distributed energy resource owners—more 

flexibility [16]. Fig.1 presents the main benefits of 

smart grids. 
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Interaction - 
Increased capacity for interaction 

with the energy market and users. 

   

Self-repair - 
Self-healing and resilience in the 

face of failure. 

   

Prediction - 
Efficient forecasting for better 

storage. 

   

Security - 
Increased security against attacks 
on the power grid. 

   

Optimization - 
Optimization of resource and 
equipment availability. 

   

Coordination - 

Harmonious management of 

resources, equipment, and 
information systems beyond 

geographical distribution. 

   

Integration - 

Full integration of monitoring, 

control, protection, maintenance, 

and dispatch. 

 

Fig. 1: Benefits of smart grids 

 

In a smart grid, data on consumer demand is 

gathered, supply circumstances are compared 

centrally and customers are supplied with pricing 

information to determine their usage because the 

entire process is time-dependent, it is crucial to 

understand and plan for disturbances and 

fluctuations in energy consumption and production 

introduced by system participants dynamically, 

considering not only technical considerations but 

also how participants react to changes in energy 

prices [17]. 

In power system operation and planning, 

dynamic security assessment and prediction are 

critical to ensure uninterrupted electricity supply to 

consumers and improve system reliability [18]. The 

ability of smart grids to maintain balance over time 

is referred to as stability, i.e., avoid blackouts 

regardless of consumer demand (Hz) [19].  

Globally, 50 Hz / 60 Hz frequencies are employed 

in electric power distribution and generation 

systems, the frequency of the electric signal 

increases in times of excess generation, therefore, 

measuring the frequency of the grid at each 

customer's location is sufficient to give the manager 

the necessary information on the present grid energy 

balance, so that it can price its energy supply and 

alert consumers, while it reduces in times of 

underproduction [19].  

In the review of the state of the art, the scientific 

databases Scopus and WoS were used, only research 

articles were considered and the fields of knowledge 

were delimited to energy, engineering, and 

computer science, the search period was from 2019 

to September 2022. The search equation used was: 

TITLE-ABS-KEY ("smart grid" AND "stability" 

AND ("prediction" OR "forecasting")) AND 

(LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO 

(PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 

2020) OR LIMIT-TO (PUBYEAR, 2019)) AND 

(LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO 

(SUBJAREA, "COMP) OR LIMIT-TO 

(SUBJAREA, "ENER")) AND (LIMIT-TO 

(SRCTYPE, "j")) 

The research question considered was: Q1. How 

has the prediction/forecasting of smart grid stability 

been performed? 

Most of the identified research related to smart 

grid stability prediction uses simulated data and 

deep learning techniques. In the research developed 

by [20], they claim that measuring the grid 

frequency of each customer is sufficient to provide 

the grid manager with all the necessary information 

about the energy balance so that it can price its 

energy supply and inform consumers. According to 

[21], grid stability is affected by the fluctuating 
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nature of renewable energy sources, in this research 

they employed the Simulated Annealing (SA) 

algorithm to optimize the hyperparameters and 

improve the predictability of the grid stability 

prediction model, which obtained high performance. 

In the research conducted by [22], they predict the 

stability of smart grids using multidirectional short-

term memory (LSTM).  Meanwhile, [23] employed 

a symmetric non-negative latent factor model based 

on matrix factorization. In the research developed 

by [24], they concluded that neural networks can 

achieve high performance in predicting network 

stability; however, they claim that most existing 

machine learning-based approaches can only 

examine a specific type of stability, and feature 

engineering is hardly performed due to the limited 

size of the training data, which may present a 

misleading indicator of the stability status. 

As mentioned above, this paper aimed to train 

different models to predict the stability of smart 

grids using machine learning techniques (Random 

Forests, Support Vector Machine (SVM), Logistic 

Regression, K-Nearest Neighbors (KNN), Decision 

Trees, ANN-MLP, Naïve Bayes), compare the 

performance of each technique and identify the 

optimal one to predict the stability of this type of 

grids. The utility of this study in practical 

applicability is the identification of the optimal 

technique in terms of accuracy that can help smart 

grid managers worldwide to make more accurate 

predictions about the stability of this type of 

network so that they can implement strategies in 

time to avoid collapse or breakdowns in the power 

supply to the nodes that make up the network. A 

free database of 60,000 observations with 

information from consumers and producers on 12 

predictive characteristics (reaction times, power 

balances, and gamma-price elasticity coefficients) 

and an independent variable (stable/unstable) was 

used. The rest of the paper contains the following 

sections: in the second section generalities about 

smart grids are presented, in the third section 

generalities about machine learning, in the fourth 

section the method used in the models’ training, and 

the fifth section the results and the discussion. 

