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1 Introduction 
 
Denote by 𝐻 the set of analytic functions in the unit 
disk 𝑈 = {𝑧 ∶ |𝑧| < 1}, and let 𝐴 ⊂ 𝐻 be the subset 
of normalized analytic functions f in U such 
that 𝑓(0) = 𝑓′(0) − 1 = 0. Consider 𝑛 ≥ 1, 
We define 𝐴𝑛 as the set of analytic functions in U of 
the form  

𝑓(𝑧) = 𝑧 + 𝑎𝑛+1𝑧𝑛+1 …      (1) 
For 𝑛 ≥ 1. Additionally, we set 𝐴1 = 𝐴. Consider 
an element 𝑓(𝑧) ∈ 𝐴 that satisfies: 

|𝑎𝑟𝑔
𝑧𝑓′(𝑧)

𝑓(𝑧)
| <

𝛼𝜋

2
             (𝑧 ∈ 𝑈).      (2) 

For 0 < 𝛼 ≤ 1, a function 𝑓(𝑧) is considered 
strongly starlike of order within 𝑈. This class of 
functions is denoted by 𝑆 ̅∗(𝛼), with the special case 
of 𝑆̅∗(1) = 𝑆. Additionally, if a function 𝑓(𝑧) ∈ 𝐴 
satisfies: 
|arg (1 +

𝑧𝑓"(𝑧)

𝑓′(𝑧)  )|< 𝛼𝜋

2
 ,   (𝑧 ∈ 𝑈).  (3) 

According to the definition of 𝐾̅(𝛼), for some 0 <
𝛼 ≤ 1, 𝑓(𝑧) is a strongly convex function of order 𝛼 
in 𝑈. Keep in mind that 𝐾̅(1) = 𝐾 and that 𝑓(𝑧) ∈
𝐾̅(𝛼) if 𝑧𝑓′(𝑧) ∈ 𝑆 ̅∗(𝛼). 
It is obvious that the scenario (2) is similar to 
 
𝑧𝑓′(𝑧)

𝑓(𝑧)
 ≺ (

1+𝑧

1−𝑧
)

𝛼
,                     (4) 

where ≺ denotes the usual subordination. 
Each of the aforementioned classes is a subclass of 
the univalent functions in U. 
Numerous studies have produced numerous findings 
about the necessary requirements for functions 𝑓(𝑧) 
that are analytic in U to be starlike, convex, highly 

starlike, and strongly convex functions. (See [1], 
[6], [8], [9], [10], [12], [15]). 
Here, we introduce a requirement that must be met 
in order for 𝑓 ∈ 𝐴𝑛 to satisfy: 

𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

1+𝜇
≺ 1 + 𝜆𝑧,   0 < 𝜇 < 1, 0 < 𝜆 < 1,

                         (5) 
is in 𝑆(𝛼). We also take an integrated 
transformation into account. 
 

 

2 Several necessary conditions for 

strongly starlikeness 
 
It can be noted that the values for in (5) were 
originally established by the author in [11], 
implying starlikeness in U. Subsequently, 
Ponnusamy and Singh [14] identified the condition 
that characterizes strongly starlikeness of order α 
(excluding 𝜇 < 0) in (5). 
We take strongly starlikeness into account in the 
case (5) using a similar methodology as in [14]. 
The following lemma is the first one we cite. 
 
Lemma 1. Consider 𝜚 ∈ 𝐻 satisfying the 
subordination condition. 
   𝒬(𝑧) ≺ 1 + 𝜆1𝑧,           𝒬(0) = 1,               (6) 
We have 0 < 𝜆1 ≤ 1. For  0 < 𝛼 ≤ 1, let 
𝑝𝜖𝐻, 𝑝(0) = 1 and 𝑝 satisfies the following 
condition: 
   𝒬(𝑧)𝑝𝛼(𝑧) ≺ 1 + 𝜆𝑧 ,      0 <  𝜆 ≤ 1.        (7) 
Then for  

    sin−1 𝜆 + sin−1 𝜆1 ≤
𝛼𝜋

2
,   (8) 

PROOF 
DOI: 10.37394/232020.2025.5.4 Mustafa A. Sabri

E-ISSN: 2732-9941 18 Volume 5, 2025

mailto:mustafasabri.edbs@uomustansiriyah.edu.iq


Consequently, we have 𝑅𝑒{𝑝(𝑧)} > 0 in 𝑈. 
The lemma mentioned in [14] is more general and 
includes this specific case. 
The following two lemmas are crucial for our 
findings to be comprehensive. 
 
