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Abstract: - Planning the electricity grid is an ahead-looking process that requires long term prediction for a time 
interval greater than one year. The importance of accurate of long-term load forecasting cannot be overlooked, 
since it provides the future load demand; a crucial factor that is considered in scheduling the generation, 
transmission and distribution of the electrical energy, reliably and economically. In this study real data is used 
and the performance of the combination of the well-established multimodel partitioning filter (MMPF) 
implementing extended Kalman filters (EKF) with Support Vector Machines (SVM), is compared to the one of 
an artificial multilayer layer feed-forward neural network (ANN). The results indicate that both methods are 
reliable, however the combination of MMPF and SVM provides a more accurate long-term load forecasting. 
The proposed method is a useful tool since the electric system administrator based on its forecasts will able to 
use efficiently the current resources in order to meet the forecasted demand using a least-cost plan. 
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1 Introduction 
Forecasting models are widely applied in many 
areas. For example in economics they are used in 
real time GDP forecast, using mixed frequency data 
that includes industrial production, employment, 
private consumption and exports, [1] and in long-
term GDP per capita growth applying the S-shaped 
logistic pattern [2].  

In [3] parametric and non-parametric models are 
tested and compared upon their forecasting power 
on implied volatility indices. Another application 
concerning financial time series forecasting is called 
the random walk dilemma and a possible solution is 
a novel method called increasing decreasing linear 
neuron as presented in [4].  

In the area of business large international data 
sets are used to analyze whether business cycle 
forecasts herd or antiherd with strong indications for 
the second [5]. Additionally in [6], the authors 
propose a new modelling methodology for 
forecasting the spare part demand for electronic 
commodities in the spare parts logistics services.  

Another active research area is medicine and 
concerns the public health planning, especially 
during outbreaks via real time forecasts of infectious 
diseases [7].  

In agricultural a combination of short term 
weather forecasts are applied in order to accurately 
predict certain factors, such as maximum and 
minimum daily temperatures, precipitation and 
radiation, whose knowledge greatly benefit cost 
effective decision making [8]. 

One more application concerns aviation and 
more specifically the improvement of the accuracy 
of airport weather forecasts by learning from the 
relationships between previously modelled and 
observed data, based on a new machine learning 
methodology [9]. 

Wind speed forecasting is another important 
active research area. In [10] a novel hybrid approach 
is presented, able of tackling the problem 
successfully. 

Finally new efficient methods for short term or 
long term electricity demand load prediction are 
presented in [11-16] using ARMA, ARIMA and 
SARIMAX models and in [17-23] by applying 
artificial neural networks, support vector machines 
and hybrid methods. 

It is well known that the electrical energy 
consumption has been significantly increased 
worldwide due to industrial development and also 
due to economic and population growth.  
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Therefore it is essential for a country’s power 
system to include a careful and strategic planning in 
terms of equipment and facilities expansion, in order 
to meet its customer’s present and future electric 
demand reliably. 

An accurate long-term energy consumption 
forecasting is essential because it can lead to a 
successful schedule as far as the maintenance and 
development of the existing power generation plants 
is concerned and also to a low cost economic plan, 
in terms of buying new equipment, investing to the 
appropriate electrical power production technologies 
(either renewable or non-renewable), expanding and 
modernize the existing distribution network. 

The problem with long-term forecasting is that is 
being influenced by a number of factors, such as the 
overall existing capacity, the average ambient 
temperature, humidity, the energy consumption per 
person, the gross domestic product (GDP) and many 
more. 

In Greece the economic recession has led to a 
20% decrease of GDP and at the same time to an 
increase of 20% in the price of oil. This had as a 
result the increase of the electric demand, especially 
for heating during the winter, since the KWh price 
was more economical [24]. Finally the increase of 
the highest temperature during the summer months 
has led to extensive use of air conditions and other 
cooling devices increasing further the load demand 
[25-27].  

The power generation network was able to 
respond and cover the extra load demand mainly 
due to the increased power production using natural 
gas and renewable sources and also through imports 
of electrical energy [28].  

Figures 1 and 2 indicate the above mentioned 
features. 

 

Figure. 1: The Greek installed capacity and Annual 
Electric Energy per person from 2004 – 2018. 
 
 

Figure 2: The Greek final energy consumption and 
gross domestic product from 2004 – 2018. 
 