Finally, the paper concludes. 

 

 

2 Machine Learning 
It is a subfield of computer science and artificial 

intelligence (AI) that focuses on using data and 

algorithms to simulate how people learn, increasing 

their accuracy gradually [25]. Machine learning 

models are used to learn patterns from data in two 

ways: supervised or unsupervised learning. The 

former starts from a labeled data set, i.e., the value 

of the target variable is known, while the latter uses 

unlabeled data, i.e., the value of the target variable is 

unknown. Machine learning and data analytics are 

interdependent and related fields of study that 

primarily focus on acquiring decisive knowledge 

[26]. Models are developed using training data and 

evaluated with test data. Machine learning is 

currently widely employed in many fields of 

knowledge to generate predictions and facilitate 

decision-making. The objective of Machine 

Learning is to let computers learn how to carry out 

tasks without being explicitly taught to do so [27].  

It is viable to construct algorithms that instruct a 

machine to carry out the steps required to solve a 

problem for simpler tasks, but for activities with a 

greater level of complexity, it is more beneficial to 

assist the machine in developing its algorithm rather 

than outlining each step [28]. Machine learning can 

be used for classification (to predict the membership 

of a class or label) and regression (to predict a 

numerical value) tasks. Threesome several 

specialized tools or programs allow the use of 

machine learning; some of them are Keras, 

TensorFlow, KNIME, Shogun, IBM Watson, 

Apache Mahout, R, Apache Spark MLlib, Weka, 

Oryx 2, RapidMiner, H20.ai, and Pytorch. 

There are several techniques (Random Forests, 

Support Vector Machine (SVM), Logistic 

Regression, K-Nearest Neighbors (KNN), Decision 

Trees, ANN-MLP, Naïve Bayes), that can be 

employed in the construction of classification or 

regression models, each of these differing from the 

others in terms of parameterization. Different 

research focused on predictive modeling has 

employed machine learning techniques, specifically, 

the logistic regression assumes that the independent 

variable y can take the discrete values {0,1. 

Equations (1) and (2) describe the relationship 

between the dependent and independent variables. 

𝑦 = 𝜎 ∑(𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

) 

 
(1) 

 

𝜎(𝑢) =
1

1 + 𝑒−𝑢
 

(2) 

This technique is used primarily for classification 

tasks. The composition of a sigmoidal function 

φ(sig): R → [0, 1] over the class of linear functions 

is the logistic regression class hypothesis [29]. The 

K-Nearest Neighbors (K-NN) technique saves all 

the data in the training set and classifies the test 

sample data based on the Euclidean distance (3), 

this technique calculates the distance between the 
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data points in the training set, chooses the K entries 

that are closest to the new data point, and then 

assigns the label with the highest frequency in the K 

entries as the class label for the new data point [29]. 

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)² 
 

(3) 

 

The Support Vector Machines (SVM) technique, 

optimally divides two classes by determining the 

distance between the nearest points in any class' 

training set [29]. It is possible to map features from 

a finite-dimensional space into a higher-dimensional 

space, enabling linear separation despite the 

dimensional space. This technique provides the best 

decision boundary that separates the space into 

classes [30]. The Bayes' Theorem (4), on the other 

hand, forms the foundation of the Naive Bayes 

technique, to find the probability when certain other 

probabilities are known [30]. 

 

𝑃( 𝑌|𝑋 ) =
𝑃( 𝑌 )_𝑃( 𝑋 ∨ 𝑌 )

𝑃( 𝑋 )
 

 

(4) 

 

P(Y|X): the probability that Y occurs when X 

occurs. P(X|Y): the probability that X occurs when 

Y occurs. 

P(Y): the probability that Y occurs.  

P(X): the probability that X occurs. 

 

The X variable represents the set of 

characteristics and is given as X = (X1, X2, X3, ... 

Xn).  See equation (5): 

𝑃(𝑌|𝑋1, . , 𝑋𝑛) =
𝑃(𝑋1|𝑌 ). . . 𝑃( 𝑋𝑛|𝑌)

𝑃(𝑋1). . . 𝑃(𝑋𝑛)
 

 

(5) 

The decision tree technique refers to classifiers, 

h: X → Y, that move from the root node to a leaf to 

forecast the label associated with an instance of 

variables; these are built as branch-like fragments. 

