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Abstract: - In this study, we define hyperbolic (s,t)-Fibonacci and (s, t)-Lucas quaternions. For these
hyperbolic quaternions, we give the special summation formulas, special generating functions, etc. Also, we
calculate the special identities of these hyperbolic quaternions. In addition, we obtain the Binet formulas in two
different ways. The first is in the known classical way and the second is with the help of the sequence's
generating functions. Moreover, we examine the relationships between the hyperbolic (s,t)-Fibonacci and
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with their hyperbolic quaternion values.
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1 Introduction with the initial conditions Fy = 0, F; = 1, Ly = 2,
Li=1,py=0,py =1,andqy = 2, q; = 2.

The Fibonacci, Lucas, and Pell sequences are For F,, Ly, pp, and g, the Binet formulas are given

famous sequences of numbers. These sequences by relations, respecrfiverlly,

have intrigued scientists for a long time. Fibonacci F,=2""" L, =¢"+w",

sequences have been applied in various fields such Anﬁ;ﬁ’

as Algebraic Coding Theory [1], [2], graph theory Pn =735, and g, = A" + "

[3], [4], Biomathematics [5], Computer Science [6], 1+v5 1-5

and so on. Many generalizations of the Fibonacci where ¢ = 2 YT A=1+32 and ¥ =

sequence have been given. The known examples of 1 —+/2 are the roots of the characteristic equation

such sequences are the Pell, Pell-Lucas, k- s?—s—1=0 and v? —2v — 1 = 0, respectively.

Fibonacci, k-Jacobsthal-Lucas, k-Lucas, k-Pell, k- Here ¢ and A numbers are the known golden ratio

Pell-Lucas, and Modified k-Pell sequences, etc (see and silver ratio.

for details in [7], [8], [9], [10], [11]). With the help of the recurrence relation of the

For n €N, the Fibonacci numbers F,, Lucas Fibonacci  sequence,  (s,t)-sequences  were

numbers L,,, Pell numbers p,,, and Jacobsthal-Lucas introduced, and these sequences had an important

numbers g, are defined by the recurrence relations, place in number theory.

respectively, In [12], [13], for n € N, they defined the (s,t)-
Fpio =Fpi1+E, Lyiy =Ly + Ly, Fibonacci and (s,t)-Lucas sequences by the

Pn+2 = 2Dn4+1 + P> and @ui2 = 2qp4q + qn recurrence relations, respectively,

Foyo = SFyyq + thy,
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Lytz = SLlpyq +tly,

with the initial conditions Ly = 2, L; = s and Fy =
0, F;=1. In addition, they found the Binet
formulas and properties of these sequences. In [14],
they did applied work on the matrix representations
of (s,t) Fibonacci sequences. Also, in [15], she
defined the (s,t)-Jacobsthal and (s, t)-Jacobsthal-
Lucas sequences and she found the generating
function, the Binet formulas and some features of
these sequences.
The quaternions were first described by Hamilton in
1843. Then, quaternions used to control rotational
movements especially in 3D games and Eulerian
angles. In [16], he defined Complex Fibonacci and
Fibonacci quaternions and he were found various
features of these sequences.
The algebra of hyperbolic quaternions is an algebra
that is not related to the elements of the form over
the real numbers.

q = xiy +yi, +ziz +tiy, x,y,z,t ER
In [16], he gave the properties of the g units defined
as in Table 1.

il iz i3 i4
iy by iz i3 iy
i i iy iy —is
is is —i, iy iy
iy iq i3 —lp b

Table 1. Hyperbolic Quaternions Units

In [17], he did a lot of research on hyperbolic
quaternions and their properties. An expression of
the general form of hyperbolic quaternions is

h = hyig+hyiy + Agizt+hyiy = (hq, by, hs, Ry).
Here, the terms of the hq,h,, h3, Ay sequence,
i1,19, 0314 are hyperbolic quaternions.
In [18], he defined the hyperbolic k-Fibonacci and
k-Lucas quaternions and he found properties of
these quaternions. Also, they conducted a study on
the hyperbolic Leonardo and Francois quaternions
and obtained many features related to these
quaternions [19]. In addition, they introduced the
Jacobsthal and Jacobsthal-Lucas quaternions [20].
Moreover, they did many studies on hyperbolic
quaternions,octonions, and sedenions [21], [22],
[23], [24], [25] [26], [27] [28], [29], [30].
As seen above, many generalizations of hyperbolic
quaternions of sequences have been given so far. In
this study, we give new generalizations inspired by
the hyperbolic k-Fibonacci quaternions and
Jacobsthal and Jacobsthal-Lucas quaternions. We
call these quaternions the hyperbolic (s,t)-
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Fibonacci and (s, t)-Lucas quaternions and denote
them as HE, (s, t), and HL, (s, t), respectively.