 

2 Adaptive techniques 

2.1 The MMPF method 
The multi model partitioning filter (MMPF) was 
initially proposed and presented by Lainiotis in [29-
31] and since then it has been successfully applied 
in a numerous applications such as the modelling of 
the grounding resistance variation [32], order and 
parameter estimation of multivariate (MV) ARMA 
models [33-34], electric load modelling and 
forecasting [11-13], wind speed prediction 
combined with support vector machines (SVM) 
[10], network anomaly detection [35], multiple 
source detection [36], towed array shape estimation 
[37] and finally combined with genetic algorithms 
for data mining [21, 38-39]. 

The method proposed is based on a hybrid model 
that combines the adaptive MMPF [11-13], known 
for its stability, with SVM. The idea of combing 
these two methods for long-term electric load 
forecasting came from the fact that it was 
successfully applied for wind speed prediction [10], 
as well as mid-term and short-term load forecasting 
[21]. The data used now is not subjected to any prior 
– offline manipulation in order to remove weekly 
and annual seasonality as was done in previous 
cases [13]. To tackle this problem the MMPF 
implements a bank of extended Kalman filters 
(EKF) with ARMA models instead of simple 
Kalman filters (KF) with ARMA models in order to 
handle data’s non-linearities. MMPF with EKF 
combined with genetic algorithms (GA) were 
successfully applied in prediction of epilepsy and in 
the evolution of stock values using biomedical and 
financial data respectively [39]. 

The method is analytically presented in [10] and 
[21] but a brief description will be also presented 
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here. Figure. 3 represents a block diagram of the 
adaptive method proposed.  

After several trials it was noted that only one 
ARMA model is not able to accurately describe the 
input data series. However if someone combines 
several ARMA models of different order θ, for 
different time periods and for different time 
duration, then the existing data will be satisfactorily 
described. 

Therefore instead of having several ARMA 
models, of different order θ running in parallel with 
the SVM, the authors decided to load the data into a 
single MMPF. The job of this filter is to decide 
which ARMA model is suitable each time,  

Let’s assume that the order of the ARMA model 
that fits the data is θ =(p.q) then our problem in 
state-space form can be written as: 

( 1) ( )k + kx x  (1) 

( ) ( ) ( ) ( )k k k k y H x v  (2) 
Now a new variable λ is assigned as λ=max (p, 

q). Then x(k) is an m2 (λ+λ) × 1 vector made up from 
the coefficients of the matrices {A1, ..., Αλ, B1, ..., 
Bλ,}, H(k) is an m × m2 (λ+λ) observation history 
matrix of the process {y(k)} up to time k-(λ+λ). 

If the general form of the matrices Aλ and Bλ is 
respectively: 
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where I is the m × m identity matrix. 
Assuming that the system model and its statistics 

were completely known, the Kalman filter (KF) is 
the optimal estimator in the minimum variance 
sense. 

However if the system model is not completely 
known the MMPF, is one of the most widely used 
approaches for similar problems [33-38].  

In the case under consideration assume that the 
model uncertainty is the lack of knowledge of the 
model order θ. Let us further assume that the model 
order θ lies within a known sample space of finite 

cardinality, i.e. that 1≤ θ ≤ M, θ, where  
denotes the set of integers. The MMPF operates on 
the following discrete-time model: 

( 1) ( 1 ) ( ) ( )k + k + ,k / θ k k x F x w  (6) 

( ) ( / ) ( ) ( )k k θ k k y H x v  (7) 
where θ is the unknown parameter - the model 

order in this case- F is the state transition matrix and 
w(k) is independent, zero mean, white noise not 
necessarily Gaussian with covariance Q which is 
usually set to a small positive non zero constant. 
The optimal MMSE (Minimum Mean Square Error) 
estimate of x(k) is given by: 

ˆ ˆ( / ) ( / ; ) ( / )
M

j j
j 1

k k k k p k


  x x  (8) 

A set of M (10 in this work) models is designed, 
each matching one value of the parameter vector, 
{(1,1), (2,2),…(M,M)}. The probabilities p(θj/k) for 
each model are set to 1/M, where M is the 
cardinality of the model set. The number of the 
models to be designed is a trade-off between 
accurate estimation and computational time. The 
greater the number of the models designed, the more 
accurate the prediction, but at the same time the 
greater the computational burden. However for 
long-term predictions that are usually performed 
off-line, this is not a disadvantage. Literature shows 
that up to 10 models are adequate even for on-line 
applications. [33-39]. 