This technique includes all the predictors with the 

dependence assumptions between the predictors, 

and each tree has nodes (root and leaves) that 

represent the class labels, with the data attribute 

with the highest priority in decision making being 

selected as the root node [31]. For the construction 

of decision trees, it is necessary to calculate two 

types of entropy using one-attribute (6) and two-

attribute (7) frequency tables. 

 

𝐸(𝑆) = ∑(−𝑝𝑖𝑙𝑜𝑔2𝑝𝑖)

𝑛

𝑖=1

 

 

(6) 

 

𝐸(𝑇, 𝑋) = ∑ 𝑃(𝑐)𝐸(𝑐)

….

𝑐∈𝑋

 
 

(7) 

 

The gain function (8) is obtained as follows: 

 
𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇, 𝑋) (8) 

 

In equation (8) T represents the target variable, X 

the feature on which it will be divided, and (T, X) 

the entropy calculated after dividing the data on the 

feature X. Random Forests is a technique based on 

decision trees, which are assembled by bags and 

trained independently [32]; this technique forecasts 

an output based on features using a collection of 

decision trees. The prediction is the outcome of 

consecutive binary decisions that are divided 

orthogonally in the multivariate space of variables; 

in essence, it is a meta-learning of numerous 

separately built trees [32]. 

Finally, artificial neural networks are 

parameterized nonlinear regression models that seek 

to emulate the way the human brain processes 

information, i.e., a large number of interconnected 

processing units that play the role of biological 

neurons, which work simultaneously to process 

information. The activation function (softmax, tanh, 

relu) is in charge of returning output from an input 

value, often the set of output values in a certain 

range such as (0,1) or (-1,1) [33]. As universal 

approximators, multilayer perceptrons are neural 

network models that can approximate any 

continuous function. They are made up of 

perception, which is neurons. A perceptron takes n 

characteristics as input (x = x1, x2, ..., xn), and each 

of these features is associated with a weight (9).  

Since a perceptron requires numeric input features, 

non-numeric input features must be translated 

before being used [33]. 

𝑢(𝑥) = ∑ 𝑤𝑖

𝑛

𝑖=1

. 𝑥𝑖 

  

(9) 

 

 

3 Problem Formulation 
Smart grids are the future of energy supply. Their 

instability can cause problems in the supply of 

energy to consumption nodes, for this reason, is 

important to predict their stability. In this type of 

network, generation must match demand at all 

times, a reserve must be maintained for immediate 

outages, and sufficient capacity must be provided 

for voltage stability. 

 Identifying the optimal machine learning 

technique (higher accuracy) to predict the stability 
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of this type of network, allows for building reliable 

predictive models, which can be used in the 

prediction of their stability (Stable / Unstable). This 

study aimed to compare various machine learning 

approaches to identify the best technique for 

predicting a smart grid's stability. The database used 

contains the results of stability simulations of a star 

network (three consumption nodes and one 

generation node) as presented in Fig.3. 

 
 

Fig. 2: 4-Node Star Smart Grid 

 

 

4 Problem Solution and Discussion 
A free database accessible from the following link 

was used to build the models: https://onx.la/46d79, 

the dataset contains 60,000 observations, twelve 

primary predictive characteristics, and one 

dependent variable. The database's structure is 

shown in Table 1. 

 

Table 1. Database structure 
Variable                    Description 

V0 
Target Variable 

(Unstable=0/Stable=1) 

V1 

Reaction 

time 

Power producer 

V2 Consumer 1 

V3 Consumer 2 

V4 Consumer 3 

V5 

Power 

balance 

Power producer 

V6 Consumer 1 

V7 Consumer 2 

V8 Consumer 3 

V9 Price 

elasticity 

coefficient 

(gamma) 

Power Producer 

V10 Consumer 1 

V11 Consumer 2 

V12 Consumer 3 

 

It should be made clear that the price elasticity 

coefficient refers to the percentage variation in 

electricity demand in response to small percentage 

variations in price data, and the reaction time refers 

to the response time of network participants to 

adjust consumption and/or production in response to 

price changes, and the power balance refers to the 

nominal power produced or consumed at each 

network node. The models were trained in a ratio of 

75/25 (75% for training and 25% for testing), thanks 

to this division it is possible to identify the accuracy 

of the models, which were developed in Python 

using Google Colab. This tool provides free virtual 

machines with graphics cards to perform machine 

learning algorithms, which have the same power as 

platforms such as AZURE or AMAZON Web 

Services. These Google virtual machines are 

restarted every 12 hours, allow running and 

programming in Python in a web browser, do not 

require configuration, allow free access to Graphics 

Processing Units (GPUs), and allow sharing content. 