We separate the article into three parts.

In chapter 2, we define the hyperbolic (s, t)-Pell and
(s, t)-Pell-Lucas quaternions, and the terms of these
quaternions are given. Then, we find some
properties of these quaternions.

In chapter 3, information is given about the
characteristic equations of hyperbolic (s, t)-
Fibonacci and (s, t)-Lucas quaternions. Then, we
obtain the Binet formulas, generating functions, and
sum of terms of these quaternions. In addition, we
examine the relationship of hyperbolic (s,t)-
Fibonacci and (s, t)-Lucas quaternions. Moreover,
we calculate the special identities of these
quaternions. Finally, we associate the terms of the
(s,t)-Fibonacci and (s, t)-Lucas sequences with
their hyperbolic quaternion values.

2 Hyperbolic (s, t)-Fibonacci and

(s, t)-Lucas Quaternions

For n € N, the hyperbolic (s, t)-Fibonacci HE, (s, t)
and (s,t)-Lucas quaternions HL,(s,t) are defined
by, respectively,
HF,(s,t) = Fyiy + Fpyaly + Fuiolz + Frysiy
= (Fo Fav1 Friz Fres)
and
HLy(5,t) = Lpiy + Lpg1lp + Lpyaiz + Lnysis
= (Ln, Lny1, Lny2, Lngs)
where F, is nt" (s,t)-Fibonacci sequence, L, n®
(s,t)-Lucas sequence and iq,i,,i3 and i, are the
hyperbolic quaternion units in table 1.
Let us now give some terms of the hyperbolic (s, t)-
Fibonacci and (s, t)-Lucas quaternions below.
o HFy(s,t) =iy + siz + (5% + t)ig,
o HF (s,t) =iy +sip + (s? + t)ig + (s> +
2st)iy,
o HF,(s,t) = siy + (s + )iy + (s3 + 2st)iz +
(s* + 352t + t2)iy,

h

o HLy(s,t) = 2iy + sip + (s2 + 2t)iz + (s> +
3st)iy,
o HL (s, t) =siy + (s +2t)i, + (s3 +
3st)iz + (s* + 452t + 2t?)i,,
o HL,(s,t) = (s? + 2t)iy + (s3 + 3st)i, +
(s* + 452t + 2t2)iz + (s° + 553t + 55t2)i,.
Definition 2.1. For n € N, the conjugate of (s, t)-
Fibonacci HE;(s,t) and (s,t)-Lucas HL}(s,t)
quaternions are defined by, respectively,
HEFy (s,t) = Fyiy — Fpyala = Fryzlz — Fpisly
= (Fo —=Fnt1, —Fni2, —Fny3)
and
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HLy(s,t) = Lyiy — Lpyqiz — Lyypis — Lpyaiy
= (Lnr —Lpy1,—Lnyo, _Ln+3)-

Definition 2.2. For n € N, the norms of the
hyperbolic (s,t)-Fibonacci HE,(s,t) and (s,t)-
Lucas HL,(s,t) quaternions are defined by,
respectively,

”HFn” = \/Fn2 +F1%+1 +F7$+2 +F7$+3

and

”HLn” = \/L% + L%‘L+1 + L$l+2 + L%l+3'

(s, t)-

(s, t)-Lucas

3 Properties
Fibonacci
Quaternions

of Hyperbolic
and

In this chapter, the relationships between the
hyperbolic  (s,t)-Fibonacci and (s, t)-Lucas
quaternions are examined. In addition, some
identities are obtained.
Theorem 3.1. For n € N, the hyperbolic (s,t)-
Fibonacci and (s, t)-Lucas quaternions provide the
following recurrence relations.
i. AL, = HF, 4+ tHF,_4,
ii. HFy ., = sHF, 1 + tHE,,
iii. HLyyp = SHLy 1 + tHL,,
iv. HE},, = sHF;,, — tHE},
V. HL},, = sHL; 1 + tHL,
vi. ALy, = HF; ., + tHF;;_,.
Proof. If the definition of the hyperbolic function is
used, we have
I HFpyq + tHFy g = Fppqly + Foyaly + Fpysis
+Fnials + t(Fyoqly + Fuiy + Fpyqiz + Fiols)
= (Fpy1 + tFp_1)iy + (Fpyg + R,
+(Fpys + tFuy1)iz + (Fups + thpy2)iy
Since, L, = Fppq1 +tF,_4.
Thus, we obtain