Lemma 2. Assume that 𝑝 ∈ 𝐻, 𝑝(𝑧) = 1 + 𝑝𝑛𝑧𝑛 +
⋯ , 𝑛 ≥ 1, satisfy the requirement 

𝑝(𝑧) −
1

𝜇
𝑧𝑝(𝑧) ≺ 1 + 𝜆𝑧,    0 < 𝜇 < 1, 0 < 𝜆 ≤ 1 

 (9) 
Then 

𝑝(𝑧) ≺ 1 + 𝜆1𝑧,   (10) 
where 

𝜆1 =
𝜆𝜇

𝑛−𝜇
.  (11) 

The demonstration of this lemma is presented in 
[11] for n=1. Alternatively, Jack's lemma [3] can be 
utilized for any 𝑛 ∈ 𝑁. 
 
Lemma 3. If 0 < 𝜇 < 1, 0 < 𝜆 ≤ 1, and 𝒬 ∈ 𝐻 
satisfy  
𝒬(𝑧) ≺ 1 +

𝜆𝜇

𝑛−𝜇
𝑧,           𝒬(0) = 1,    𝑛 ∈ 𝑁,  (12) 

and if 𝑝𝜖𝐻 , 𝑝(0) = 1, and satisfies  
𝒬(𝑧)𝑝𝛼(𝑧) ≺ 1 + 𝜆𝑧,  (13) 

Such that 

 0 < 𝜆 ≤
(𝑛−𝜇) sin(

𝜋𝛼

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2 |

 ,   (14) 

then Re{𝑝(𝑧)} > 0 is achieved in 𝑈. 
Proof: λ_(1 )= λμ/((n-μ)) in Lemma (1), that the 
condition (8) is equivalent to 
Proof: By setting 𝜆1 =  

𝜆𝜇

(𝑛−𝜇)
  in Lemma (1), it can 

be shown then the condition (8) is equivalent to 

sin−1 𝜆 + sin−1 𝜆𝜇

(𝑛−𝜇)
≤

𝛼𝜋

2
.   (15) 

This disparity is equal to or similar to the disparity 

sin−1 ( √1 −
𝜆2𝜇2

(𝑛−𝜇)2

𝜆
+

𝜆𝜇

(𝑛−𝜇)
√1 − 𝜆2) ≤

𝛼𝜋

2
 , (16) 

or to the inequality: 
 𝜆[√(𝑛 − 𝜇)2 − 𝜆2𝜇2 + 𝜇√1 − 𝜆2] ≤ (𝑛 −

𝜇) sin (
𝛼𝜋

2
).       (17) 

After some adjustments, we arrive at the following 
equivalent inequality 
      {[𝜇2 + (𝑛 − 𝜇)2]2

− 4𝜇2(𝑛 − 𝜇)2𝑐𝑜𝑠2 (
𝛼𝜋

2
)} 𝜆4                                 

−2(𝑛 − 𝜇)2[𝜇2 + (𝑛 − 𝜇)2]𝑠𝑖𝑛2 (
𝛼𝜋

2
) 𝜆2 +

(1 − 𝜇)4𝑠𝑖𝑛4 (
𝛼𝜋

2
) ≥ 0,   (18) 

which is equivalent to the condition (14). 
Re{𝑝(𝑧)} > 0 in 𝑈 is shown by Lemma (1). 