A bank of EKF is applied, one for each model, 
which can be run in parallel. This means that 
enormous computational time can be saved. At each 
iteration the MMPF selects the model which 
corresponds to the maximum posteriori probability 
as the correct one. This probability tends to one, 
while the others tend to zero. The overall optimal 
estimate can be taken either to be the individual 
estimate of the elemental filter exhibiting the 
maximum posterior probability (MAP) or the 
weighted average of the estimates produced by each 
filter which the case used in this paper. 

The probabilities are calculated in a recursive 
manner as it is shown in equations 1 and 2. 
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where the innovations process  
 ( ) ( ) ( ; ) ( )j j jk/k - 1; k k k/k - 1;   y y H x  (11) 

is a zero mean white process with covariance 
matrix  

 ( ) ( ) ( ) ( )j j j jy
k/k -1; k; k/k; k;    TP H P H R  (12) 

For all the above equations j = 1,2,…,M. 
 
 

2.2 Support Vector Machines 
In support vector machines, the training data set 

, 1,...,d
ix R i N   is mapped into a higher 

dimensional feature space, via an operator Φ.  
A mathematical representation of the SVM 

function is: 
 · ( )    y x b    (13) 
where ω and b can be found by the minimization 

of the following equations: 
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where parameters C and e are user defined. The 
term hi is the actual wind speed at the time instant j 
and term ( )e i iLf h y  is the loss function. By 

looking at equation (15) it is obvious that there is 
any penalty for errors below e. The width of the 

function is given by the term 
21

2
  and finally the 

training error term is given by 
1

1
( )

M

e i i
j

C Lf h y
M 

 , 

where C is the trade-off between the width of the 
function and the minimum training error. For 
dealing with non linear cases, like wind speed data, 
one may introduce slack variables ξ and ξ* into 
equation (13) such that : 

*· ( )  –   e       j j j jb h      (16) 

j( · ( )  )   e j j jb h        (17) 

where *, 0,j j    and j = 1,2,…M. 

By considering the above slack variables and in 
order to include any extra cost of the training errors, 
equation (14) which represents the objective 
function to be minimized is rearranged to: 
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where again C* is user defined and is the trade 

off between the maximum margin defined by   

and the minimum training error as defined by 
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Finally by introducing positive Lagranian 
multipliers and maximizing equation  (19) the latter 
equation is reformed to: 
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also where j = 1,2,…M . 

The Lagranian multipliers, *,j ja a  satisfy 
** 0j ja a   and  

* *
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l
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The Kernel function ( )iK x x  introduced in 

equation (21) is defined such that 

( )j i i jK x x Φ(x )·Φ(x )  , meaning that its value 

is equal to the inner product of the vectors xi and xj, 
included in the featured space Φ(xi) and Φ(xj). 

In this study the Radial Basis Function (RBF), is 
used.  

2

22
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2.3 The proposed method 
The weighted average of the estimates, L(t), 
produced by the elemental ARMA filters were used 
as a data pre-processor in order to detect the data’s 
linearities. This was succeeded using a bank of 10 
Extended Kalman filters of order (1,1), (2,2), (3,3), 
…,(10,10) programmed with the MMPF. 

Then the MMPA’s estimation error, e(t), was 
applied as input to the SVM , an analytical 
description can be found in [10], that was able to 
achieve a further error reduction and come up with a 
better forecasting outcome, NL(t). 

As far as the SVM is concerned all of its 
parameters had to be carefully adjusted by trial and 
error. Unsuitable values for these parameters may 
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lead to either over fitting or under fitting of the 
training data.  

The most significant feature of the SVM 
compared to other similar algorithms is that it 
manages to achieve optimum performance by 
restricting the complexity of the objective function 
so that is the most suitable according to the quantity 
of the data present. 

 

Figure 3: Schematic Representation of the proposed 
method (for a better image resolution see at the 
end of the article) 
 

The output of hybrid model can be represented 
as: 

t t tQ L NL   (23) 
Both parts are directly calculated from the 

electric load time series. 
If e(t) is the MMPF estimation error at any time 

instant t, then: 


t t te Q L   (24) 
It is now the SVM that models these residuals as: 

( 1) ( 2) ( )( ) ( , ,..., )t t t ne t f e e e t     (25) 

where f is non linear and Δt is random error. 
Consequently the forecast of the hybrid model is: 

  
t t tQ L NL   (26) 

 
 

2.4 The ANN method 
The structure of the artificial neural network applied 
in this work is analytically presented in [23] and a 
schematic diagram of its architecture is depicted in 
Figure 4. 

