
 AI-Driven WSN for Precise Aquatic Pollution Detection Using an
Intelligent Monitoring Approach

V.V. JAYA RAMA KRISHNAIAH1, P. G. K. SIRISHA2, S. PARVATHI VALLABHANENI3,
D. V. V. CHANDRASHEKAR4, K. JAGAN MOHAN5, G. RAJESH CHANDRA6,

VENKATA KISHORE KUMAR REJETI7

1Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, INDIA.
2, 7Department of CSE, KKR & KSR Institute of Technology and Sciences, Guntur, INDIA.

3Department of IT, PVP Siddhartha Institute of Technology, Vijayawada, INDIA.
4Department of CSE, TJPS College, Guntur, INDIA.

5Department of AI, SVR Engineering College, Nandyal, INDIA.
6Department of CSE, Vignan’s Lara institute of technology and science, Vadlamudi, INDIA.

Abstract: - The proliferation of digital devices, sensors, and interconnected systems has led to an explosion of
data. Simple sensors like pH, conductivity, and Turbidity sensors can be used for the classification of gasoline
and diesel in water. These sensors are easy to set up and deploy, so they can be installed in vast numbers and
can get real-time data from the site. FPGAs are very fast in processing complex data and have low latency time
compared to other traditional microcontrollers. But FPGA accepts coding in Hardware Description Languages
like Verilog or VHDL, which can be very complex to code complex models that are trained in other high-level
languages like Python and C++. Simple classification models in machine learning are implemented using High-
Level Synthesis tools, which accept codes written in languages like C, C++, or SystemC, and translate them
into hardware-implementable RTL (Register- Transfer Level) code. The data from two major components of
oil, gasoline, and petrol are used to train various classification models with widely used libraries in Python. The
trained parameters are extracted from the trained model. The parameters are then assembled and then coded in
C++ as currently most of the tools support C++. Some modifications need to be made to the original code to
make it compatible with the synthesis tool.

 Key-Words: - Digital Sensors, FPGA, High-Level Synthesis (HLS), Machine Learning, Real-Time Data
Processing.

Received: April 29, 2024. Revised: September 19, 2024. Accepted: November 11, 2024. Published: December 10, 2024.

1 Introduction

In recent years, the field of machine learning
(ML) has witnessed unprecedented growth and
impact across various domains. One major
application explored is oil spill, where early
detection is essential to minimize damage in
aquatic environment [1]. Machine learning, a
branch of artificial intelligence, is centered on
creating algorithms that allow computers to
learn from data and make predictions or
decisions without explicit programming.
Supervised learning, a key aspect of machine
learning, involves training a model using labeled
data, where the algorithm learns to associate

input data with the correct output labels [2].
Field-Programmable Gate Arrays (FPGAs) are
integrated circuits (ICs) that can be programmed
to carry out specific tasks tailored to particular
applications [3].

As machine learning and deep learning
models are get- ting more complex, more
powerful embedded systems like FPGA are used
[4]. Machine learning models are implemented
in FPGAs stemming from the need for high-
performance, low-power solutions for real-
time inference tasks in edge and embedded
systems. Traditional computing platforms may
struggle to meet the stringent requirements of

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 114 Volume 4, 2024

these applications, especially in scenarios where
power consumption, latency, and resource
constraints are critical factors. FPGAs offer a
promising solution by providing hardware
acceleration for ML algorithms, enabling
efficient parallel processing and low-latency
inference. Furthermore, FPGA-based ML
imple- mentations offer flexibility and
scalability, allowing for customization and
optimization of hardware architectures tailored
to specific application requirements [5]. This
flexibility is particularly advantageous in
domains where standard ML models need to be
adapted or optimized for specialized tasks or
hardware platforms. The major factor that is
holding back in using FPGA is using of
Hardware description language which can be
very complex and requires a deep understanding
of digital design concepts and hardware
architectures, making them challenging for
beginners and those with primarily software
engineering backgrounds. Making design
changes and exploring alternative architectures
in HDLs can be time- consuming and resource-
intensive, particularly for complex designs [6],
[7].