 
Theorem 1. Suppose that 𝑓 ∈ 𝐴𝑛, 0 < 𝜇 < 1 and 𝑓 
is met by the subordination: 

𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

1+𝜇
≺ 1 + 𝜆𝑧,    (19) 

where 
0 < 𝜆 ≤

𝑛−𝜇

√𝜇2+(𝑛−𝜇)2
.   (20) 

Then 𝑓 ∈ 𝑆∗. 
 
Proof. If we set 𝜚(𝑧) = (

𝑧

𝑓(𝑧)
)

𝜇
= (1 + 𝑞𝑛𝑧𝑛 +

⋯ ), then after some calculations, we get  

 𝒬(𝑧) −
1

𝜇
𝑧𝒬′(𝑧) = 𝑓′(𝑧) (

𝑧

𝑓(𝑧)
)

1+𝜇
≺ 1 + 𝜆𝑧.  (21) 

Lemma (2) gives us 
𝒬(𝑧) ≺ 1 + 𝜆1𝑧, 𝜆1 =

𝜆𝜇

𝑛−𝜇
.            (22) 

We skip the specifics of the remainder of the proof 
because it is comparable to the case where 𝑛 = 1 
(see [11, Theorem1]). 
 
Theorem 2. Let 0 < 𝜇 < 1, and , 0 < 𝛼 ≤ 1. If 𝑓 ∈
𝐴𝑛 satisfies  

|𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

1+𝜇
− 1| <

(𝑛−𝜇) sin(
𝛼𝜋

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2 |

, (𝑧 ∈ 𝑈), (23) 

then 𝑓 ∈ 𝑆(𝛼). 

Proof. If we put 𝜆 =
(𝑛−𝜇) sin(

𝛼𝜋

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2 |

 , 0 < 𝛼 ≤ 1 then, 

we have  
0 < 𝜆 ≤

(𝑛−𝜇)

√𝜇2+(𝑛−𝜇)2
 , and by theorem 2, 𝑓 ∈ 𝑆∗. 

Later, the function 𝒬(𝑧) = (
𝑧

𝑓(𝑧)
)

𝜇
= 1 + 𝑞𝑛𝑧𝑛 +

⋯ is analytical in 𝑈 and meets: 

𝒬(𝑧) ≺ 1 + 𝜆1𝑧 , 𝜆1 =
𝜆𝜇

(𝑛 − 𝜇)
. 

If we were to define 

𝑝(𝑧) = (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)

1

𝛼
,     (24) 

Since 𝑝(0) = 1 and 𝑝 is analytical in 𝑈, condition 
(23) is equivalent to 
 𝒬(𝑧)𝑝𝛼(𝑧) ≺ 1 + 𝜆𝑧.   (25) 
Lemma (2) finally leads to the conclusion 

(
𝑧𝑓′(𝑧)

𝑓(𝑧)
)

1

𝛼
≺

1+𝑧

1−𝑧
(⇔

𝑧𝑓′(𝑧)

𝑓(𝑧)
≺ (

1+𝑧

1−𝑧
)

𝛼
), 

that is, 𝑓 ∈ 𝑆(𝛼). 
We observe that the statement of Theorem 2 is 
present when 𝛼 = 1. 
The following corollary is obtained for 𝑛 = 1, 𝜇 =
1

2
, 𝛼 =

2

3
. 
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Corollary 1. Let 𝑓 ∈ 𝐴 and let  

|𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

3
2⁄

− 1| <
1

2
 ,       (𝑧 ∈ 𝑈).    (26) 

Then  
 |𝑎𝑟𝑔 (

𝑧𝑓′(𝑧)

𝑓(𝑧)
)|  <

𝜋

3
 , 𝑧 ∈ 𝑈,        (27) 

Consequently, 𝑓 ∈ 𝑆(2
3⁄ ). 

 
Theorem 3. Let 0 < 𝜇 < 1, Re{𝑐} > −𝜇 , and 0 <
𝛼 ≤ 1. If 𝑓 ∈ 𝐴𝑛 fulfilled 

 |𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

1+𝜇
− 1| <

|
𝑛+𝑐−𝜇

𝑐−𝜇
|

(𝑛−𝜇) sin(
𝛼𝜋

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2⁄ |
  , (𝑧 ∈ 𝑈), (28) 

then the function  

𝐹(𝑧) = 𝑧 [
𝑐−𝜇

𝑧𝑐−𝜇  ∫ (
𝑡

𝑓(𝑡)
)

𝜇
𝑡𝑐−𝜇−1𝑧

0
𝑑𝑡]

−1
𝜇⁄

,  (29) 
𝑆(𝛼) is the owner. 
 
