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Abstract: - The proliferation of digital devices, sensors, and interconnected systems has led to an explosion of 
data. Simple sensors like pH, conductivity, and Turbidity sensors can be used for the classification of gasoline 
and diesel in water. These sensors are easy to set up and deploy, so they can be installed in vast numbers and 
can get real-time data from the site. FPGAs are very fast in processing complex data and have low latency time 
compared to other traditional microcontrollers. But FPGA accepts coding in Hardware Description Languages 
like Verilog or VHDL, which can be very complex to code complex models that are trained in other high-level 
languages like Python and C++. Simple classification models in machine learning are implemented using High-
Level Synthesis tools, which accept codes written in languages like C, C++, or SystemC, and translate them 
into hardware-implementable RTL (Register- Transfer Level) code. The data from two major components of 
oil, gasoline, and petrol are used to train various classification models with widely used libraries in Python. The 
trained parameters are extracted from the trained model. The parameters are then assembled and then coded in 
C++ as currently most of the tools support C++. Some modifications need to be made to the original code to 
make it compatible with the synthesis tool. 

 Key-Words: - Digital Sensors, FPGA, High-Level Synthesis (HLS), Machine Learning, Real-Time Data 
Processing. 
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1 Introduction 

In recent years, the field of machine learning 
(ML) has witnessed unprecedented growth and 
impact across various domains. One major 
application explored is oil spill, where early 
detection is essential to minimize damage in 
aquatic environment [1]. Machine learning, a 
branch of artificial intelligence, is centered on 
creating algorithms that allow computers to 
learn from data and make predictions or 
decisions without explicit programming. 
Supervised learning, a key aspect of machine 
learning, involves training a model using labeled 
data, where the algorithm learns to associate 

input data with the correct output labels [2]. 
Field-Programmable Gate Arrays (FPGAs) are 
integrated circuits (ICs) that can be programmed 
to carry out specific tasks tailored to particular 
applications [3]. 

As machine learning and deep learning 
models are get- ting more complex, more 
powerful embedded systems like FPGA are used 
[4]. Machine learning models are implemented 
in FPGAs stemming from the need for high-
performance, low-power solutions for real-
time inference tasks in edge and embedded 
systems. Traditional computing platforms may 
struggle to meet the stringent requirements of 
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these applications, especially in scenarios where 
power consumption, latency, and resource 
constraints are critical factors. FPGAs offer a 
promising solution by providing hardware 
acceleration for ML algorithms, enabling 
efficient parallel processing and low-latency 
inference. Furthermore, FPGA-based ML 
imple- mentations offer flexibility and 
scalability, allowing for customization and 
optimization of hardware architectures tailored 
to specific application requirements [5]. This 
flexibility is particularly advantageous in 
domains where standard ML models need to be 
adapted or optimized for specialized tasks or 
hardware platforms. The major factor that is 
holding back in using FPGA is using of 
Hardware description language which can be 
very complex and requires a deep understanding 
of digital design concepts and hardware 
architectures, making them challenging for 
beginners and those with primarily software 
engineering backgrounds. Making design 
changes and exploring alternative architectures 
in HDLs can be time- consuming and resource-
intensive, particularly for complex designs [6], 
[7]. 

High-Level Synthesis (HLS) is a design 
methodology used in digital circuit design and 
FPGA programming. It allows developers to 
write high-level descriptions of digital circuits 
using programming languages such as C, C++, 
or SystemC, which are then automatically 
translated into hardware implementations. HLS 
abstracts the details of hardware design, 
allowing developers to focus on algorithmic 
and architectural aspects rather than low-level 
hardware descriptions. Developers can write 
algorithms and specify behavior at a higher 
level of abstraction, making the design process 
more intuitive and efficient. HLS significantly 
reduces the time and effort required for 
designing complex digital circuits compared to 
traditional hardware description languages 
(HDLs) like Verilog or VHDL. 

In environmental monitoring and management, 
the detection and mitigation of oil spills in water 
bodies are of paramount importance to 

safeguard ecosystems, human health, and eco- 
nomic activities. Leveraging advancements in 
sensor technology and data analytics, there has 
been a growing interest in developing automated 
monitoring systems for early detection and 
response to oil spills. Less expensive sensors 
like pH, conductivity, and Turbidity sensors can 
be used for real-time observation on site. By 
integrating sensor data with machine learning 
algorithms, predictive models can be developed 
to detect unusual patterns that may signal the 
occurrence of oil spills, enabling timely 
intervention and mitigation efforts. 