AL, = HF,,, + tHF,_,.
The proofs of the others can be given in the same
way. O
In the following theorem, the Binet formulas of the
HE, H Fn*, AL, and H Ln* quaternions are

expressed.

Theorem 3.2. Let n € N. We obtain

i AR, =265 i AL, = @a™ + Bp™,
iii. HE, = Wnizﬁn, iv. AL, =ya™ + 6™
where

A =i+ aiy + a?iz + adi, = (1,a,a? ad),
Y =0,-a-a*-a®,
B =i+ Biy+ Bz + iy = (LB, 5% B,
0 = (1,-B,—B%-B>.
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Proof. i. With the help of the characteristic

equation, the following results are obtained.

2 s+Vs2+4t
r —sr—t=0,r1=a=T,

— 2
r=f =S \/52+4t,a+[3=s,
a—B=686=+Vs2+4t,a’>+p>=5%+2t
aff = —t.
The Binet form of the hyperbolic (s,t)-Fibonacci
quaternions is

and

HE, = xa™ + yp™
With the initial conditions, the following equations
are obtained.
HFy =i, + siz + (s> + t)iy, = (0,1,5,5% + t)

=x+y
and
HF, =iy + sip + (s + t)iz + (s3 + 2st)i,
=xa+yp.
Thus, we obtain
x = HF,—BHF, _ i +aiz+a?iz+adi, __a
a-p a-p a-p
and
_ HF—afFy, _ iy+Bia+p%is+B%, _ —B_
- Ba -(a-p) ~ap
So, we have
~ aa™-pp"
HE, = g
The proofs of the others can be given in the same
way. |

In the next Lemma, we obtain the properties that
will be used in the proof of many theorems.
Lemma 3.1. We have

i.a—p = G6HF,,
i.a+p = HL,,
ii. @B = (—t3+t> —t+1,-6t% +s,52
+2t — &st, 8t + 3st + s3),
iv. o = (—t3 +t2 —t +1,6t% +5,5% + 2t
+8st, —6t + 3st + s3)
v.ap + pa
= (—2t3 + 2t? — 2t + 2,25,25% + 4t, 65t + 253)
= 2HLy—2t3 + 2t% — 2t,
vi. fa —apf = (0,2t268,28st, —26t)
= 256t(0,t,s,—1),
vii. @’ =2a—1+a® + a* +ab,
Viili. B* = 2B — 1+ B% + B* + B°,
ix. @ — B = 6(Q2HFy + Fy + F, + Fy),
X @+ B =20Ly— 2Ly + Ly + Ly + Lg.
Proof. iii. If definition is used, we have
aB = (i; + aiy + a?iz + a3iy)
(iy + Biy + B2iz + B3iy)
=iy + Biy + B?is + B3iy + aiy—ti; — tPiy
—tB%i5 + a’is — tai, + t2i,
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+t2Bi, + adi, — tatis + t2ai, — t3i
= (=t3+t?>—t+1Di; + (=6t% + 8)i,
+(s? + 2t — 8st)iz + (6t + 3st + s3)i,
Thus, we obtain

af = (-t +t?2—t+1,-6t> +5,52+ 2t
—8st, 8t + 3st +s3).
The proofs of the others can be given in the same
way. ]
In the following theorems, we study the summation
formulas for these hyperbolic quaternions.
Theorem 3.3. Let n € N. We obtain
LSHF =Yl HF
tHE,_1 + (s + )HF, + iy + iy — siy],

= Yo AN,

= [(s + )AL, +tHL,_; + (2 — 8)i;

—Siy — 513 — (s22t + 25)i4].
Proof. i. Using the definition, we have
SHEF, = pﬂ@:qﬁﬂ5+
iy Xi=0Fja1 + i3 Xjeo Fjaz +ia 2= Fjss.
Since ¥ 0F- = Lt OF e get

t+s—1
SHF = [(1+tFn 1+ G+HOE)L;+ (A +
th, + (S + t)Fn+1)12 + (tFpt1 + (s + OFp42)is
+(tFp41 + (s + DFpy2)is
+((tFpaz2 + (s + OFp43 = 5))ia
So, we obtain

siiF

t+s 1[
II.SHL

=T ——[tHF,_1 + (s + )HE, + iy + iy — siy)].
The proof of the other can be given in the same way.