High-Level Synthesis (HLS) is a design
methodology used in digital circuit design and
FPGA programming. It allows developers to
write high-level descriptions of digital circuits
using programming languages such as C, C++,
or SystemC, which are then automatically
translated into hardware implementations. HLS
abstracts the details of hardware design,
allowing developers to focus on algorithmic
and architectural aspects rather than low-level
hardware descriptions. Developers can write
algorithms and specify behavior at a higher
level of abstraction, making the design process
more intuitive and efficient. HLS significantly
reduces the time and effort required for
designing complex digital circuits compared to
traditional hardware description languages
(HDLs) like Verilog or VHDL.

In environmental monitoring and management,
the detection and mitigation of oil spills in water
bodies are of paramount importance to

safeguard ecosystems, human health, and eco-
nomic activities. Leveraging advancements in
sensor technology and data analytics, there has
been a growing interest in developing automated
monitoring systems for early detection and
response to oil spills. Less expensive sensors
like pH, conductivity, and Turbidity sensors can
be used for real-time observation on site. By
integrating sensor data with machine learning
algorithms, predictive models can be developed
to detect unusual patterns that may signal the
occurrence of oil spills, enabling timely
intervention and mitigation efforts.

The research paper is structured as follows:
After the introduction, Section II presents a
review of related work. Sections III and IV cover
the preliminaries and the proposed
methodology, respectively. Section V discusses
the computational experiments and their
analysis. Finally, Section VI concludes the
study.

2 Literature Survey

With the increasing significance of evolving
artificial intelli- gence, many researchers are
developing prototypes to get input from low-cost
and portable sensors and perform computations
using machine learning models. These days,
machine learning models can easily be
integrated into multiple platforms.

Yan Ferreira da Silva et al., utilized Wireless
Sensor Net- works (WSN) with sensors for
temperature, pH, turbidity, and conductivity on
a float to continuously gather real-time data.
This data is sent to an ESP32 microcontroller
that converts analog signals to digital. They
employed a convolutional neural network to
train the model with gasoline and diesel data,
transmitting the output wirelessly via Wi-Fi for
real- time monitoring and alerts for oil presence.
While the network detects the presence of oil,
it doesn’t give what kind of oil is present [8].
Ahmed et al. developed an oil spill segmentation
model utilizing 50 Sentinel-1 SAR images,
employing a custom data generator within a
Seg-Net model, which is implemented through a

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 115 Volume 4, 2024

Conditional Generative Adversarial Network
(CGAN). In this model, a modified Seg-Net
functions as the generator, while a Patch-GAN
serves as the discrim- inator, significantly
improving oil spill segmentation results
compared to the Seg-Net model, even with a
relatively small training dataset. However,
obtaining the data from the radar is a complex
process that consumes lots of power and storage
for processing [9].

Yi-Jie Yang et al., developed a deep learning-
based oil spill detector using Sentinel-1
Synthetic Aperture Radar (SAR) imagery. The
authors employed advanced deep-learning
tech- niques to analyze SAR images for
identifying oil spills. Their approach leverages
the high-resolution and wide coverage of
Sentinel-1 data to detect oil spills accurately
and efficiently. The model was trained on a
substantial dataset of SAR images, enabling it
to distinguish between oil spills and look-alike
features such as natural phenomena or man-
made objects. But models, especially those
handling large datasets like Sentinel- 1 SAR
imagery, require significant computational
resources and time for training and inference
[10]. Gianluca Tabella et al., have developed
Wireless Sensor Networks (WSNs) aimed at
detecting and pinpointing subsea oil leaks. This
research emphasizes sensors making localized
binary decisions on the existence of a spill
through an energy test. These individual
decisions are then sent to a Fusion Center (FC),
which integrates them into a more reliable
global binary decision. The study evaluates the
performance of the Counting Rule (CR) against
a modified Chair-Varshney Rule (MCVR).
Thresholds are designed using an objective
function that is based on the Receiver Operating
Characteristic (ROC) curve. The main
challenges faced in this design are maintaining
reliable wireless communication underwater is
difficult due to signal attenuation and
interference, which can impact data
transmission, and harsh underwater conditions,
such as high pressure, strong currents, and
biofouling, can affect sensor performance and
durability [11].