Proof. Assuming that 𝜆 is equal to the right-hand 
side of the aforementioned inequality (28), the 
following argument holds. 

𝒬(𝑧) = 𝐹′(𝑧) (
𝑧

𝐹(𝑧)
)

1+𝜇
= (1 + 𝑞𝑛 + 𝑧𝑛 + ⋯ ),(30) 

then from (28) and (29), we obtain  

𝒬(𝑧) +
1

𝑐 − 𝜇
𝑧𝒬′(𝑧) = 𝑓′(𝑧) (

𝑧

𝑓(𝑧)
)

1+𝜇

≺ 1 + 𝜆𝑧. 

 (31) 
As a result, we can conclude utilizing Hallenbeck 
and Ruscheweyh [3, Theorem1], we have that 

𝒬(𝑧) ≺ 1 + 𝜆1𝑧 , 𝜆1 =  
|(𝑐−𝜇)𝜆|

|𝑛+𝑐−𝜇|
=  

(𝑛−𝜇) sin(
𝜋𝛼

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2⁄ |
  , 

   (32) 
and Theorem 2's easy application yields the desired 
outcome. 
 
Remark 1. We have the similar conclusion from 
[11] for 𝛼 = 1 and 𝑛 = 1. 
we have 𝑐 = 𝜇 + 1 for this. 
 
Corollary 2. Let 0 < 𝜇 < 1, 0 < 𝛼 ≤ 1. If 𝑓 ∈ 𝐴𝑛 
meets the prerequisite: 

|𝑓′(𝑧) (
𝑧

𝑓(𝑧)
)

1+𝜇
− 1| <

|
𝑛+𝑐−𝜇

𝑐−𝜇
|

(𝑛−𝜇) sin(
𝛼𝜋

2
)

|𝜇+(𝑛−𝜇)𝑒
𝑖𝜋𝛼

2⁄ |
  , (𝑧 ∈ 𝑈), (33) 

after that, the action the function 

 𝐹(𝑧) = 𝑧 [
𝑐−𝜇

𝑧𝑐−𝜇  ∫ (
𝑡

𝑓(𝑡)
)

𝜇
𝑡𝑐−𝜇−1𝑧

0
𝑑𝑡]

−1
𝜇⁄

   (34) 
pertaining to 𝑆(𝛼). 
 

3 New sufficient conditions for the reciprocal of 

the strongly starlikeness and strongly convex 

functions.   

 

The new required requirements for substantially 
starlikeness and strongly convex functions that 
Frasin [2] obtained using a different reciprocal 
formula are discussed in this section. Additionally, 
we'll analyze in a way that suggests that 𝑓(𝑧) 
belongs to one of the classes 𝑆 ̅∗(𝛼) and 𝐾̅(𝛼) 
previously described in terms of the reciprocal 
formula. 
We will require the following lemmas in order to 
demonstrate our key findings. 
 
Lemma 4. ([15]) if 𝑓(𝑧) ∈ 𝐴 is satisfied 

|𝑓′(𝑧) − 1| < 2𝑎√5−4√1−𝑎2

16𝑎2+9
       (𝑧 ∈ 𝑈),   (35) 

then where 
𝑎 = sin(𝛼𝜋

2⁄ ),   0 < 𝛼 ≤ 1, then 𝑓(𝑧) ∈ 𝑆 ̅∗(𝛼). 
 
Lemma 5. ([5]) If 𝑓(𝑧) ∈ 𝐴𝑛, is satisfied 
                                                                 |𝑓′(𝑧) − 1| <

(1−𝛼)(𝑛+1)

𝛼+√(𝑛+1)2+1
  ,    (𝑧 ∈ 𝑈)                

 (36) 
where 0 < 𝛼 ≤ 1, then 𝑓(𝑧) ∈ 𝑆 ̅∗(𝛼). 
 