O

Theorem 3.4. Let k € R and x,y, z € N. We obtain
(=) *HFp+HFy—HFyyyx+HLyFx—HF,

.Y HE, =
Zy—O xy (—t)¥—Ly+1 ’
.. ~ (=t)*HLypy+HLy—HFyypx—HLoFx—HF,
ii. Yt HL,, =

Zy—O xy (—t)*—Ly+1 ’

Ty n > —
i, XY-0 HFxy4z =
(_ t)xHan+z_Han+x+z —HF,— (_t)ZHFx—z

COF L1 ,ifz<x
—t)*HF, —-HF, —HF,—(—t)*HF,_ .
( ) nx+z ( n;;-;x+: +1 4 ( ) Z x’ Oth@TUlS@
- —Lx
H n 7 —
V. X350 HLyyy, =
(_t)xHLnx+z_HLz_HLnx+x+z_(_t)zHLx—z lf 7< x
(—t)¥—Ly+1 !
—t)*HAL —-HL,—HL —(—t)*HL,_ ,
( ) nx+z (Zt)x ZXIJ;+Z ( ) Z x’ Othervlse
- —Lx

Proof. With the help of definitions, Binet formulas
and geometric series, we have

. o w aaY-ppry
i Xy=0 Hny = Xn=o T

Zy o(a®)” —

nx+x

e -0 (B

- Banx+x B

-1

1aa
a*-1
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1

a—p
aa”x+xﬁx—aﬁx—aa”x+x+a ﬁﬁnx+xax+ﬁ0lx+ﬁﬁnx+x B
(=t)*=Ly+1
Thus, we get
gr. =& ) HFy+ HFg—HFpyyx+HLoFy— HFx
=0 xy ™ (~DF~Ly+1
The proofs of the others can be given in the same
way. O
Corollary 3.1. We obtain
_ t?HF+HFy—HFyp o +HLoF,—HF,
i. HF.
Ly=olFzy = (—t)X—Ly+1 ’
t2HLyp+HLo—HFypyp—HLoF,—HF,
ii. HL
Zy 0 2y = (—t)*¥—Ly+1 . ’
_ t?HFny1—HFopy3—HF —t*HF,
iii. HF
Zy 0 2y+1 ( t)x Ly+1 >
. t?ALypi1—HLy—HLypy3—t?HLy
iv. Y o HL =
Zy_O 2y+1 (—t)*—Ly+1

Proof. i. Let x = 2 is taken in the relation given by
Theorem 3.4. i. We obtain

Z§=0Hny = Z; OHFZy
_ (O*HFyn+HFy=HFyn1p+HLoF;~ HF2
(—t)¥—Ly+1
The proofs of the others are shown similarly to i,
using the Theorem 3.4. O
Theorem 3.5. (Generating Functions) The

generating functions for hyperbolic (s, t)-Fibonacci
and (s,t)-Lucas quaternions are given as follows,
respectively,

f(x)_Zn OHFx

and

(1 sx)HFy+HF,
1-sx—t2

900) = Bz Ly = Tetiacstile

Proof. The following equations are written for the

hyperbolic (s, t)-Fibonacci sequence.

f() = S o HFx™

= HFy + HF,x + Y%, HE,x™

=HFy + HFx + s Yoy HF,_1x™

+t Y&, HF,_,x™

=HF, + HF;x + sx(—HFO + Yoo HEx™)

+tx? Yo HE,x™.

Thus, we have

(1-sx)HFy+HF;

f (x) = 1—-sx—t2
The proof of the other can be given in the same way.
m|
In the following theorems, special generating

functions for these hyperbolic quaternions are
studied. In addition, the Binet formulas are obtained
with the help of generating functions.