This tool can be used by students, data scientists, or 

artificial intelligence researchers.  

Colab files are Jupyter notebooks that enable the 

blending of executable code and rich text in a single 

document, as well as graphics, HTML, and LaTeX. 

These notebooks are stored in a Google Drive 

account and can be shared with others for comments 

or editing. Colab allows the use of the most popular 

Python libraries to analyze and visualize data, such 

as Pandas, Numpy, Matplotlib, Keras, and 

Tensorflow, among others. This tool allows 

importing own data from a Google Drive account 

and GitHub, it also allows importing image datasets, 

training image classifiers, and evaluating 

classification and regression models. It should be 

noted that these notebooks run code on Google's 

cloud servers, which allows taking advantage of the 

power of Google hardware regardless of the 

computer power on which it is used. Table 2 

presents the libraries and optimal parameters for 

each of them. 

 

Table 2. Optimal parameters and libraries 

Model Library & Optimal Parameters  

Decision 

 Trees 

DecisionTreeClassifier: 

{'criterion':'gini','class_weight': 

'balanced', 'max_depth': 5, 

'max_features': 'log2, 'splitter': 'best'} 

k-Nearest 

Neighbors 

KNeighborsClassifier: {'n_neighbors': 

4} 

Logistic 

Regression 

LogisticRegression: {'C': 17, 'max_iter': 

9600, 'penalty': 'l2', 'tol': 1e-2} 

SVM 
SVC: {'C': 120, 'kernel': 'RBF', 'tol': 

0.01} 

Naive  

Bayes 

GaussianNB: {'max_features': 'auto', 

'var_smoothing':1e-8} 

Random  

Forests 

RandomForestClassifier: {'n_estimators': 

60} 

ANN - 

MLP 

MLPRegressor: {'activation': 'relu', 

'hidden_layer_sizes': 4, 'learning_rate': 

'constant', 'solver': 'adam', 

'learning_rate_init': 0.5} 

 

A confusion matrix, which is a matrix 

representation of the prediction’s outcomes made, 

was used to assess the accuracy of the constructed 

models (Table 3). 
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Table 3. Confusion matrix 

C
u

rr
en

t 
 Predicted 

                   Negative Positive 

Negative TN  FP 

Positive FN  TP 

 

TN: values that were negative in the prediction and 

were also negative in the real values. 

TP: values that were positive in the prediction and 

were also positive in the real values. 

FN: values that were negative in the prediction and 

were not negative in the real values. 

FP: values that were positive in the prediction and 

were not positive in the real values.   

From the values of the confusion matrix, the 

metrics presented in equations (10), (11), (12), (13), 

(14), and (15) were calculated. 

 

Accuracy: percentage of correct predictions. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙
 

(10) 

Sensitivity, Exhaustiveness, or Recall: 

percentage of positive cases detected. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

(11) 

 

Specificity: percentage of negative cases 

detected. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

(12) 

 

Precision: percentage of correct positive 

predictions 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

(13) 

 

F1 Score: a harmonic measure of precision and 

completeness, 1 denotes perfect completeness and 

accuracy. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐸𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
) 

 

(14) 

Receiver operating characteristics curve (ROC): 

where AUC=1 is ideal, AUC = 0.5 the model cannot 

differentiate between classes, and AUC = 0 means 

that the prediction matches the classes. 

 

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)
 

(15) 

 

Table 4 presents a summary of the metrics 

obtained by each of the models evaluated; these 

metrics are ordered from the model with the best F1 

score to the model with the lowest score. 

 

Table 4. Training results 

Model 

A
cc

u
ra

cy
 

P
re

ci
si

o
n
 

R
ec

al
l 

S
p

ec
if

ic
it

y
 

F
1

-S
co

re
 

Random_Forest 0.935 0.930 0.967 0.885 0.948 

Decision Tree 0.920 0.910 0.962 0.856 0.936 

ANN - MLP 0.890 0.870 0.954 0.802 0.910 

SVM 0.873 0.858 0.937 0.783 0.896 

K- NN 0.780 0.761 0.878 0.659 0.815 

Naive-Bayes 0.509 0.537 0.637 0.361 0.583 

Logistic 

Regression 
0.476 0.402 0.643 0.365 0.495 

 