Yan Li et al., introduced a deep-learning
classification model designed to automatically
detect marine oil spills in images from Landsat-
7 and Landsat-8 satellites. This model inte-
grates fully convolutional networks (FCN) with
ResNet and GoogLeNet architectures. The
performance of the classifica- tion algorithms,
namely FCN-GoogLeNet and FCN-ResNet, is
compared against the state-of-the-art Support
Vector Machine (SVM) method. But the
computational intensity of FCNs may limit
their applicability in real-time monitoring
scenarios where rapid detection and response
are crucial. Also, the model might struggle to
adapt to different environmental conditions not
represented in the training data, such as varying
weather patterns, sea states, or types of oil spills
[12]. Thomas De Kerf et al., developed an
innovative framework for de- tecting oil spills
in port environments using unmanned aerial
vehicles (UAVs) equipped with thermal
infrared (IR) cameras, capable of detecting oil
even at night. The collected data is uti- lized to
train a convolutional neural network (CNN).
However, the accuracy of infrared imaging for
oil spill detection can be influenced by
environmental factors such as temperature
fluctuations, weather conditions, and sea state.
Additionally, implementing and maintaining
machine learning models for this purpose
requires expertise in both machine learning and
infrared imaging, which may not be readily
available [13].

In a separate study, Zahra Ghorbani and Amir H.
Behzadan employed VGG16 transfer learning
convolutional neural net- works to train on a
visual dataset of oil spills, comprising images
taken from different altitudes and geographic
regions. They employed Mask R-CNN and
PSPNet models for oil spill segmentation and
precise pixel-level detection of spill boundaries.
Additionally, they trained a YOLOv3 model to
identify the presence of oil rigs or vessels near
detected oil spills, providing a comprehensive
view of the spill area. A significant challenge in
this approach is the deployment in resource-
limited environments, as training and
implementing multi-class CNNs demand

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 116 Volume 4, 2024

substantial computa- tional resources, which
may not always be feasible [14]. M. Konik and
K. Bradtke used an object-oriented approach to
oil spill detection using ENVISAT/ASAR
images. Their approach involves pre-processing
using optimized filters, hierarchical
segmentation to detect spills of different sizes,
forms, and homogeneity, and a decision-tree
procedure for classifying dark objects visible in
SAR images reflecting the probability of oil spill
presence. This model relies heavily on accurate
image segmentation, which can be challenging
and may result in errors if the segmentation
process is not precise. Also, the presence of
similar-looking features such as natural slicks,
seaweed, and low-wind areas can interfere with
the detection process, leading to false positives
[15].

3 Preliminary
A. Machine Learning Classification Models

In this work, binary classification models are
used which will give the output as true or false.
Classification models can be generally divided
into three types: binary classification, multi-
class classification, and multi-label
classification. These categories are determined
by the number of classes or labels present in the
target variable [16].

1) Logistic Regression: Logistic regression
is a key classification algorithm frequently
employed in machine learning for binary
classification tasks. It assesses the degree of
dependence between a categorical dependent
variable and one or more independent variables
by utilizing the logistic function. The result of
logistic regression is a probability value
ranging from 0 to 1, indicating the likelihood
or confidence that a given input belongs to the
positive class. Similar to linear regression, it
aims to determine the coefficients for the input
variables. However, in logistic regression, the
output is transformed using a non-linear
(logistic) function. This transformation is
achieved through the logistic (or sigmoid)
function, which converts raw predictions into
probabilities. Let the independent input
features be:

2) K Nearest Neighbors: K-Nearest
Neighbors (KNN) is a straightforward and
intuitive algorithm used for both classifi-
cation and regression in machine learning. It is
an instance- based method, meaning it
memorizes the training instances and predicts
new instances based on their similarity to these
stored instances. The algorithm finds the ’K’
nearest data points to a given input and predicts
the output based on the majority class or
average value of those neighbors. As a non-
parametric algorithm, KNN does not assume
any underlying data distribution.

