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Abstract: - This paper presents a novel power factor correction circuit suitable for low-speed electric generators 

usually used in direct drive wind turbines. The Thyristor Switched Parallel Capacitors (TSPC) circuit belongs to 

the Controlled Series Capacitor (CSC) circuits. Those circuits have been used in power transmission lines to 

correct the power factor and improve the performance of the electrical system. Such a circuit can be used in 

wind power systems to improve and maximize the efficiency of a wind turbine. A typical direct-drive wind 

power system employs variable speed electric generators, but the downside is that systems like that suffer from 

high and variable inductive reactance. In order to correct the power factor and to improve the efficiency of the 

system, the inductive reactance of the generator must become equal in value to the capacitive reactance. A 

TSPC circuit uses a set of capacitors, connected in series with anti-parallel thyristors. In every cycle, a 

controller triggers the appropriate thyristors, allowing the current to pass from the capacitor which then 

provides the system with the capacitive reactance that matches the generator’s inductor reactance  .   

Therefore, the TSPC circuit is able to counteract for any reactive losses and improve the power factor, as well 

as, the efficiency. This paper introduces this novel power factor correction circuit that employs capacitors in 

parallel configuration. This circuit was simulated in PSPICE and was implemented and tested in the lab. Based 

on the simulation and implementation results, we discuss the benefits as well as the drawbacks of the proposed 

circuit. 
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1 Introduction 
CURRENTLY, our civilisation’s economy is based 

upon petroleum substances, which have been proven 

to be extremely destructive and very harmful to the 

environment and to human health.  
In order to reduce greenhouse gases, 

conventional fuels should be replaced by Renewable 

Energy Sources and therefore Wind Turbines have 

been developed to convert the wind energy into 

electricity. A typical wind turbine, as shown in 

Figure 1, consists of a tower, a hub, the blades and 

the nacelle which houses a speed-up gearbox as it is 

essential to increase the slow rotation of the shaft to 

high speed suitable for the electric generator.  

To reduce the maintenance cost of a gearbox and 

to make the wind turbine more fault-tolerant, 
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gearless or direct-drive wind turbines have been 

used which are more efficient as the rotor is the only 

moving part that transfers the energy from the 

blades to the electric generator via a low-speed 

shaft. Those wind turbines eliminate gearboxes by 

replacing them with variable speed electric 

generators and solid-state electronic converters.  

 

Fig.1: Schematic diagram of equipment contained in 

a nacelle of a HAWT [4] 
 

Direct-drive wind turbines operate within a 

certain rpm range, and the output voltage and 

frequency from the direct-coupled generator vary 

over time. Therefore, these systems rectify the 

output three-phase voltage from the generator to 

DC. A DC link and inverter convert the DC voltage 

to become suitable for transmitting it to the 

electrical grid. The rectification process could be 

done using a simple Uncontrolled Diode Bridge 

rectifier but in this case the system’s efficiency is 

low as there is no any power factor correction 

technique. 

 

 

2 Operation with an Uncontrolled 

Single-Phase Diode Bridge Rectifier 
The distribution system operator would expect the 

control of renewable energy sources, so that they 

contribute to the network with constant voltage and 

frequency, in accordance with national standards. 

However, in wind turbines the output voltage and 

frequency change depending on the abrupt changes 

in wind speed. Therefore, the solution to this 

problem of constantly changing output is to convert 

it to DC voltage using a rectifier and then to AC 

signal, in the same voltage and frequency as those of 

the distribution network. An arrangement that would 

make this feasible is shown in Figure 2 

 

Fig.2: Wind turbine with synchronous generator [5]. 
 

Figure 2 shows the structure of the wind turbine. 

We can see on the left side the rotor of the wind 

turbine and its connection to an electric generator 

(SG) through a gearbox (GB). What follows is a 

rectifier (AC / DC) to convert AC to DC. A DC 

filter that was placed at the output of the rectifier to 

normalize the DC voltage generated, followed by a 

converter (DC / AC). A transformer is connected to 

the output of the inverter to increase the AC voltage 

of the inverter creating the necessary conditions for 

the wind turbine to be connected to the power grid 

[6-9]. The converter can be either a SCR controller 

or a PWM converter, depending on the situation [5]. 

Due to lower cost, all modern wind turbine 

systems use a two-phase bridge rectifier to rectify 

the energy generated, from AC to DC. AC / DC 

conversion typically uses a voltage feedback test. 

However, there is no feedback loop in the 

uncontrolled diode bridge rectifier. As a result, the 

output voltage is completely dependent on the 

amplitude of the input voltage. For simplicity Figure 

3 shows a schematic diagram of the single-phase 

rectifier used in wind turbines. 

