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Abstract: - Let  , ,G   be a variable exponential  p

L
  operator algebra dynamical system, let   be  p  -

incompressible. We establish that when     ,p P     1 ,m Sp p g p g G       is not identical to 

2  then mapping  p 
  from       ˆ ˆ, , , ,p p

F G F G  
 

  to       
p

p
LK l G




   is an isometric 

isomorphism if and only if the group G  is finite. When G  is finite then the isometric isomorphism  p 
  is 

equivariant for actions double dual actions:       ˆ ˆˆ ˆ: , , , ,p p
G F G F G  

 
   and 

        
: p

p
Ad G LK l G 




    .  

 
Key-Words: - variable exponent Lebesgue space, Takai duality, spectral theory, variable exponential operator 
crossed product, variable exponential operator algebra. 
Subject classification codes: 46H05, 46H35, 22D35, 47L65, 43A25. 

Received: June 11, 2024. Revised: January 6, 2025. Accepted: April 9, 2025. Published: June 6, 2025.   

 
1 Introduction 

The preeminent inducement of Pontryagin 
and Takai duality is the definition of the dual group 
Ĝ  of locally compact group G  as a topological 
group homomorphism from G  to the circle group 
S1 . The Takai duality theorem [14, 15] states that 
the iterated crossed product  ˆĜ G     is 

isomorphic to    max, ,KL L G   2 . The 
proof of this statement depends on the Fourier 
transform and so on the Hilbertian properties of 

 , ,L G 2 . 

In the present article, we establish the 
analog of the Takai duality for the variable 
exponential  p

L
  operator algebra dynamical 

systems [14, 15]. Our main goal is to answer the 
question: what are conditions under which there 
exists an isomorphism  p 

  between the iterated 
variable exponent  p

L
  operator crossed product 

      ˆ ˆ, , , ,p p
F G F G  

 
  and the tensor 

product       
p

p
LK l G




  ? Here, we 

introduced a variable exponential    p
L

  operator 
algebra as isometrically isomorphic of a norm 
closed subalgebra of     , ,p

LB L 

   for some 

appropriate measure space  , ,G  ; and the dual 

action     ˆˆ : , ,p
G Aut F G 


   is defined 

as an extension of  -isomorphism 
   ˆ : , , , ,C CC G C G      given by 

      ˆ f g g f g   for 

 ˆ, , , ,Cg G G f C G     . By continuity, 
isometrically isomorphism 

   ˆ : , , , ,C CC G C G      extends to 
    ˆˆ : , ,p

G Aut F G 


  . The double dual 

action       ˆ ˆˆ ˆ: , , , ,p p
G F G F G  

 
   is 

given       ˆ̂ , ,h F g h F g     for all 

 ˆ ,CF C G G   , ˆ, ,g h G G  . 
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Classical results on the duality theory for 
crossed products of Banach algebras were obtained 
by H. Takai (1975) and M. Takesaki (1973) [14, 
15].  Due to the variety of applications to the K-
theory of operator algebra, the duality theory for 
operator crossed products is a rapidly developing 
branch of mathematics [2, 11, 13, 16, 17].  We 
mention the work of Y. C. Chung, K. Li studied an 
isometric isomorphism between the pl  uniform Roe 
algebras they obtained a bijective coarse 
equivalence between the underlying metric spaces 
[4]; N. C. Phillips investigated the crossed products 
of pL operator algebras [11]; Z. Wang and Y. Zeng, 
and S. Zhu studied the Takai type duality for pL
operator crossed products [16, 17]; for general 
reference see [1, 3, 5 – 10, 12, 19, 20].  

In this article, we establish that 
homomorphism  

        
      

ˆ ˆ: , , , ,p p p

p

p

F G F G

LK l G

 
  





  

  
 

is an isometric isomorphism if and only if the group 
G  is finite. We denote right representation by   

    : p
G LB l G


    and 

    : p
Ad G LK l G


  so that 

       Ad g T g T g    1 . If the group G  
is finite, the isometric isomorphism 

               
ˆ ˆ: , , , ,p p p p

p
F G F G LK l G 

   


    

 is equivariant for actions 
      ˆ ˆˆ ˆ: , , , ,p p

G F G F G  
 

   and 

        
: p

p
Ad G LK l G 




    . 