The research paper is structured as follows: 
After the introduction, Section II presents a 
review of related work. Sections III and IV cover 
the preliminaries and the proposed 
methodology, respectively. Section V discusses 
the computational experiments and their 
analysis. Finally, Section VI concludes the 
study. 

2 Literature Survey 

With the increasing significance of evolving 
artificial intelli- gence, many researchers are 
developing prototypes to get input from low-cost 
and portable sensors and perform computations 
using machine learning models. These days, 
machine learning models can easily be 
integrated into multiple platforms. 

Yan Ferreira da Silva et al., utilized Wireless 
Sensor Net- works (WSN) with sensors for 
temperature, pH, turbidity, and conductivity on 
a float to continuously gather real-time data. 
This data is sent to an ESP32 microcontroller 
that converts analog signals to digital. They 
employed a convolutional neural network to 
train the model with gasoline and diesel data, 
transmitting the output wirelessly via Wi-Fi for 
real- time monitoring and alerts for oil presence. 
While the network detects the presence of oil, 
it doesn’t give what kind of oil is present [8]. 
Ahmed et al. developed an oil spill segmentation 
model utilizing 50 Sentinel-1 SAR images, 
employing a custom data generator within a 
Seg-Net model, which is implemented through a 
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Conditional Generative Adversarial Network 
(CGAN). In this model, a modified Seg-Net 
functions as the generator, while a Patch-GAN 
serves as the discrim- inator, significantly 
improving oil spill segmentation results 
compared to the Seg-Net model, even with a 
relatively small training dataset. However, 
obtaining the data from the radar is a complex 
process that consumes lots of power and storage 
for processing [9]. 

Yi-Jie Yang et al., developed a deep learning-
based oil spill detector using Sentinel-1 
Synthetic Aperture Radar (SAR) imagery. The 
authors employed advanced deep-learning 
tech- niques to analyze SAR images for 
identifying oil spills. Their approach leverages 
the high-resolution and wide coverage of 
Sentinel-1 data to detect oil spills accurately 
and efficiently. The model was trained on a 
substantial dataset of SAR images, enabling it 
to distinguish between oil spills and look-alike 
features such as natural phenomena or man-
made objects. But models, especially those 
handling large datasets like Sentinel- 1 SAR 
imagery, require significant computational 
resources and time for training and inference 
[10]. Gianluca Tabella et al., have developed 
Wireless Sensor Networks (WSNs) aimed at 
detecting and pinpointing subsea oil leaks. This 
research emphasizes sensors making localized 
binary decisions on the existence of a spill 
through an energy test. These individual 
decisions are then sent to a Fusion Center (FC), 
which integrates them into a more reliable 
global binary decision. The study evaluates the 
performance of the Counting Rule (CR) against 
a modified Chair-Varshney Rule (MCVR). 
Thresholds are designed using an objective 
function that is based on the Receiver Operating 
Characteristic (ROC) curve. The main 
challenges faced in this design are maintaining 
reliable wireless communication underwater is 
difficult due to signal attenuation and 
interference, which can impact data 
transmission, and harsh underwater conditions, 
such as high pressure, strong currents, and 
biofouling, can affect sensor performance and 
durability [11]. 

Yan Li et al., introduced a deep-learning 
classification model designed to automatically 
detect marine oil spills in images from Landsat-
7 and Landsat-8 satellites. This model inte- 
grates fully convolutional networks (FCN) with 
ResNet and GoogLeNet architectures. The 
performance of the classifica- tion algorithms, 
namely FCN-GoogLeNet and FCN-ResNet, is 
compared against the state-of-the-art Support 
Vector Machine (SVM) method. But the 
computational intensity of FCNs may limit 
their applicability in real-time monitoring 
scenarios where rapid detection and response 
are crucial. Also, the model might struggle to 
adapt to different environmental conditions not 
represented in the training data, such as varying 
weather patterns, sea states, or types of oil spills 
[12]. Thomas De Kerf et al., developed an 
innovative framework for de- tecting oil spills 
in port environments using unmanned aerial 
vehicles (UAVs) equipped with thermal 
infrared (IR) cameras, capable of detecting oil 
even at night. The collected data is uti- lized to 
train a convolutional neural network (CNN). 
However, the accuracy of infrared imaging for 
oil spill detection can be influenced by 
environmental factors such as temperature 
fluctuations, weather conditions, and sea state. 
Additionally, implementing and maintaining 
machine learning models for this purpose 
requires expertise in both machine learning and 
infrared imaging, which may not be readily 
available [13]. 