 

Fig.3: Standard single-phase rectifier circuit 
 

The rectifier we describe essentially converts any 

AC input to DC. Depending on the half-life of the 

alternating current, we also have the corresponding 

treatment of the diodes. The result is the creation of 

a constant voltage at the output of the rectifier. 

Figure 4 below shows the simulation results for the 

typical single-phase rectifier circuit. 
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Fig.4: Generator back EMF and the fundamental 

current waveform showing the effects of generator 

inductance [10]. 
 

The inductive generator results in the voltage not 

being tangential to the current in the circuit. This 

phase shift results in losses of available power that 

could be transferred from the generator to the grid. 

Hence, a way is needed to counteract the inductive 

loads and achieve maximum power transfer. 

Assuming a purely sinusoidal back emf voltage, 

the generator power output P is given by the 

following Equation: 

 

where α is the phase angle between Vm and Im1. cosα 

can take values between 0 and 1. When cosα is 0 

then all the available power P becomes reactive and 

the real power is equal to 0. Minimising the angle α, 

cosα will increase and thus the real power delivered 

to the load will clearly increase. This can be 

achieved if a Series Resonant Circuit (series RLC) is 

used.  

In a series-resonant RLC circuit the inductive 

reactance of the inductor becomes equal in value to 

the capacitive reactance of the capacitor. In other 

words, XL=XC. The point at which this occurs is 

called the Resonant Frequency point, (ƒr) of the 

circuit, and the maximum power is delivered when 

the system works at this resonant frequency point 

[10]. 

 

Fig.5: Generator with variable capacitor [10] 
 

To achieve the desired result, it is necessary to 

use a variable capacitor as shown in Figure 5, 

designed to operate at high voltage and high current. 

However, it is not commercially available. 

Controlled series rectifiers (CSCs) could be used as 

a solution. 

 

 

3 Thyristor Switched Parallel 

Capacitor Rectifier (TSPC) 
One way to overcome the lack of a variable 

capacitor is the use of the Thyristor Switched Series 

Capacitor (TSSC) rectifier but it uses a large amount 

of capacitor blocks connected all in series. 

Therefore, this paper proposes to stack fixed value 

capacitors in a parallel connection configuration. In 

this configuration, the block consists of 2 anti-

parallel thyristors connected in series to a capacitor, 

where each capacitor has a different value, and the 

total capacitance is CT.  

Figure 6 shows the PSpice model for the TSPC 

circuit. In order to correct the power factor and to 

improve the efficiency, the generator’s inductive 

reactance must have the same value as the system’s 

capacitive reactance. Therefore, in every cycle, the 

controller triggers the appropriate thyristors, 

allowing the current to pass from the capacitor, 

which will then provide the system with the 

capacitive reactance that matches the generator’s 

inductor reactance. It must be added that the 

switching devices can be controlled using an FPGA 

or a microcontroller. The use of a computational 

system to control the switching devices is inevitable 

and the simplicity of the algorithm does not degrade 

the system’s reliability. 

 

Fig.6: The PSpice model for the TSPC circuit 
 

As it was mentioned before, each block uses 

different values of capacitors. These values are 

shown in the Table I below. 
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Table 1. Capacitor Values 

ω 

(rpm) 

Single Capacitor 

value (mF) 
m 

6 358 1 

8 17,1 1 

10 10,2 1 

12 1,9 1 

14 0,97 1 

16 0,55 1 

18 0,34 1 

20 0,22 1 

 

This configuration requires only 1 active block, 

and therefore, the m value for all the frequencies is 

equal to 1. It is clearly shown that it is feasible to 

drastically reduce the number of blocks used in 

TSSC. In addition, the resistive losses of the 

thyristors will be reduced. The simulation results 

using the TSPC circuit are shown in Fig 7 and 8. 

 

 

Fig.7: The voltage and current waveforms before the 

insertion of the TSPC circuit. 

 

Figure 7 shows the phase delay between the 

current and the voltage. This system has low power 

factor and it suffers from reactive losses.  

 
Fig.8: The voltage and current waveforms after the 

insertion of the TSPC circuit. 

 

Figure 8 shows the voltage and the current lines 

after the insertion of the proposed TSPC circuit. The 

power factor is nearly 1 and the efficiency is greatly 

improved. The simulation results for the phase 

current, output voltage and the output power of the 

TSPC circuit are presented in Figures 9, 10 and 11. 

All the simulation results regarding the phase 

current, the output voltage, and the output power 

using a 1.5 kVA PMSG model in PSpice are shown 

in Figure 9 and Figure 10 below.  