To make predictions, KNN calculates the
similarity between the input instance and all
training instances, often using Euclidean
distance. For classification, it uses majority
voting among the k nearest neighbors to assign
the class label. The choice of ’K’ and the
distance metric significantly impacts the
algorithm’s performance. The optimal value of
’K’ is critical and often chosen based on input
data characteristics, with higher values of ’K’
recommended for data with more noise

 3) Support Vector Machines: Support Vector
Machines (SVMs) are robust supervised
learning models used for both classification and
regression. They excel in high-dimensional
spaces and when the number of features exceeds
the number of samples. SVMs work by
identifying the optimal hyper plane that best
separates data points of different classes in the
feature space, maximizing the margin between
the nearest points of the classes. This optimal
hyper plane is known as the maximum-margin
hyper plane or hard margin. In cases with
outliers, SVM introduces a penalty for
misclassifications, resulting in a soft margin.
SVMs can also handle non-linear data using the
kernel trick, which maps input features into a
higher-dimensional space where linear
separation is possible. Common kernels include
linear, polynomial, radial basis function (RBF),
and sigmoid. The regularization parameter (C)
balances margin maximization and
classification error minimization, with smaller

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 117 Volume 4, 2024

values allowing more misclassifications and
larger values penalizing them more heavily.

4) Decision Tree: Decision Trees are flexible

Fig. 1. Basic Decision Tree Node Representation

and interpretable models used for
classification and regression tasks. They work
by recursively dividing the feature space into
distinct regions, each corresponding to a
specific class or predicted value. The structure
of a Decision Tree includes a root node,
internal nodes, and leaf nodes shown in Fig. 1.
The root node represents the feature that best
separates the data, while internal nodes make
decisions based on feature values and
thresholds. Leaf nodes provide the final
prediction for the data subsets. Decision Trees
use criteria like Gini impurity, entropy
(information gain), and classification error to
determine the optimal splits at each node. To
avoid overfitting, pruning techniques are
applied: pre-pruning stops tree growth early
based on certain conditions, while post-
pruning removes less significant branches
after the tree is fully grown.

B. Conversion into C++ code

Currently, most of the High-Level Synthesis
tools support C++ as its input. Therefore, the
parameters from the trained Python models are
extracted and refactored into C++. This C++
code can be fed into the Vitis HLS tool, which
is converted into RTL. The parameters are
obtained from the trained models and then C++
code is developed.

C. High-Level Synthesis Tools

called Vitis HLS. The steps followed for the
generation of RTL from the HLS code and the
deployment of RTL code in FPGA:

Step 1: Running C simulation to verify if
the provided code is syntactically correct and
performs as per the user’s requirement.

Step 2: Running C synthesis for the
conversion of the provided C++ code to RTL
using the Vitis conversion tool.

Fig. 2. Block diagram of workflow

Step 3: The C/RTL Co-Simulation step
verifies that the RTL generated by synthesis
behaves the same as the original C/C++ source
code.

Step 4: Exporting RTL for integration with
hardware tools like Vivado for Xilinx FPGAs.
The system-level design is then synthesized into
a bitstream that can be loaded onto the FPGA.

4 Proposed Work
The block diagram shown in Fig. 2, the

approach and methodology developed for the
proposed work:

A. Generation Dataset

For data preparation, for the detection of
gasoline, the pH range is between 6.5 to 7 and
turbidity is between 2.36 to 2.42 NTU. The
conductivity of seawater is typically 50000
microS/cm. As gasoline is volatile and
lightweight the conductivity will reduce only by
1 to 3 %. With the range of seawater pH between
5 to 8 and turbidity between 2.3 to 3 NTU the
dataset is generated in Python using CSV
format. For the detection of diesel, the pH range
is between 5.8 to 6.5 and turbidity is between
2.28 to 2.35 NTU.