In a separate study, Zahra Ghorbani and Amir H. 
Behzadan employed VGG16 transfer learning 
convolutional neural net- works to train on a 
visual dataset of oil spills, comprising images 
taken from different altitudes and geographic 
regions. They employed Mask R-CNN and 
PSPNet models for oil spill segmentation and 
precise pixel-level detection of spill boundaries. 
Additionally, they trained a YOLOv3 model to 
identify the presence of oil rigs or vessels near 
detected oil spills, providing a comprehensive 
view of the spill area. A significant challenge in 
this approach is the deployment in resource-
limited environments, as training and 
implementing multi-class CNNs demand 
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substantial computa- tional resources, which 
may not always be feasible [14]. M. Konik and 
K. Bradtke used an object-oriented approach to 
oil spill detection using ENVISAT/ASAR 
images. Their approach involves pre-processing 
using optimized filters, hierarchical 
segmentation to detect spills of different sizes, 
forms, and homogeneity, and a decision-tree 
procedure for classifying dark objects visible in 
SAR images reflecting the probability of oil spill 
presence. This model relies heavily on accurate 
image segmentation, which can be challenging 
and may result in errors if the segmentation 
process is not precise. Also, the presence of 
similar-looking features such as natural slicks, 
seaweed, and low-wind areas can interfere with 
the detection process, leading to false positives 
[15]. 

3 Preliminary 
A. Machine Learning Classification Models 

In this work, binary classification models are 
used which will give the output as true or false. 
Classification models can be generally divided 
into three types: binary classification, multi-
class classification, and multi-label 
classification. These categories are determined 
by the number of classes or labels present in the 
target variable [16]. 

1) Logistic Regression: Logistic regression 
is a key classification algorithm frequently 
employed in machine learning for binary 
classification tasks. It assesses the degree of 
dependence between a categorical dependent 
variable and one or more independent variables 
by utilizing the logistic function. The result of 
logistic regression is a probability value 
ranging from 0 to 1, indicating the likelihood 
or confidence that a given input belongs to the 
positive class. Similar to linear regression, it 
aims to determine the coefficients for the input 
variables. However, in logistic regression, the 
output is transformed using a non-linear 
(logistic) function. This transformation is 
achieved through the logistic (or sigmoid) 
function, which converts raw predictions into 
probabilities. Let the independent input 
features be: 

2) K Nearest Neighbors: K-Nearest 
Neighbors (KNN) is a straightforward and 
intuitive algorithm used for both classifi- 
cation and regression in machine learning. It is 
an instance- based method, meaning it 
memorizes the training instances and predicts 
new instances based on their similarity to these 
stored instances. The algorithm finds the ’K’ 
nearest data points to a given input and predicts 
the output based on the majority class or 
average value of those neighbors. As a non- 
parametric algorithm, KNN does not assume 
any underlying data distribution. 

To make predictions, KNN calculates the 
similarity between the input instance and all 
training instances, often using Euclidean 
distance. For classification, it uses majority 
voting among the k nearest neighbors to assign 
the class label. The choice of ’K’ and the 
distance metric significantly impacts the 
algorithm’s performance. The optimal value of 
’K’ is critical and often chosen based on input 
data characteristics, with higher values of ’K’ 
recommended for data with more noise 

 3) Support Vector Machines: Support Vector 
Machines (SVMs) are robust supervised 
learning models used for both classification and 
regression. They excel in high-dimensional 
spaces and when the number of features exceeds 
the number of samples. SVMs work by 
identifying the optimal hyper plane that best 
separates data points of different classes in the 
feature space, maximizing the margin between 
the nearest points of the classes. This optimal 
hyper plane is known as the maximum-margin 
hyper plane or hard margin. In cases with 
outliers, SVM introduces a penalty for 
misclassifications, resulting in a soft margin. 
SVMs can also handle non-linear data using the 
kernel trick, which maps input features into a 
higher-dimensional space where linear 
separation is possible. Common kernels include 
linear, polynomial, radial basis function (RBF), 
and sigmoid. The regularization parameter (C) 
balances margin maximization and 
classification error minimization, with smaller 
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values allowing more misclassifications and 
larger values penalizing them more heavily. 

4) Decision Tree: Decision Trees are flexible  

 

Fig. 1. Basic Decision Tree Node Representation 

and interpretable models used for 
classification and regression tasks. They work 
by recursively dividing the feature space into 
distinct regions, each corresponding to a 
specific class or predicted value. The structure 
of a Decision Tree includes a root node, 
internal nodes, and leaf nodes shown in Fig. 1. 
The root node represents the feature that best 
separates the data, while internal nodes make 
decisions based on feature values and 
thresholds. Leaf nodes provide the final 
prediction for the data subsets. Decision Trees 
use criteria like Gini impurity, entropy 
(information gain), and classification error to 
determine the optimal splits at each node. To 
avoid overfitting, pruning techniques are 
applied: pre-pruning stops tree growth early 
based on certain conditions, while post-
pruning removes less significant branches 
after the tree is fully grown. 
 