Theorem 3.6. For a,b € N*, b >a and n € N, we
obtain

i Y=o HFanx™

i X OHLanx

_ HFy+(HLoFa—HF,)x

T 1-xLg+(-t)x2
HL0+( HLoLg+HLg)x
1-xLg+(—t)ax2 °
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HFb x(—t)*HFp_g,
1-xLg+(—t)%x2
_ ALp+x(=0)*HLg

1-xLq+(—t)%x2’
. Han X
V. Z

iii. Zn OHFan+bx

iv. Zn 0 HLan+bx

Ee“bx—ﬁeﬁbx
n! a-pB ’
vi. Yo Ao yn _ Goalx | Beh'x,
Proof. W1th the help of definitions, Binet formulas
and geometric series, we have

—,an_ppan
H o) 7 n o aq _BB n
I Zn=0 HFanx - Zn=0

a-p x
T v B
P LRI

~ 25T X"

__1,a@ _ B )
_a B “1-a%x 1-B% B
= B+[(a+ﬁ)<a -B ) aaa:gﬁ 1x

1- xLa+( t)%x2

Thus, we get

Srico Ayt = Tt Lo,
The proofs of the others can be given in the same
way. O
Theorem 3.7. For HE, and HL, quaternions, the
Binet formulas can be obtained with the help of the
generating functions.

Proof. With the help of the roots of the
characteristic equation of these quaternions, the
roots of the 1 — sx — tx? = 0 equation become %
and % For HE, quaternions, we obtain
(1-sx)HJo+H;x _ 1 7 11 E 1
1-sx—tx? T a-B 1-ax a-B7 1-px
_ \J'o 1 — n_ 1 Zony.n
_ZHZO(a_Baa _'Bﬁﬂ )x

= Yn=o Hann-
Similarly, the Binet formula of the HL,, quaternions
is found. o
In the following theorems we calculate special
identities for these hyperbolic quaternions.
Theorem 3.8. (Cassini Identity) Foralln = 1,
i. HF,, HF,_, — HE,’
= (M@ +D(E -1, s - t?)
,(—s? — 2t — s%t), (s3 — 2st)),
i AL, AL, , — HL,"
= (=" + DA -0
,s(1—t2),(s% + 2t — s2t),s3 + 4st).
Proof. i. With the Binet formula, we get
HFn+1HFn—1 - HFnz
_ TaHI-gRTH Ean'l—ﬁﬁn‘l) B (Ea"—ﬂﬁn)z
a-p a-p a-p
_ Eﬁanﬁn+ﬁﬁﬁnan—ﬁﬁﬁn_1an+1—Eﬁan_1Bn+1
B (@-B)>
_ ap-on(SE)+pac-om (557
B (@-p)?

_ (=" pap-apa
- a-B af
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O = o

= Tap (Bap — afa).
Then, we have
Bap — afa

= ()" (= (—t3+t?2 -t +1)5,s6(1 —
t2),8(—s? — 2t — s%t),8s(s3 — 2st)).
So, we obtain
HFn+1HFn—1 - HFnz

= (O N+ D(E - 1),s(1—t?)
,(—s? — 2t — s%t), (s3 — 2st)),
The proof of the other can be given in the same way.

O
Theorem 3.9. (Catalan Identity) For natural
numbers n and r, we have
i. HF,,, HF,_, — HE,’
= (—t)"TE.((t?> + 1)(t — 1)E,, —sE. — t%L,
,(—s? — 2t)F. — stL,,(—s3 — 3st)E. + tL,.),
ii. AL, HL, , — AL,
= (—O" 8% F((¢* + DA — OF, —t3L, +
sE., (s? + 2t)F, — stL, (s® + 3st)F. + tL,).
Proof. i. With the Binet formula, we have
HFn+r HFn—r - HFnz
T n+r_Eﬁn+r T n—r_ﬁﬁn—r T n_EBn
=y I - )
_ Eﬁanﬁ"+Eﬁﬁ"an—ﬁﬁﬁn_ran+r—Rﬁa"_r[i’""'r
B @-p?
F)epacon(F5)
@y
_ (=" BTap-a’fa
(@B (@B
( )n_ FT' T Tr

= (B7ap — a”Ba).
So, we can write
BTap —a"pa = (t* + D(t - DB ~a"i
+[=6t?(a" + ") —s(a” = BN,

aB-on(E

+[—s%(a” — B7) — 2t(a” — BT) — Sst(a”
+B)]iz + [6t(a” + B") — 3st(a” — B7)
—s3(a” — BM)]ia.