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 118 Volume 4, 2024

B. Training Classification Models

The model is trained using Scikit-Learn, an
open-source Python library known for its user-
friendly and efficient tools for data mining and
analysis. Scikit-Learn offers a variety of
supervised and unsupervised learning
algorithms, as well as features for model
selection, evaluation, and data preprocess- ing.
In this project, four classification models are
implemented: Logistic Regression, K-Nearest
Neighbors, Support Vector Machines, and
Decision Trees. The two datasets, diesel and
gasoline are fed into the four classification
models and the accuracy is calculated. The
following table gives the accuracy of the
classification models for diesel and gasoline.

Fig. 3. Decision Tree Node Structure Obtained after Parameter
Extraction

C. Parameter Extraction and C++ code generation

For the gasoline dataset, the decision tree
performs very well for classification. The
decision tree model breaks the model into
various nodes based on various nested
conditions based on the model fit and Gini
impurity. These conditions are then inferred and
C++ code is developed. This decision function

is implemented in the C++ code. The parameters
are then extracted are: Support Vectors (xi)
Lagrange multipliers (i) Class Labels (1 or -1)
Bias term (b) Gamma.

D. Methodology adopted to code the trained
model in C ++

• For the Decision Tree model, break the
different conditions using if-else statements
according to the value threshold provided. The
model either returns true or false shown in Fig.
3.

• Define and initialize the constant values
like support vectors, Lagrange multipliers, and
bias term gamma. Also, the mean and variance
of each feature are assigned.

• For the Support Vector Machine model,
separate function modules are created for the
RBF function and decision func- tion. The
RBF function is computed and the value is
passed to the decision function.

• For the SVM model, first the input data
should be normalized before processing.
Therefore, a separate function for normalizing
(Z-score normalization) is used based on the
formula: z=(x-)/

• The combined model first uses the
decision function for the detection of gasoline.
If the gasoline detected is true, then gasoline
is output. If false then, it checks for the SVM
model for the detection of diesel. If diesel
detected is true, then diesel is output. If false
then, no oil.
Converting normal C++ code to High-Level

Synthesis (HLS) compatible code involves
several steps to ensure that the code can be
efficiently implemented on an FPGA. HLS
allows you to describe hardware functionality
using C/C++ code, which is then synthesized
into hardware description language (HDL) code
like Verilog or VHDL. The following are some
considerations that are taken into account when
converting the given code to an HLS-
compatible format:

• HLS tools support a subset of C++ data
types and libraries. Using fixed-size data types
(e.g., int, float) is preferable to dynamically

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 119 Volume 4, 2024

allocated memory (e.g., new, malloc).
• HLS tools rely on loop-level parallelism

for efficient hardware implementation.
Optimizing the code to maximize loop
parallelism and minimize loop dependencies
will largely lead to performance
improvements.

• Compiler directives and pragmas to guide

optimization and resource allocation, such as
loop pipelining, loop unrolling, and array
partitioning.

• HLS tools support fixed-point arithmetic more
efficiently than floating-point arithmetic.
Conversion of floating-point operations to
fixed-point operations where applicable. Us-
ing pragmas and directives to specify fixed-
point formats, precision, and rounding modes
to achieve desired numerical accuracy is shown
in Fig. 4.

Fig:4 Flow diagram of methodology to develop hardware from HLS
code

E. Methodology developed for High-Level
Synthesis

• Store the constant values like support
vectors, and La- grange values in separate
memory like BRAM so that these values can
be initialized during the start of the program
and remain fixed throughout the execution.
These values should be initialized while
running the main function therefore separate
modules are created and called.
•The datatype is defined in bits and pragma is

used to define the high-level synthesis functions
and inputs. Various ports for pH, Turbidity, and
Conductivity are defined. A stream is created to
get the feature inputs. These inputs will act as an
array.