It is a typical feedforward multilayer perceptron 
model (MLP), with an input layer of source 
neutrons, at least one hidden layer of computational 
neurons and an output layer of computational 
neurons. Although there are many types of ANN to 
be used, the one selected is appropriate due to its 
small solution network and quick computational 
speed, automatic generalization of knowledge 
enabling the recognitions of data sets, minimization 

of the mean squared error and its supervised 
training. 

Thousands of MLP ANN were designed and 
tested as a combination of five backpropagation 
learning algorithms, five transfer functions consisted 
of 1-5 hidden layers with 2 to 100 neurons in each 
hidden layer (Table 1). The Matlab neural toolbox 
was extensively used to train, develop and validate 
the ANN [42].  

Figure 4: Schematic Representation of the ANN 
designed. 

 
Table 1 Designed MLP ANN models 

Structure 
Learning 
Algorithm 

Transfer 
Function 

- 1 to 5 hidden 
layers 

- 2 to 100 neurons 
in each hidden 
layer 

- Gradient Descent 

- Quasi-Newton 

- Levenberg-
Marquardt 

- Random Order 
Incremental 

- Conjugate 
Gradient 

- Hyperbolic 
Tangent Sigmoid 

- Logarithmic 
Sigmoid 

- Hard-Limit 

- Competitive 

- Linear 

 
2.5 Data 
The inputs for both proposed methods are namely 
the installed power capacity (IPC) and the annual 
electric energy consumption per capita, provided by 
the Independent Power Transmission Operator 
(ADMIE) [28], the yearly ambient temperature 
(YAT) provided by Greek national meteorological 
service [27] as well as the gross domestic product 
provided by Eurostat [40]. The output will be the 
final energy consumption (FEC) provided by the 
International Energy Agency [41]. 
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3 Results 
Table 2 and Figure 5, indicate that both methods 
perform well and their predictions are very close to 
the real values since their absolute percentage error 
is not grater that 3%, with proposed method having 
the lowest absolute percentage error (APE(%)).  

 
Table 2 Comparison Results 

 Final Energy Consumption 
(1000 TOE) 

Year Proposed 
Method 

       I 

ANN 
 

II 

Real APE 
(100%) 
I       II 

2012 17420 16474 17000 2.47  3.09 
2013 15624 14852 15300 2.12  2.93 
2014 16667 15837 16300 2.25  2.84 
2015 17456 16621 17100 2.08  2.80 
2016 18391 17486 18000 2.17  2.86 
   Average 

APE 
 

2.22  2.90 

 
Figure 5: Comparison of the predicted values 

produced by the two adaptive methods with the real 
ones.  
 

The absolute percentage error is defined as: 

ሺ%ሻܧܲܣ ൌ 	
หிா஼ೝ೐ೌ೗	ିிா஼೛ೝ೐೏೔೎೟೐೏	ห

ிா஼ೝ೐ೌ೗
. 100%  

 
The proposed method has constantly an APE(%) 

less than 2.5 while the ANN’s is closer to 3. 
Another interesting point for further research, is that 
the proposed method overestimates the final value, 
while the ANN underestimates it.  

The MMPF is indeed adaptive but it has a main 
disadvantage which is that in its initial structure is 
not able to handle non-linearities and seasonalities. 
Its implementation with the EKF tackles the 
successfully non-linearity problem but not the 
second one.  

A solution to this comes with its combination 
with the SVM. The problem of complexity and 
computational burden is overcome since the 
separate EKF’s can be parallel implemented, thus 
saving enormous computational time.  

A decision of how many EKF’s have to be 
implemented needs to taken. Literature shows [33, 
39] that a maximum number of 10 parallel EKF’s is 
adequate in producing a reliable and fast prediction. 

At this point it should mentioned that there also 
other values affecting the energy consumption, such 
as electricity price, number of installed air-
conditions, amount of CO2 pollution and many more 
for which no real data was able to be found. 
 
 

4 Conclusions 
The paper presents two adaptive techniques, for 
long-term electric load demand prediction. The data 
used was real and was collected from Independent 
Power Transmission Operator, Eurostat, Authority 
of Hellenic Statistics, Greek National 
Meteorological Service and International Energy 
Service were used. 

The results showed that both methods 
successfully tackled the problem, however the 
proposed method’s performance is slightly better in 
terms of absolute percentage error. 

Both methods considered can be a useful tool for 
the Greek electric utilities and regulation authorities. 
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APPENDIX 

 

 

 

Figure 3: Schematic Representation of the proposed method 
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