Thus, we get

HFn+r HFn—r - HFnz

= (=" TE((t* + )(t — DE, —sF —

t2L,, (—s% — 2t)E. — stL,, (—s3 — 3st)E. + tL,).

The proof of the other can be given in the same way.
m|

Theorem 3.10. (Vajda’s Identity) For natural

numbers i and j, we obtain

I HFn+iHFn+j - HFnHFn+i+j

= (=O"F((t* + DA - OF;, —sF; +

le, (s? + 2t)F; +vstLjv,(s3 + 3st)F; — tL)),

1. HLn+iHLn+j - HLnHLn+i+j
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= (=6)"82F, ((£? + 1)(t = 1)F}, —sF; —
2Ly, (=52 = 2t) Fj — stLy, (—s3 — 3SD)F; + tL)).
Proof. i. With the Binet formula, we get

HFn+iHFn+j - HFnHFn+i+j
_ Ean+i_EBn+i Ean_ﬁﬁn
- ap ( a-p )
Ean_ﬁﬁn Ean+i+j_EBn+i+j
o a=p
_ Eﬁanﬁn+i+j+E&ﬁnan+i+j_ﬁaﬁn+ian+]‘_Eﬁan+iﬁn+j
_ N G
_ _Eﬁanﬁn+1(al_ﬁl)+ﬂaan+]ﬁn(al_ﬁl)
(a—p)?
t) Fl

(—p/ap + a’Ba).

So, We can write

—pJap + o’ pa

=2+ 1A -0)(a? - )iy

+[6¢%(al + B7) + s(a’ = BI)]i,

+[(s? + 20)(al — B7) + Sst(a” + BT)]is

—t(a/ + B7) + Bst +s*)(a’ — B/)]is.

Thus, we have

HFn+iHFn+j - HFnHFn+i+j

= (=O"F((t* + 1)1 — O)F;, —sF; +

2L, (s + 20)F; + stL;, (s® + 3st)F; — tL)).

The proof of the other can be given in the same way.
O

Theorem 3.11. (D’ocagne Identity) For natural

numbers n, m, and n + 1 < m, we have

i. HE,HF,., — HF,, . HE,

= (_t)n[((tz + 1)(1 - t)Fm—n' SEn—n

—t%Lpy_p, (8% + 2)E,_y, — StLy_n

(83 + 3st)Fn—n + tLin—n)]

ii. HL,yHL, .1 — HL 1 HL,

= (_t)naz[((tz + D — DEFpon —SEpn

+t2Lpy_p, — (% + 20)E,_p,

+5tLpm—n, — (53 + 35t)Ep_p — tLm_n)].

Proof. i. Binet formulas are used for proofs. We

obtain

HFmHFn+1 - HFm+1HFn

_ aam_Eﬁm aan+1_ﬁﬁn+1
_< a-p a-p

aam+1_Eﬁm+1 Ea"—ﬁﬁn
- a-f ) a—-f
. (Zﬁ m+1ﬁn+3“[3m+1 ﬁdﬁm n+1_a,Ba,mBn+1
B (a-p?
_ "B @" BT

a-p

So, we have
HFmHFn+1 _HFm+1HFn
= (_t)n[((tz + D1 = )Fp_n, SEpn
—t%Lpy_n, (82 + 20)E,_,
—StLpy_n, (83 4+ 3st)Ep_p + tL_y)].
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The proof of the other can be given in the same way.
O

In the following theorems we examine the
relationships between these hyperbolic quaternions.
Theorem 3.12. For any integer n < m, we obtain
i.HE,HE, — HE,HE,,

= (=t)"E,,_,(0,—2t2,—2st, 2t),

i. AL HL, — HL, HL,,

= (—t)"6%E,,_,(0,2t2, + 2st, —2t).

Proof. i. Using the Binet Formula, we have

HE,HE, — HE,HE,,

aa —ﬁﬁmaa" BB, aa™-BR" wa™—BR™
= a-p ( a-p a-p
_ aﬁ(a"/?m a™B™m—Ba(-pra™+pma™)

(a—p)?
a B (a™ - M (@ - ﬁ’a)
(a=p)?

Thus, we obtain
HE,HF, — HF,HE,,

= (—t)"E,_,(0,—2t?,— 2st, 2t).