Lemma 6. ([13]) If  𝑓(𝑧) ∈ 𝐴𝑛, is satisfied 

|𝑓′(𝑧) + 𝛼𝑧𝑓"(𝑧) − 1| <
(1 − 𝛼)(𝑛 + 1)

𝛼 + √(𝑛 + 1)2 + 1
   ,

(𝑧 ∈ 𝑈) 
where 𝛼 > 2, then 𝑓(𝑧) ∈ 𝐾. 
Using the same approach as Nunokawa et al. [9], we 
prove the following. 
 
Theorem 4. If 𝑓(𝑧) ∈ 𝐴 satisfies  

|
1

𝑓"(𝑧)
| ≤

1

2𝑎
√

16𝑎2+9

5−4√1−𝑎2
   ,    (𝑧 ∈ 𝑈;   0 < 𝛼 < 1), 

     (37) 
where  
 𝑎 = sin(𝛼𝜋

2⁄ ),   0 < 𝛼 < 1, After that 𝑓(𝑧) ∈

𝑆 ̅∗(𝛼). 
Proof. Noting that 

|
1

𝑓′(𝑧) − 1
| = |

1

∫ 𝑓"(𝜎)𝑑𝜎
𝑧

0

| ≤
1

∫ |𝑓"(𝑡𝑒𝑖𝜃)𝑑𝑡|
|𝑧|

0

≤
1

2𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2
  

1

∫ 𝑑𝑡
|𝑧|

0

 

=
1

2𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2
  

1

|𝑧|
<

1

2𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2
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As a result, we deduce from Lemma 4 that 𝑓(𝑧) ∈
𝑆 ̅∗(𝛼). 
 
Corollary 3. Let 𝑓(𝑧) ∈ 𝐴, 𝑧 ∈ 𝑈. Then  

1. |𝑓"(𝑧)| ≤ √
13

(5−2√3)
= 2.9093129113 implies 

𝑓(𝑧) ∈ 𝑆 ̅∗(1
2⁄ ); 

2. |𝑓"(𝑧)| ≤
3

2
√

17

(10−4√2)
= 2.9676557273 

implies 𝑓(𝑧) ∈ 𝑆 ̅∗(1
3⁄ ); and  

3. |𝑓"(𝑧)| ≤
3

4 √
145

9⁄

5−4(
√5

3
)

=

2.1188560554 implies 𝑓(𝑧) ∈ 𝑆 ̅∗(2
3⁄ ). 

Now, we derive  
 
Theorem 5.  If 𝑓(𝑧) ∈ 𝐴 satisfies  

|
1

𝑓"(𝑧)
| ≤

1

𝑎
√

16𝑎2+9

5−4√1−𝑎2
       (𝑧 ∈ 𝑈;   0 < 𝛼 < 1),  

     (38) 
where 
𝑎 = sin(𝛼𝜋

2⁄ ),   0 < 𝛼 < 1, Then 𝑓(𝑧) ∈ 𝐾̅(𝛼). 
 
Proof.  Thus, it follows 

|
1

(𝑧𝑓′(𝑧))
′

− 1
| =  |

1

𝑓′(𝑧) + 𝑧𝑓"(𝑧) − 1
|

≤ |
1

𝑓′(𝑧) − 1
| + |

1

𝑧𝑓"(𝑧)
| 

≤ ∫ |
1

𝑓"(𝑡)𝑑𝑡
|

|𝑧|

0

+
1

𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2
  

1

|𝑧|
 

≤
1

2𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2

1

|𝑧|
<  

1

𝑎
√

16𝑎2 + 9

5 − 4√1 − 𝑎2
  . 

As a result, by applying Lemma (4), we can see that 
𝑧𝑓′(𝑧) ∈ 𝑆 ̅∗(𝛼), or 𝑓(𝑧) ∈ 𝐾̅(𝛼). 
 