• For the SVM model, the constant single

values like mean, variance, bias, and gamma
are defined in the registers. Differ- ent modules
are defined for the implementation of the
decision function and value normalization. The
property of pipelining and loop unrolling is
used to improve the performance and reduce
latency. The HLS math library is used for
square root and exponential calculation.
A separate function is created to call the

decision tree model for prediction. If gasoline is
predicted, then the output is gasoline. If
gasoline is not predicted then, the function calls
the SVM model. If the SVM model predicts
diesel then output is diesel. Or else output is no
oil.

Fig. 5. Accuracy values for different threshold values for gasoline (left)
and diesel (right)

Fig. 6. Accuracy for different K-NN values for gasoline (left) and
diesel (right

5 Results
A. Checking accuracies for models

For the logistic regression model, the below
plot shows the accuracy of the values for
different thresholds shown in Fig.5. The
selection of the hyper parameter k in KNN is
critical, as illustrated in Fig. 6. Choosing a
small k value can cause over fitting, whereas a
large k value might lead to under fitting. The
optimal k value can be identified through
methods like cross-validation or grid search.
The following graph shows the different
accuracy values for various k parameters.

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 120 Volume 4, 2024

B. Converting to RTL

The below image shows that the code has
successfully synthesized and RTL is exported.
The HLS tool will create the necessary Look Up
Tables (LUT), Flipflops (FF), and BRAM in
the implemented RTL is shown in Fig. 7. It
shows that the latency of one iteration is 4391
ns, which is significantly lesser than a
traditional microcontroller which has latency
in milliseconds The latency of the model can be
further reduced using optimization techniques
in RTL simulations, like pipelining, loop
unrolling, function inlining, and removing
reductant gates.

6 Conclusion
In this work, various classification models are
trained with the dataset obtained from the
research paper using the Python Ski-kit Learn
library, and the trained parameters are obtained.
As most of the current high-level synthesis tools
support C++ or C language, a C++ code is
developed by interpreting the logic of the
classification models and including the
parameters. Then the code should be converted
to a format that is com- patible with the HLS
tool by including the necessary header files,
converting the data types, loop optimization
techniques, etc.

Fig. 7. Result obtained after C synthesis

 The code is then loaded into the HLS tool, in
this case Vitis HLS. After debugging the code, it
is synthesized to RTL. Exporting the RTL code
will generate the corresponding Verilog and
VHDL code. Therefore, the hardware can be
described using high-level programming

languages like C++, which makes it much easier
for other developers outside the hardware field
to leverage the potential of FPGA and other
ASIC devices without knowing any HDL
language. However basic understanding of the
hardware architecture and timing constraints are
required. Even complex models like artificial
neural networks or models with enormous data
sets can be deployed in FPGA.

References:

[1] Z. Asif, Z. Chen, C. An, and J. Dong,

“Environmental impacts and challenges

associated with oil spills on shorelines,”

Journal of Marine Science and Engineering, vol.

10, no. 6, p. 762, May 2022.

[2] J. M. Cela, D. Roca, C. E. Pereira, and J.

Palacin, “A Novel Real- Time Oil Spill

Detection System Using Machine Learning

Techniques,” Sensors, 2017.

[3] B. Naresh Kumar Reddy, B Seetharamulu, GS

Krishna, BV Vani, “An FPGA and ASIC

Implementation of Cubing Architecture,”

Wireless Personal Communications, Vol.

125,2022.

[4] Naresh Kumar Reddy and Subrat Kar “Machine

Learning Techniques for the Prediction of NoC

Core Mapping Performance,” 26th IEEE

Pacific Rim International Symposium on

Dependable Computing (PRDC 2021), Dec 1–

4, in Perth, Australia, 2021.