B. Conversion into C++ code 

Currently, most of the High-Level Synthesis 
tools support C++ as its input. Therefore, the 
parameters from the trained Python models are 
extracted and refactored into C++. This C++ 
code can be fed into the Vitis HLS tool, which 
is converted into RTL. The parameters are 
obtained from the trained models and then C++ 
code is developed. 

C. High-Level Synthesis Tools 

called Vitis HLS. The steps followed for the 
generation of RTL from the HLS code and the 
deployment of RTL code in FPGA: 

Step 1: Running C simulation to verify if 
the provided code is syntactically correct and 
performs as per the user’s requirement. 

Step 2: Running C synthesis for the 
conversion of the provided C++ code to RTL 
using the Vitis conversion tool. 

 
Fig. 2. Block diagram of workflow 

Step 3: The C/RTL Co-Simulation step 
verifies that the RTL generated by synthesis 
behaves the same as the original C/C++ source 
code. 

Step 4: Exporting RTL for integration with 
hardware tools like Vivado for Xilinx FPGAs. 
The system-level design is then synthesized into 
a bitstream that can be loaded onto the FPGA. 

4 Proposed Work 
The block diagram shown in Fig. 2, the 

approach and methodology developed for the 
proposed work: 

A. Generation Dataset 

For data preparation, for the detection of 
gasoline, the pH range is between 6.5 to 7 and 
turbidity is between 2.36 to 2.42 NTU. The 
conductivity of seawater is typically 50000 
microS/cm. As gasoline is volatile and 
lightweight the conductivity will reduce only by 
1 to 3 %. With the range of seawater pH between 
5 to 8 and turbidity between 2.3 to 3 NTU the 
dataset is generated in Python using CSV 
format. For the detection of diesel, the pH range 
is between 5.8 to 6.5 and turbidity is between 
2.28 to 2.35 NTU. 
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B. Training Classification Models 

The model is trained using Scikit-Learn, an 
open-source Python library known for its user-
friendly and efficient tools for data mining and 
analysis. Scikit-Learn offers a variety of 
supervised and unsupervised learning 
algorithms, as well as features for model 
selection, evaluation, and data preprocess- ing. 
In this project, four classification models are 
implemented: Logistic Regression, K-Nearest 
Neighbors, Support Vector Machines, and 
Decision Trees. The two datasets, diesel and 
gasoline are fed into the four classification 
models and the accuracy is calculated. The 
following table gives the accuracy of the 
classification models for diesel and gasoline. 

 

Fig. 3. Decision Tree Node Structure Obtained after Parameter 
Extraction 

C. Parameter Extraction and C++ code generation 

For the gasoline dataset, the decision tree 
performs very well for classification. The 
decision tree model breaks the model into 
various nodes based on various nested 
conditions based on the model fit and Gini 
impurity. These conditions are then inferred and 
C++ code is developed. This decision function 

is implemented in the C++ code. The parameters 
are then extracted are: Support Vectors (xi) 
Lagrange multipliers (i) Class Labels (1 or -1) 
Bias term (b) Gamma. 

D. Methodology adopted to code the trained 
model in C ++ 

• For the Decision Tree model, break the 
different conditions using if-else statements 
according to the value threshold provided. The 
model either returns true or false shown in Fig. 
3. 

• Define and initialize the constant values 
like support vectors, Lagrange multipliers, and 
bias term gamma. Also, the mean and variance 
of each feature are assigned. 

• For the Support Vector Machine model, 
separate function modules are created for the 
RBF function and decision func- tion. The 
RBF function is computed and the value is 
passed to the decision function. 

• For the SVM model, first the input data 
should be normalized before processing. 
Therefore, a separate function for normalizing 
(Z-score normalization) is used based on the 
formula: z=(x-)/ 

• The combined model first uses the 
decision function for the detection of gasoline. 
If the gasoline detected is true, then gasoline 
is output. If false then, it checks for the SVM 
model for the detection of diesel. If diesel 
detected is true, then diesel is output. If false 
then, no oil. 
Converting normal C++ code to High-Level 

Synthesis (HLS) compatible code involves 
several steps to ensure that the code can be 
efficiently implemented on an FPGA. HLS 
allows you to describe hardware functionality 
using C/C++ code, which is then synthesized 
into hardware description language (HDL) code 
like Verilog or VHDL. The following are some 
considerations that are taken into account when 
converting the given code to an HLS-
compatible format: 

• HLS tools support a subset of C++ data 
types and libraries. Using fixed-size data types 
(e.g., int, float) is preferable to dynamically 
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allocated memory (e.g., new, malloc). 
• HLS tools rely on loop-level parallelism 

for efficient hardware implementation. 
Optimizing the code to maximize loop 
parallelism and minimize loop dependencies 
will largely lead to performance 
improvements. 

