
References:
[1] Aydınyüz, S., & Aşcı, M., The Moore-Penrose
Inverse of the Rectangular Fibonacci Matrix
and Applications To The Cryptology. Advances
and Applications in Discrete Mathematics,
Vol.40, No.2, 2023, pp. 195-211.
DOI:10.17654/0974165823066
[2] Yonekura, T., & Sugiyama, M., Symmetry and
its transition in phyllotaxis. Journal of plant
research, Vol.134, No.3, 2021, pp. 417-430.
DOI: 10.1007/s10265-021-01308-1
[3] Swinton, J., & Ochu, E., MSI Turing's
Sunflower Consortium. Novel Fibonacci and
non-Fibonacci structure in the sunflower:
results of a citizen science experiment. Royal
Society Open Science, Vol.3, No.5, 2016, pp.
160091.
DOI:https://doi.org/10.1098/rsos.160091
[4] Alakuş, T. B., & Türkoğlu, İ., A novel
Fibonacci hash method for protein family
identification by usingrecurrent neural
networks. Turkish Journal of Electrical
Engineering and Computer Sciences, Vol.29,
No.1, 2021, 370-386. DOI: 10.3906/elk-2003-
116
[5] Falcon, S., & Plaza, A., On the Fibonacci k-
numbers. Chaos, Solitons & Fractals, Vol.32,
No.5, 2007, pp. 1615-1624.
DOI:10.1016/j.chaos.2006.09.022
[6] Özkan, E., & Akkuş, H., Copper ratio obtained
by generalizing the Fibonacci sequence. AIP
Advances, Vol.14, No.7, 2024, pp. 1-11. DOI:
10.1063/5.0207147
[7] Soykan, Y., A study on generalized Fibonacci
polynomials: Sum formulas. International
Journal of Advances in Applied Mathematics
and Mechanics, Vol.10, No.1, 2022, pp. 39-
118.
[8] Godase, A. D., & Dhakne, M. B., On the
properties of k-Fibonacci and k-Lucas
numbers. International Journal of Advances in
Applied Mathematics and Mechanics, Vol.2,
No.1, 2014, pp. 100-106.
[9] Shannon, A. G., Akkuş, H., Aküzüm, Y.,
Deveci, Ö., & Özkan, E., A partial recurrence
Fibonacci link. Notes on Number Theory and
Discrete Mathematics, Vol.30, No.3, 2024, pp.
530-537. DOI: 10.7546/nntdm.2024.30.3.530-
537
[10] Gao, Y., Jiang, Z. L., & Gong, Y. P., On the
determinants and inverses of skew circulant
and skew left circulant matrices with Fibonacci
and Lucas numbers. WSEAS Transactions on
Mathematics, Vol.12, No.4, 2013, pp. 472-481.
[11] Somprom, S., Nimnual, W., & Hongthong, W.,
Some identities for an alternating sum of
Fibonacci and Lucus numbers of order k.
WSEAS Transactions on Mathematics, Vol.21,
pp. 580-584. DOI: 10.37394/23206.2022.21.65
[12] Beletsky, A., Generalized Galois and Fibonacci
Matrices in Cryptographic Applications.
WSEAS Transactions on Circuits and Systems,
Vol.21, 2022, pp. 1-19. DOI:
10.37394/23201.2022.21
[13] Faye, M. N., Rihane, S. E., & Togbé, A., On
Repdigits Which are Sums or Differences of
Two k-Pell Numbers. Mathematica Slovaca,
Vol.73, No.6, 2023, pp. 1409-1422. DOI:
10.1515/ms-2023-0102
[14] Cerda-Morales, G., On bicomplex third-order
Jacobsthal numbers. Complex Variables and
Elliptic Equations, Vol.68, No.1, 2023, pp. 44-
56.DOI:https://doi.org/10.1080/17476933.2021
1975113
[15] Włoch, I., Paja, N., & Szynal-Liana, A., On
Some Combinatorial Properties of Oresme
Hybrationals. Symmetry, Vol.15, No.11, 2023
pp. 1996. DOI:
https://doi.org/10.3390/sym15111996
[16] Falcon, S., On the Extended (k, t)-Fibonacci
Numbers. Journal of Advances in Mathematics
and Computer Science, Vol.39, No.7, 2024, pp.
81-89. DOI: 10.9734/jamcs/2024v39i71914
[17] Aküzüm, Y., The Complex-type Narayana-
Fibonacci Numbers. Journal of the Institute of
Science and Technology, Vol.13, No.1, 2023,
pp. 563-571. DOI:
https://doi.org/10.21597/jist.1207287
[18] Soykan, Y., Generalized Oresme Numbers.
Earthline Journal of Mathematical Sciences,
Vol.7, No.2, 2021, pp. 333-367. DOI:
https://doi.org/10.34198/ejms.7221.333367
[19] Hanlon, P., Griggs, J. R., Odlyzko, A. M., &
Waterman, M. S., On the number of alignments
of k sequences. Graphs and Combinatorics,
6(2) (1990), 133-146. DOI:
http://dx.doi.org/10.1007/BF01787724
[20] Özkan, E., & Akkuş, H., A New Approach to
k-Oresme and k-Oresme-Lucas Sequences.
Symmetry, Vol.16, pp. 1-12. DOI:
10.3390/sym16111407
[21] Poole, C., Goldstein, H., Safko, J., Classical
mechanics, Reading, no.426, 1980, New York.
[22] Cariow, A., Majorkowska-Mech, D., &
Cariowa, G., An algorithm for quaternion-
based 3D rotation. International Journal of
Applied Mathematics and Computer Science,
Vol.30, No.1, 2020, pp. 149-160. DOI:
https://doi.org/10.34768/amcs-2020-0012
PROOF
DOI: 10.37394/232020.2024.4.14