2. Variable exponential 
 p

L


 operator 

matrix norms 

Although we will use matrix normed spaces, 
we are going to define a more general concept of 
operator tensor algebra.  

Definition 1. Let  ,nM n N  be the 

algebra of n n  complex matrices.  Let   be a 

complex algebra. The algebra   nM   is defined 

as nM   given by  

 , , ,, ,....,
, ,....,

j k j k j kj k n
j k n

a e a





1

1

.             (1) 

We can generalize this definition to the 
tensor algebra nT   as follows.  

Definition 2. Let  nT  be the standard 

algebra of ...
i

n n   complex tensors of rank i.  

Let   be a complex algebra. The algebra   nT   

is defined as nT   given by  

 ,..., ,..., ,...,,..., ,....,
,..., ,....,

.
i i i

i
i

k k k k k k
k k n

k k n

a e a




1 1 1
1

1

1
1

(2) 

The operations xa  and ax  for nx T  and 

 na T   is defined accordingly to standard tensor 
law.  

Definition 3. A tensor normed algebra is a 

complex algebra   equipped with a function  

 : nn
T R    that satisfies the following 

condition: 

1)  for any 

   ,..., ,..., ,....,i
i

k k n
k k n

a a T


  
1

1 1
 , for any 

injective functions 

   : 1, 2, ..., 1, 2, ..., , ,k m n m n k i    ,                                

(3) 

we request  

 ,..., ,..., ,....,i
i

k k nk k m
m

a a



1

1 1
;         (4) 

2)  for any  na T   and for any set 

 1, , ..., n

n C   2  so that 

 1, , ..., n nz diag T   2 , we request  

 

 1

max ,

max , , ..., ;
n n

n n

az za

a  




2

                    (5) 
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3)   for any  na T   and any 

 mb T   we request  

   , max ,
n mn m

diag a b a b

 .     (6) 

Proposition 1. Let   be a tensor normed 

algebra, then estimate 

,..., ,...,,..., ,...., ,..., ,....,
max

i i
i

i

k k k knn nk k n
k k n

a a a




  1 1
1

1

1
1

                                                      

(7) 

hold for all     ,..., ,..., ,....,i
i

k k n
k k n

a a T


  
1

1 1
. 

The proof is straightforward.  

Proposition 2. Let   be a tensor normed 

algebra and let J  be a closed ideal. Then, the 

norm  : /nn
T J R    is identified with 

   /n nT T J , and the algebra / J  is a tensor 

normed algebra such that the quotient map is 

completely contractive.  

Proof. We assume 
   : 1, 2, ..., 1, 2, ..., , ,k m n m n k i    . 

We denote the quotient mapping : /q J , 
and  

   ,..., ,..., ,....,i
i

k k n
k k n

a a T


  
1

1 1
 

and  

   ,..., ,..., ,....,
/

i
i

k k n
k k n

y y T J


  
1

1 1
 

such that  nq a y  and 
n n

a y    for 
arbitrary 0  . We obtain  

    ,..., ,..., ,....,i
i

q k q k
k k m

m

y



1

1 1
 

    ,..., ,..., ,....,

,

i
i

q k q k
k k m

m

n n

a

a y 


 

  

1
1 1  

which proves proposition 2.   

Definition 4. Let    p P   , 

 1 ,m Sp p x p x     , and let 

 , ,    be a measure space. The Banach 

algebra 
    , ,p

LB L 


    can be endowed 

with the matrix norms by prescription   nM   to 

closed subalgebra of 
     1, 2, ..., ,p

LB L n  


  , where the set 

function    is countable measure on   1, 2, ..., n . 