[5] Reddy and Subrat Kar “An Efficient Application

Core Mapping Algorithm for Wireless Network-

on-Chip,” 26th IEEE Pacific Rim International

Sym posium on Dependable Computing (PRDC

2021), Dec 1– 4, in Perth, Australia, 2021.

[6] B N K Reddy, et al., “Optimizing Task

Scheduling in Multi-thread Real-Time Systems

using Augmented Particle Swarm

Optimization,” 37th International Conference

on VLSI Design & 23rd International

Conference on Embedded Systems, 2024.

[7] Kumar and Subrat Kar “Energy Efficient and

High-performance Modified Mesh Based 2-D

NoC Architecture,” 22nd IEEE International

Conference on High Performance Switching

and Routing (HPSR), June 7– 9, in Paris,

France, 2021.

[8] Y. F. Da Silva, R. C. S. Freire, and J. V. D. F.

Neto, “Conception and Design of WSN Sensor

Nodes Based on Machine Learning, Embed- ded

Systems and IoT Approaches for Pollutant

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 121 Volume 4, 2024

Detection in Aquatic Environments,” IEEE

Access, 2023.

[9] S. Ahmed, T. ElGharbawi, M. Salah, and M. El-

Mewafi, “Deep neural network for oil spill

detection using Sentinel-1 data: application to

Egyptian coastal regions,” Geomatics, Natural

Hazards and Risk, vol. 14, no. 1, pp. 76–94,

2023.

[10] Y.-J. Yang, S. Singha, and R. Mayerle, “A deep

learning based oil spill detector using Sentinel-

1 SAR imagery,” International Journal of

Remote Sensing, vol. 43, no. 11, 2022.

[11] G. Tabella, N. Paltrinieri, V. Cozzani, and P. S.

Ross, “Wireless Sensor Networks for Detection

and Localization of Subsea Oil Leakages,”

IEEE Sensors Journal, vol. 21, no. 9, 2021.

[12] Y. Li, X. Yang, Y. Ye, L. Cui, B. Jia, Z. Jiang, and

S. Wang, “Detection of Oil Spill Through Fully

Convolutional Network,” Communications in

Computer and Information Science, pp. 353–

362, 2018.

[13] T. De Kerf, J. Gladines, S. Sels, and S.

Vanlanduit, “Oil Spill Detection Using Machine

Learning and Infrared Images,” Remote

Sensing, vol. 12, no. 24, p. 4090, 2020.

[14] Z. Ghorbani and A. H. Behzadan, “Monitoring

offshore oil pollution us- ing multi-class

convolutional neural networks,” Environmental

Pollution, vol. 289, p. 117884, 2021.

[15] M. Konik and K. Bradtke, “Object-oriented

approach to oil spill detec- tion using ENVISAT

ASAR images,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 118,

pp. 37–52, 2016.

[16] A. A. Huby, R. Sagban, and R. Alubady, “Oil

Spill Detection based on Machine Learning and

Deep Learning: A Review,” in 5th International

Conference on Engineering Technology and its

Applications, 2022.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
V.V. Jaya Rama Krishnaiah: Conceptualization,
Methodology, Supervision.
P. G. K. Sirisha: Software, Validation.
S. Parvathi Vallabhaneni: Data curation, Writing –
original draft.
D. V. Chandrashekar: Formal analysis, Investigation.
K. Jagan Mohan: Resources, Writing – reviewing &
editing.
G. Rajesh Chandra: Visualization, Project
administration.
Venkata Kishore Kumar Rejeti: Hardware
implementation, Validation.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

PROOF
DOI: 10.37394/232020.2024.4.11

V. V. Jaya Rama Krishnaiah, P. G. K. Sirisha,
S. Parvathi Vallabhaneni, D. V. V. Chandrashekar,

 K. Jagan Mohan, G. Rajesh Chandra,
Venkata Kishore Kumar Rejeti

E-ISSN: 2732-9941 122 Volume 4, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