This result allows us to identify that the model 

with the best performance was Random Forest 

(Accuracy=0.935, F1-Score=0.948). Other models 

that performed well were Decision Trees 

(Accuracy=0.920, F1-Score=0.936) and ANN-MLP 

(Accuracy=0.890, F1-Score=0.910). The ANN-

MLP obtained an F1-Score>0.90; however, its 

Accuracy=0.870, which shows that the ability to 

make correct positive predictions is lower than the 

previous two models. The Naive Bayes and Logistic 

Regression models were the models that registered 

the lowest capacity to identify negative cases 

(Specificity), for these two models this metric was 

lower than 0.40, which makes these models not very 

efficient when making predictions.  Finally, the least 

efficient model was the Logistic Regression, with an 

Accuracy=0.476. The F1-Score metric is reliable 

when the classes are balanced. Fig.5 presents the 

ROC/AUC curve (Receiver Operating 

Characteristics Curve) of the Random Forest model, 

it can be seen that it has an adequate fit in the upper 

left corner, moving away from the main diagonal. 

 
Fig. 5: Positive rates comparison 
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These findings coincide with the results of the 

research conducted by [34], where they employed 

the Random Forest technique to categorize smart 

grid zones depending on energy usage (high/low), 

each zone was subdivided into several subzones and 

assigned to Random Forest branches. In this 

research, the authors confirm the effectiveness of 

this technique compared with others (SVM, K-NN, 

and Naïve Bayes) and conclude that it can identify 

the exact location of energy availability in minimum 

time, which allows providing quick responses to 

grid users. 

In the research developed by [35] on the 

prediction of customer abandonment using machine 

learning, where they point out that the least accurate 

techniques are Naïve Bayes and Logistic 

Regression. Additionally, it is consistent with the 

study done by [36] on the performance comparison 

of machine learning algorithms to detect dementia 

from clinical datasets, where they highlight that the 

Random Forests technique is one of the most 

accurate. 

It should be noted that the objective of 

employing this type of technique in predictive 

modeling is that they discover by themselves 

patterns that generalize well the data that were not 

analyzed instead of memorizing data that they 

learned during training; all accuracy metrics should 

be evaluated to decide which is the best and not only 

focus on the accuracy metric. You should also 

analyze the models that are more separated from the 

random case, and not only rely on high accuracies 

since it is possible to have an imbalance in the 

classes and/or problems of under-or over-training, 

i.e., if in the smart grid training database most of the 

measurements are classified in the "Stable" category 

and only a few in the "Unstable" category, it is easy 

to guess that a new smart grid measurement will 

also be "Stable". There must be a balance between 

the number of "Stable" and "Unstable" 

measurements in the training database. 

 

 

5 Conclusion 
Smart grid stability needs to be predicted to increase 

supply reliability, efficiency, and consistency. There 

are great advantages to implementing smart grids in 

urban and rural areas, as they encourage the 

development of renewable energies, contribute to 

the reduction of polluting gases, reduce 

environmental impact and damage to the ecosystem 

caused by the construction of electrical 

infrastructure works, which is why it is vital to 

predicting their stability in advance to avoid failures 

and collapses in the system. 

In this study, a comparison of various machine 

learning techniques for predicting the stability of the 

smart grid was conducted. The Random Forests 

technique obtained the best results in the metrics 

that were studied (Accuracy, Precision, Recall, 

Specificity, and F1 Score). When one class is less 

frequent than others, this technique can 

automatically balance data sets; it is less 

computationally expensive and does not require a 

graphics processing unit (GPU). This technique is 

commonly used in classification exercises since, 

unlike artificial neural networks, it doesn't need a lot 

of data to be effective. However, it is not correct to 

state that this technique is superior to others for 

making predictions/forecasts in any area of 

knowledge; the objective of the researcher and the 

quantity and quality of the available data plays a 

very important role. In addition, aspects such as 

non-normalization of the data, non-identification of 

optimal parameters, and inadequate processing can 

considerably affect its performance, is very 

important to normalize the data, fill in missing data 

with null values and eliminate inconsistencies 

before training the classification models. 

Future research can focus on the construction of 

constructing predictive models using combined 

Machine Learning techniques (Bagging, Boosting, 

Random Subspaces, and others) and compares 

presented in this work. Finally, Google Colab 

facilitated the training of models and the 

identification of the optimal model for predicting 

the stability of smart grids, as it has advanced 

libraries for data analysis pre-installed and allows 

cloud saving and code compilation in blocks. 
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