
At: Toronto.
https://www.researchgate.net/publication/3207
36489_Impact_Modelling_of_Kevlar_Fabric_
Composite_Panels
[82] Sun, L., Bao, F., Zhang, N., Hui, W.,
Wang, S., Zhang, N., and Deng, H. (2016)
Thermo-structural response caused by structure
gap and gap design for solid rocket motor
nozzles, Energies 9 430. DOI:
10.3390/en9060430
[83] Concio, P., Migliorino, M.T. and Nasuti, F.
(2021) Numerical approach for the estimation
of throat heat hlux in liquid rocket engines.
Aerotec. Missili Spaz. 100 33–38. DOI:
10.1007/s42496-020-00060-4
[84] Wang, L., Tian, W., Chen, L. et al. (2021)
Investigation of Carbon–Carbon nozzle throat
erosion in a solid rocket motor under
acceleration conditions. Int. J. Aeronaut. Space
Sci. 22 42–51. DOI: 10.1007/s42405-020-
00277-4
[85] Tian, H., He, L., Yu, R., Zhao, S., et al.
(2021) Transient investigation of nozzle erosion
in a long-time working hybrid rocket motor,
AST 118 106978. DOI:
10.1016/j.ast.2021.106978
[86] Turchi, A., Bianchi, D., Thakre, P., Nasuti,
F., and Yang, V. (2014) Radiation and
roughness effects on nozzle thermochemical
erosion in solid rocket motors, Journal of
Propulsion and Power 30, 314-324. DOI:
10.2514/1.B34997
[87] Sun, M., Cao, W., Hu, D., Zhang, N., and
Chi, R. (2021) Effect of Cover Plate on the
Ballistic Performance of Ceramic Armor.
Materials 14 1. DOI: 10.3390/ma14010001
[88] Holmquist, T. J., Johnson, G. R., and
Gooch, W. A. (2005) Modeling the 14.5 mm
BS41 projectile for ballistic impact
computations (originally from the book:
Computational Ballistics II), WIT Transactions
on Modelling and Simulation 40 61-
75.https://www.witpress.com/Secure/elibrary/p
apers/CBAL05/CBAL05007FU.pdf
[89] Dean, J., Fallah, A. S., Brown, P. M.,
Louca, L. A. and Clyne, T. W. (2011) Energy
absorption during projectile perforation of
lightweight sandwich panels with metallic fibre
cores, Composite Structures 93 1089-1095.
DOI:10.1016/j.compstruct.2010.09.019
[90] Aslam, M. A., Ke, Z., Rayhan, S. B.,
Faizan, M., and Bello, I. M. (2020) An
investigation of soft impacts on selected
aerospace grade alloys based on Johnson-Cook
material model, J. Phys.: Conf. Ser. 1707
012008.DOI: 10.1088/1742-
6596/1707/1/012008
[91] Zhu, D., Mobasher, B., Rajan, S.D. (2011)
Dynamic tensile testing of Kevlar 49 fabrics, J
Materials in Civil Eng, 23 1-
10.DOI:10.1061/(ASCE)MT.1943-
5533.0000156
[92] Zhu, D., Vaidya, A., Mobasher, B., and
Rajan, S. D. (2014) Finite element modeling of
ballistic impact on multi-layer Kevlar 49
fabrics, Composites: Part B 56 254–262. DOI:
10.1016/j.compositesb.2013.08.051
[93] Xuan, H., Hu, Y., Wu, Y. and He, Z. (2018)
Containment ability of Kevlar 49 composite
case under spinning impact, J. Aerosp. Eng., 31
04017096.DOI: 10.1061/(ASCE)AS.1943-
5525.0000806
[94] Seisson, G., Hebert, D., Bertron, I.,
Chevalier, J. M., Hallo, L., et al. (2013)
Dynamic cratering of graphite: experimental
results and simulations, International Journal of
Impact Engineering, 63, 18-28.DOI:
10.1016/j.ijimpeng.2013.08.001
[95] Novak, N., Vesenjak, M., Duarte, I.,
Tanaka, S., Hokamoto, K., Krstulović-Opara,
L., Guo, B., Chen, P., and Ren, Z. (2019)
Compressive Behaviour of Closed-Cell
Aluminium Foam at Different Strain Rates.
Materials 12, 4108. DOI: 10.3390/ma12244108
[96] Vengatachalama, B., Poh, L. H., Liu, Z. S.,
Qinc, Q. H., Swaddiwudhipong, S. (2019)
Three-dimensional modelling of closed-cell
aluminium foams with predictive macroscopic
behavior, Mechanics of Materials, 136
103067.DOI: 10.1016/j.mechmat.2019.103067
[97] Chi, R., Serjouei, A., Sridhar, I., and Tan,
G.E.B. (2013) Ballistic impact on bi-layer
alumina/aluminium armor: A semi-analytical
approach, IJIE 52 37-46. DOI:
10.1016/j.ijimpeng.2012.10.001
[98] Moslemi Petrudi, A., Vahedi, K., Rahmani,
M., and Moslemi Petrudi, M. (2020) Numerical
and analytical simulation of ballistic projectile
penetration due to high velocity impact on
ceramic target. Frattura Ed Integrità Strutturale
14 226–248.DOI: 10.3221/IGF-ESIS.54.17
[99] Sundaram, S. K., Bharath A. G., and
Aravind B. (2020) Influence of target dynamics
and number of impacts on ballistic performance
of 6061-T6 and 7075-T6 Aluminum alloy
targets, Mechanics Based Design of Structures
and Machines 50 993–
1011.DOI:10.1080/15397734.2020.1738245
[100] Pacek, D. and Badurowicz, P. (2024)
Numerical and experimental analysis of the
PROOF
DOI: 10.37394/232020.2024.4.4