The natural Luxembourg-Nakano norm is 
given by 

 

 

inf 0 : 1p

p j

j

l
j


 




   
    
 

   

          (8) 

for all  p
l


 . 

Definition 5. Let    logp P E  , 

 1 .m Sp p x p     Let E  be a measurable 

set with countable measures on E . Then, variable 

exponential spaces 
 p

l


and 
 p

dl


 are defined as 

    : 0p
l z Z z


   and 

      1, 2, ...,p p

dl l d
 
  with the operator norm. 

Let    logp P E  , 

 1 m Sp p x p    , and let E
1  be a finite 

subset of E . The set  p

EM


1
 consists of all elements 

    p
a L l E


  such that 0a  , 0

E
 

1

, and 
       p p

a l E l E
 

 
1  for all    p

l E


 , 

then the set  p

EM
  is given    p p

E E

E E

M M
 




1

1

 for 

all finite E
1 ; and the  p

L
  operator algebra 

    
  p

p

ELB l E
clos M



   contains the operator algebra 

    p
LK l E

  or more precisely 

    
       p

p p

ELB l E
clos M LK l E



 
  since all 

elements of     p
L l E

  have finite rank. Thus, the 
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 p
L

  operator algebra     
  p

p

ELB l E
clos M



   is a 

closed subalgebra of     p
L l E

  such that 

    p
LK l E

 . 

3. Variable exponential 
 p

L


 operator 

algebras 

Let  , ,G   be a variable exponential 
dynamical system, where G  is a commutative 
locally compact, separable group, let   be a 
Banach algebra, and  :G Aut    be a 

continuous homomorphism. Let Ĝ  be a dual of G .  

Definition 6. Let    p P   , 

 1 ,m Sp p x p x     , and let 

 , ,    be a measure space. The Banach 

algebra  , which is isometrically isomorphic to a 

norm closed subalgebra of 
    , ,p

LB L 

  ,   

is called a variable exponent 
 p

L


 operator 

algebra.  

The Banach algebra   is  p  -

incompressible if for each variable exponential 
 p

L


 space E , each contractive injective 

homomorphism  : LB E   is isometry.  

Banach algebras     , ,p
LB L 


   and 

    , ,p
LK L 


   are examples of a variable 

exponent  p
L

  operator algebras. We will always 
assume that   is  p  -incompressible. 

Assume  B X  is the C -algebra of all 
linear bounded operators X X . Assume the map 

 : LB X    is a representation of  . The 
representation   is called  -finite if the measure 
  is  -finite. Let  :v G LB X  be an 
isometric group representation such that  

 g v g   is strongly continuous for all X  
and equality  

        ,v g a v g g a  



1
                (9) 

holds for all ,g G a  .  

With each covariant representation  , v  

of the dynamical system  , ,G  , we uniquely 
associate a representation  

   : , ,Cv C G LB X       (10) 

given by 

           
G

v f x f h v h x d h        

(11) 

for all  , ,Cf C G    and all x X .  

Definition 7. The completion of 

 ,CC G   with respect to the enveloping norm 

defined by   

 
  

 
  

,
sup : , ,

env

CLB X
v

f

v f f C G


 



  
                                           

(12) 

is called the full-crossed product  
   , ,p

G F G 


     . 

The representation 
   : , ,Cv C G LB X     can be uniquely 

and continuously extended to the representation 

     : , ,p
v F G LB X 


     

since G    is enveloping C -algebra of the 

Banach algebra  ,L G 1 . 

Definition 8. Let  , ,G   be a dynamical 

system, and let 
   , ,p

R G 


  be the class of 

nondegenerate  -finite contractive regular 

covariant representations, then we define the norm 

of the reduced space by 
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   

     

       

, ,

, ,
, , ,

sup

p

R

p
p

F G

LB L
v R G

f

v f




 










 
 




.      (13) 

The reduced  p
L

  operator-crossed product 
   , ,p

RF G 


  is the completion of  , ,CC G   

in the norm    , ,p

RF G 



 . 