 

Fig.9: Phase current vs PMSG speed 

 

 

Fig.10: Output Voltage vs PMSG speed 
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Figure 9 and Figure 10 show the phase current 

and the output voltage in relation to the generator’s 

speed respectively. Figure 11 shows the output 

power in relation to the generator’s speed.  

 

Fig.11: Output Power vs PMSG speed 

 

It can be clearly seen that the output power is 

very close to the ideal case, and similar to the TSSC 

circuit results. The only difference is that lower 

values of capacitors have been used. In addition, the 

resistive load is much lower, due to fact that only 1 

block, meaning only 1 pair of anti-parallel thyristors 

are active. 

 

 

4 Laboratory experiment 
The frequency of the wind turbine must first be 

measured by using a zero frequency detection 

circuit. That is, we reduce the operating voltage with 

a transformer and measure the operating frequency. 

Basically, it counts for the half-period of the signal. 

Therefore, we know the time of the half period.  

 
Fig.12: Application development board 

Figure 12 shows the control board of the system 

which essentially reads the frequency of the 

generator and connects the capacitors in the system. 

Follows figure 13 that presents arrays of 

capacitors which are used sequentially in the circuit 

to achieve the desired result. 

 
Fig.13: The array of capacitors 

The measurement is done in one phase of the system 

which is representative for the whole system. The 

microcontroller counts the frequency of the network 

signal and reads from an internal table the output it 

should activate. Of course, time is essentially a 

period of time within which this output is activated. 

The microcontroller essentially changes the output 

so it changes the values of the capacitors to which 

they are connected in the circuit. In case of a 

capacitor failure, the controller calculates the 

capacitance that is needed, at that point. By 

combining two or more capacitors, the capacitive 

reactance matches the inductive reactance resulting 

in power factor correction. 
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Fig.14: The array of capacitors 

The flow diagram of the circuit operation shows 

the operation of the application. Depending on the 
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half-life of the AC input signal frequency, the 

corresponding output is activated which places the 

capacitor inside the circuit. Here is an alternative 

application that essentially replaces the variable 

capacitor. 

The following diagrams showing the change in 

wind turbine output using the correct capacitor 

capacitance. The wind turbine output signal is 

presented before and after the improvement with the 

use of a capacitor. Figure 15 and figure 16 shows 

the results before and after the insertion of the TCSP 

circuit into the system. Figure 15 shows the phase 

delay between the back emf voltage and phase 

current.  

 

Fig.15: The array of capacitors 

Figure 16 shows that with the insertion of the 

TCSP into the system the phase between the back 

emf and the phase current is almost zero, which has 

as a result almost unity power factor. Power factor 

correction enables maximum power transfer of the 

generated power, which improves generator’s 

efficiency. The proposed circuit model can be easily 

applied to any generator by simply changing 

capacitors’ values. 

 

Fig.16: The array of capacitors 

 

 

5 Conclusion 
In this paper, the operation of a wind turbine was 

studied and, in particular, the operation without the 

use of a gearbox but with the use of direct drive 

system. For the correct operation of the generator 

while connected to the grid, it is imperative to 

increase the voltage of the generator as well as its 

frequency in the frequency of the grid. The solution 

to this problem is to convert the current, through a 

rectifier bridge, to DC and then with an inverter to 

AC, for subsequent connection to the grid. 

However, this topology has a low power factor due 

to the high inductive response of the generator. 

Modern rectifiers use PWM to convert alternating 

current AC signal to DC but such rectifiers have 

very high switching losses due to the high switching 

frequency [20]. 

The solution proposed is a controlled series of 

capacitors to compensate for the inductive reaction 

of the generator. This methodology can be applied 

to variable frequency, variable voltage systems such 

as wind turbines. The requirement is to correct the 

operating power factor of the inverter, in the whole 

operating frequency range and thus to maximize the 

energy conversion of the wind turbine. 

The PWM rectifier uses high switching 

frequency, to achieve power factor correction, 

which results in high switching losses. However, the 

TCSP uses low switching frequency, which is the 

frequency of the direct-drive wind turbines’ 

generator. This new circuit uses only one capacitor, 

for each change in system’s frequency. A standard 

diode bridge rectifier circuit, an 1.5KVA PMSG, 

and a suitable control board for TSPC circuit were 

tested in the lab. It was proved that by using a 
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suitable capacitor array, a maximum transfer of the 

generated power to the load was achieved. 

Appendix: 

PMSG parameters: 

Maximum output volt-amperes: 1.5kVA 

Maximum back EMF & Current: 230V 

Maximum Current: 16A 

Winding resistance: 6.4 Ω 

Winding inductance: 384mH 
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