Corollary 4. Assume that𝑓(𝑧) ∈ 𝐴, 𝑧 ∈ 𝑈.  

1. |
1

𝑓"(𝑧)
| ≤ 2√

13

(5−2√3)
= 5.8186258226 

implies 𝑓(𝑧) ∈ 𝐾̅(1
2⁄ ); 

2. |
1

𝑓"(𝑧)
| ≤ 3√

17

(10−4√2)
= 5.9353114545 

implies 𝑓(𝑧) ∈ 𝐾̅(1
3⁄ ); and 

3. |
1

𝑓"(𝑧)
| ≤

3

2 √
145

9⁄

5−4(
√5

3
)

=

4.2377121107 implies 𝑓(𝑧) ∈ 𝐾̅(2
3⁄ ). 

By utilizing the same technique as in the proof of 
Theorem (4) and replacing Lemma 4 with Lemma 5, 
we can establish the following theorem. 
 
Theorem 6.  If  𝑓(𝑧) ∈ 𝐴𝑛, satisfies 

|
1

𝑓′(𝑧)
| ≤

𝛼+√(𝑛+1)2+1

(1−𝛼)(𝑛+1)
  ,    (𝑧 ∈ 𝑈; 0 < 𝛼 < 1),  (39) 

then 𝑓(𝑧) ∈ 𝑆 ̅∗(𝛼). 
In Theorem 6, if we assume that 𝛼 = 0, we get 
 
Corollary 5.  If  𝑓(𝑧) ∈ 𝐴𝑛, then 

|
1

𝑓′(𝑧)
| ≤

√(𝑛+1)2+1

(𝑛+1)
  ,    (𝑧 ∈ 𝑈) , 𝑓(𝑧) ∈ 𝑆∗. 

Are satisfied. 
We conclude by proving. 
 
Theorem 7. 𝑓(𝑧) ∈ 𝐴𝑛, is satisfies if 
 |

1

𝑓"(𝑧)
| <

𝛼(𝛼+1)(𝑛+1)

(𝛼−2)(𝑛𝛼+1)
 ,       (𝑧 ∈ 𝑈),    (40) 

where 𝛼 > 2, then 𝑓(𝑧) ∈ 𝐾. 
Proof.  We have  

|
1

𝑓′(𝑧) + 𝛼𝑧𝑓"(𝑧) − 1
| ≤ |

1

𝑓′(𝑧) − 1
| +

1

𝛼|𝑧𝑓"(𝑧)|
 

≤ ∫ |
1

𝑓"(𝑡)𝑑𝑡
|

𝑧

0

+
1

𝛼|𝑧𝑓"(𝑧)|
 

≤ ∫
1

|𝑓"(𝑡)𝑑𝑡|

|𝑧|

0

+
𝛼(𝛼 + 1)(𝑛 + 1)

(𝛼 − 2)(𝑛𝛼 + 1)
 

1

|𝑧|
 

≤
(𝛼 + 1)(𝑛 + 1)

(𝛼 − 2)(𝑛𝛼 + 1)
 

1

|𝑧|
<

𝛼(𝑛 + 1)

(𝛼 − 2)(𝑛𝛼 + 1)
 . 

Using Lemma 6, we have 𝑓(𝑧) ∈ 𝐾. 
By allowing 𝛼 → ∞ in Theorem 7, Mocanu [7] was 
able to arrive at the following conclusion. 
 
Corollary 6. If  𝑓(𝑧) ∈ 𝐴𝑛, satisfied 

|
1

𝑓"(𝑧)
| ≤ 1 +

1

𝑛
,        (𝑧 ∈ 𝑈),             (41) 

so’s 𝑓(𝑧) ∈ 𝐾. 
We get the following result from Obradovic [12] if 
we assume that 𝑛 = 1 in Corollary 6. 
 
Corollary 7.  If 𝑓(𝑧) ∈ 𝐴, satisfied 

 |
1

𝑓"(𝑧)
| < 2,

(𝑧 ∈ 𝑈),                                                                 (42) 
so’s 𝑓(𝑧) ∈ 𝐾. 
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