Proposition 3.  Let    logp P E  , 

 1 .m Sp p x p     Let E  be a measurable 

set with countable measures on E . Then, algebra 
   p p

E F

finite F E

M M
 



   is a subalgebra of 

    p
LB l E


, the closed algebra 

  p

Eclos M


 is 

subalgebra of 
         .p p

LB l E LK l E
 

  

The proof follows from the finiteness of all 
elements of subalgebra  p

EM
 .  

In our previous investigations, we showed 
that   p

Eclos M
  coincides with     p

LK l E
 . 

Let function  f C 0 , we define an operator 

       m f x f x x   for all x  and all 
   , ,p

L 


   , then the mapping  

 f m f  is an isometric isomorphism from 

 C 0  into closed subalgebra of 
    , ,p

LB L 

  . 

In variable exponent Lebesgue spaces 
   , ,p

L G 


 , the Young convolution inequality 

   p p
L L

f c f   
1

 holds if and only if p  is 
a constant.  

Let        log, ,p r s P G     such that   

   
1 1 1 ,

s g p g p

   

1 1 11 ,
t p r 

  
1

 

1 1 11 ,
m St p r

  
2

 

then the convolution operation 
              : Sp r rt t

L G L G L G L G L G
 

    1 2

 is bounded.       

Let 

 
 

        
    

:

, ,

p t t

p

p

L G L G L G

LB L G











  

 

1 2

 

be the left regular representation.  

Proposition 4.  Let G  be a communicative 

locally compact group, and let  
        p t t

f L G L G L G


  1 2 . Then, we have  

1) 

   
 

   
 

 
 

 
, ;

1

p

q

p
L

q
L

f

p g
f q g

p g















 


                                               

(14) 

2)  assume    2 Sr g p g p    or 

   1 2mp p g r g     then 

   
     

 r pr p
L L

f f 
  
 . 

Preposition 5.  Let G be a locally compact 

commutative group, let    logp P E   and p  

does not identically equal 2 . Then, we have two 

statements: 

1) the Gelfand transform  
     : p

F G C G


 

0  is a dense range, 

injective contractive mapping;  

2)  
     : p

F G C G


 

0  is surjective 

if and only if the group G  is finite. 

Proof. Assume    1 2mp p g r g     

then we have     r p
L L

f f   since 

   
     

 r pr p
L L

f f 
  
 , so there exists a 
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contractive homomorphism        p r
F G F G 

 


. Assuming the group G  is finite then the 
homomorphism        p r

F G F G 

 
  is 

surjection with dense range since    r
F G

  is finite 
dimensional. Assuming the group G  is infinite then 

       p r
F G F G 

 
  cannot be surjective since 

even if p  is constant different from 2  mapping 
       p r

F G F G 

 
  is not surjective. If  

   2 Sr g p g p    the arguments are similar.  

4. The Takai duality for variable 

exponential 
 p

L


 operator crossed 

products  

The Pontryagin Duality theory states the 
existence of canonical isomorphism  Gev  between a 
locally compact commutative group G  and its 

double-dual ˆ̂
G  so that     Gev g g S   1 . 

Analogously, let   , ,G   be a dynamical 
system, the classical Takai duality theory asserts the 
existence of an isomorphism   between  

 ˆĜ G     and    max, ,KL L G   2  

such that the isomorphism  is equivariant for 

 ˆ
ˆ ˆˆ :G G G       and 

    : , ,Ad G KL L G     2 . 