The proof of the other can be given in the same way.
m|

Lemma 3.2. We have

it = Ea& — plaizt

ii. p21 = — T2 ps — ¢ 22t
i, @241 = — 25 4 g 2,
iv. ﬂ2i+1 F21 t5 + ﬂLZHl

Proof. i. Usmg the Bmet Formula, we have
@a(s _ t in_1 _ aZl_BZL aé‘ _ aZL—1+B2L—1
s (a—PB)s

_ a2i+1—aﬁ2i—ta2i'1—tﬁ2i'1

a? (a——) BZ‘( a——)

N
Thus, we can write

Qi =gy plaim
S S

The proofs of the others can be given in the same
way. O
Theorem 3.13. If n, m natural number and n < m,
we have
i. HFpyyn + (—t)PHE,,_, = HE, Ly,
ii. HF 4y — (—t)PHE,,_,, = HL,F,,
iii. HLpyyn + (—t)PHLpy_p = HLp L.
Proof. The proofs of the theorem are shown using
the definition, lemma 3.1-3.2, and the Binet
formulas.
In the following theorems, the terms of the (s, t)-
Fibonacci and (s, t)-Lucas sequences are associated
with their hyperbolic quaternion values.
Theorem 3.14. For all m,n = 1, we get

H a4 _ By 2 Fon—2 7
LHFpion == HEpyp —t° == HEp,

O _ By 2 Fan—z j7
.HLyion = THLWH_Z -t THLm,
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e __ Fon iy tLon—1 7=
. HF,, oy = THLm+1 - HE,,

P _ Fon ooy tlon—1 57
W.HL,, on = T(S HFEp 1 — ;. HL,,.

Proof. iv. Using the Binet Formula, we have
52 gy — 2 ALy,

N
_ aZn_ﬂZH

— - m+1_ppom+1
i ()
—t (@a™ + BA™)
@a™ 2 (a0 )+ (B0
_ Eam+2"s+ﬁﬁnf+2"s

S
Thus, we obtain

= _ FBn o257 tlon—1 57
HLm+2n_76 HFpyq — s HLy,.

The proofs of the others can be given in the same
way. m]
Theorem 3.15. For all m,n = 1, we have

s 57 _ Lan+1 7 thon 77
. HFpyone1 = s HFpyq — s HLy,,

ii. HLm+2n+1 = Lzzﬂ HLm+1 —t8? Fz_nHFma

e o L — F. .
iii. HF — 2n+1 _+3 2n—2
m+2n+1 s(s2+30) m+3 s(s2+3t) mo
IV-HLm+2n+1 L F
— 2n+1 VL _ #3852 2n—2 HF
s(s2+3t) T m+3 t°6 s(s243t) M’
Proof. iii. Using the Binet Formula, we have
Lony1 7 3 Fn2 7

s(s243t) M3 T (5243 M
a2n+1+ﬁ2n+1 aam+3_ﬁﬂm+3
s(s2+3t) (a—PB)
arn-z_pm-z o
~ e psian @a™ + BT
aam+2n+1(a3_2_3;)+Eﬂm+2n+1(33_;_33)

s(s2+3t)(a—p)

So, we get
o _ _Lons _$3_Fm—2
HFpyone1 = (52430 Fnyz—t S(sz+3t)HLm'
The proofs of the others can be given in the same
way. O

Theorem 3.16. For all k,m,n,p = 1, we obtain
i. AF, p = FEpHF, 1 + tF,_ HE,,
ii. HF2m+n = LmHFm+n - (_t)mﬁFna
ii. Hka+n = I;f_mmHFm+n - (_t)mﬁn—m_mﬁFna
V. (=) Fypp_iyHF,
= HFeminFnp — HFmpsnFiem-
Proof. The proofs are shown in the same way as
theorem 3.15. m|

4 Conclusion

In this study, we defined the hyperbolic (s,t)-
Jacobsthal and (s, t)-Jacobsthal-Lucas quaternions.
Then, we obtained some properties of these
quaternions. Also, we examined the relationships
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between these quaternions. In addition, we
calculated the special identities of these quaternions.
Moreover, we found the terms of the (s,t)-
Jacobsthal and (s, t)-Jacobsthal-Lucas sequences
are associated with their hyperbolic quaternion
values. In the future, we can spread a new approach
to hyperbolic (s, t)-Jacobsthal and (s, t)-Jacobsthal-
Lucas octonions and sedenions.
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