 
• Compiler directives and pragmas to guide 

optimization and resource allocation, such as 
loop pipelining, loop unrolling, and array 
partitioning. 

• HLS tools support fixed-point arithmetic more 
efficiently than floating-point arithmetic. 
Conversion of floating-point operations to 
fixed-point operations where applicable. Us- 
ing pragmas and directives to specify fixed-
point formats, precision, and rounding modes 
to achieve desired numerical accuracy is shown 
in Fig. 4.  

 
Fig:4 Flow diagram of methodology to develop hardware from HLS 
code 

E. Methodology developed for High-Level 
Synthesis 

• Store the constant values like support 
vectors, and La- grange values in separate 
memory like BRAM so that these values can 
be initialized during the start of the program 
and remain fixed throughout the execution. 
These values should be initialized while 
running the main function therefore separate 
modules are created and called. 
•The datatype is defined in bits and pragma is 

used to define the high-level synthesis functions 
and inputs. Various ports for pH, Turbidity, and 
Conductivity are defined. A stream is created to 
get the feature inputs. These inputs will act as an 
array. 

• For the SVM model, the constant single 

values like mean, variance, bias, and gamma 
are defined in the registers. Differ- ent modules 
are defined for the implementation of the 
decision function and value normalization. The 
property of pipelining and loop unrolling is 
used to improve the performance and reduce 
latency. The HLS math library is used for 
square root and exponential calculation. 
A separate function is created to call the 

decision tree model for prediction. If gasoline is 
predicted, then the output is gasoline. If 
gasoline is not predicted then, the function calls 
the SVM model. If the SVM model predicts 
diesel then output is diesel. Or else output is no 
oil. 

 
Fig. 5. Accuracy values for different threshold values for gasoline (left) 
and diesel (right) 

 
Fig. 6. Accuracy for different K-NN values for gasoline (left) and 
diesel (right 

5 Results 
A. Checking accuracies for models 

For the logistic regression model, the below 
plot shows the accuracy of the values for 
different thresholds shown in Fig.5. The 
selection of the hyper parameter k in KNN is 
critical, as illustrated in Fig. 6. Choosing a 
small k value can cause over fitting, whereas a 
large k value might lead to under fitting. The 
optimal k value can be identified through 
methods like cross-validation or grid search. 
The following graph shows the different 
accuracy values for various k parameters. 
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B. Converting to RTL 

The below image shows that the code has 
successfully synthesized and RTL is exported. 
The HLS tool will create the necessary Look Up 
Tables (LUT), Flipflops (FF), and BRAM in 
the implemented RTL is shown in Fig. 7. It 
shows that the latency of one iteration is 4391 
ns, which is significantly lesser than a 
traditional microcontroller which has latency 
in milliseconds The latency of the model can be 
further reduced using optimization techniques 
in RTL simulations, like pipelining, loop 
unrolling, function inlining, and removing 
reductant gates. 

6 Conclusion 
In this work, various classification models are 
trained with the dataset obtained from the 
research paper using the Python Ski-kit Learn 
library, and the trained parameters are obtained. 
As most of the current high-level synthesis tools 
support C++ or C language, a C++ code is 
developed by interpreting the logic of the 
classification models and including the 
parameters. Then the code should be converted 
to a format that is com- patible with the HLS 
tool by including the necessary header files, 
converting the data types, loop optimization 
techniques, etc. 

 

 

Fig. 7. Result obtained after C synthesis 

 The code is then loaded into the HLS tool, in 
this case Vitis HLS. After debugging the code, it 
is synthesized to RTL. Exporting the RTL code 
will generate the corresponding Verilog and 
VHDL code. Therefore, the hardware can be 
described using high-level programming 

languages like C++, which makes it much easier 
for other developers outside the hardware field 
to leverage the potential of FPGA and other 
ASIC devices without knowing any HDL 
language. However basic understanding of the 
hardware architecture and timing constraints are 
required. Even complex models like artificial 
neural networks or models with enormous data 
sets can be deployed in FPGA. 
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