The important issue is to extend the Takai 
duality theory to variable exponent  p

L
 - operator 

crossed products. Let   be a separable unital 
variable exponent  p

L
  operator algebra with 

variable exponent  p
L

  operator matrix norms, and 
let  , ,G   be a variable exponent  p

L
  operator 

algebra dynamical system. We consider the 
homomorphism      

        
      

ˆ ˆ: , , , ,p p p

p

p

F G F G

LK l G

 
  





  

 
,      (15) 

which we present in the form of the composition 
 p 

   
3 2 1  of  

      
      

ˆ ˆ: , , , ,

ˆ ˆ, , , ,

p p

p p

F G F G

F G F G

 

  

 

 

  

 

1

,        (16) 

      
    

ˆ ˆ: , , , ,

, , ,

p p

p

F G F G

F G C G lt

  



 



   

 

2

0

,   (17) 

    
      

: , , ,p

p

p

F G C G lt

LK l G








   

 

3 0

,   (18) 

where we denote ˆ: G   a trivial action, and a 
dual action is given by  

    ˆˆ : , ,p
G Aut F G 


  . 

In this case,  group G  is a discrete 
communicative and   is a variable exponential 

 p
L

  operator separable algebra with  p
L

  operator 
matrix norm. Then, homomorphisms 1  and 3  
are isometric isomorphisms, and  2  is isometric 
isomorphism if and only if the group G  is finite. 
When the group G  is finite, the isometric 
isomorphism  p 

   
3 2 1  is equivariant 

for the       ˆ ˆˆ ˆ: , , , ,p p
G F G F G  

 
   and 

        
: p

p
Ad G LK l G 




    . 

We formulate the main theorem of this 
paper. 

Theorem 1. Let G  be a discrete 

communicative group and let   be a variable 

exponential 
 p

L


 operator separable algebra with 
 p

L


 operator matrix norm. Then, there exists an 

isometric isomorphism 

        
      

ˆ ˆ: , , , ,

,

p p p

p

p

F G F G

LK l G

 
  





  

 
 

 which is equivariant for actions 
      ˆ ˆˆ ˆ: , , , ,p p

G F G F G  
 

   and 
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        
: p

p
Ad G LK l G 




     if and 

only if the groupG  is finite. 

Proof. We define the homomorphism 
      , ,F h h F h   1 , which acts from 

 ˆ ,CC G G   to  ˆ ,CC G G  . So defined 

isomorphism 

   ˆ ˆ: , ,C CC G G C G G     
1

 extends to 

the isometric isomorphism  

      
      

ˆ ˆ: , , , ,

ˆ ˆ, , , ,

p p

p p

F G F G

F G F G

 

  

 

 

  

 

1

. 

The isomorphism 3  can be presented in 

the form of the combination    3 2 1 , where 
isometric isomorphism  

    
    

: , , ,

, , ,

p

p

F G C G lt

F G C G lt id






   

 

1 0

0

 

is given by      , , ,F g h h F g h  1

1  for 

all ,g h G   and  ,CF C G G   ; and 
isometric isomorphism 

    
      

: , , ,p

p

p

F G C G lt id

LK l G







   

 

2 0

 

is defined by  

         ,
G

F g F h g h g d h    
1

2  

for all  , ,CF C G G    

     p

CC G L G


  , and all g G .  

Isometric isomorphisms 1  and 2  extend 

to isomorphism from     , , ,p
F G C G lt 


 

0  

to     , , ,p
F G C G lt id


 

0 , and from 
    , , ,p

F G C G lt id


 
0  to 

      
p

p
LK l G




  , respectively. The 

combination  2 1
 defines isomorphism from 

    , , ,p
F G C G lt 


 

0  to 
      

p

p
LK l G




  .  

Thus, for arbitrary discrete communicative 
groups G , we obtain that 

1
 and 

3
 are isometric 

isomorphisms. We define a mapping 
2
 from 

 ˆ ,CF C G G    to   , ,CC G C G 0  given 

by  

        
ˆ

ˆ, ,
G

F g h F g h d     2  

for all  ˆ ,CF C G G   . 

The Gelfand transform 
     : p

F G C G


 

0  coincides with the 

Fourier transform on  ˆL G1 , therefore, from 

proposition 5, we have that in order for the mapping    

      
    

ˆ ˆ: , , , ,

, , ,

p p

p

id

F G F G

F G C G lt



  



 



 

   

 

2

2

0

 

to be isometric isomorphism it is necessary and 
sufficient that the group G  is finite. 
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