
Abstract: In this work, we introduce a topology T tot
G , called the total graphic topology, for the vertices

set of a directed graph G = (V,E). We prove many properties of this topology and we give some open
sets and some closed ones. We prove that T tot

G is an Alexandroff topology. In addition, we investigate
functions between directed graphs, the connectedness of this topology for some strongly connected graphs
and we give an example for each case.
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1 Introduction

Graph theory attires attention sice the resolving
of the problem of the Königsberg seven bridges,
[1]. It becomes one of discrete mathematics struc-
tures.
Graphs are simple to understand and can be used
for representing many of mathematical combina-
tions. Today, graph theory becomes a fundamen-
tal mathematical tool for many domains as chem-
istry, marketing and computers network. If we add
topology to the graph, we can use them to solve
economic and the traffick flow problems, [2], [3],
[4], as in medical application and blood circula-
tion, [5], [6], [7], [8].
A topology is called an Alexandroff topology if any
intersection of open sets is also an open set, [9],
[10]. Such topology is very interesting because we
have a minimal bases and the characteristic prop-
erties can be studied by using this minimal bases
or its subbases.
In, [11], the graphic topology for undirected graph
was introduced on the vertices set. After that
many topologies are introduced on undirected
graphs.
In, [12], the authors investigated the graphic
topology and solved partially an open problem
mentioned in, [11]. After that, in 2023 the Z-
graphic topology was introduced in order to an-
swer the first open problem in, [11], and bypass
it, see, [13]. Graphic topology was also defined on

fuzzy graphs in, [14].
For directed graphs in, [15], two topologies on the
edges set are given. In this paper, we consider
directed graph and introduce the total graphic
topology on the vertices set.
This work has five sections in addition to the in-
troduction and conclusion. Section 2 is devoted to
some useful preliminaries in directed graph theory
and topology. We give a set of subset of the ver-
tices set V of a directed graph G = (V,E) which
is will be the subbases of our graphic topology. In
section 3, we prove a lot of typical and preliminary
results as proving that the total graphic topol-
ogy is an Alexandroff topology, we prove some
characterizations of minimal open sets. Section
4 is devoted to some advantaged results and we
give some examples of open and closed sets. In
Section 5, we study functions between digraphs
and their relation with continuous and homeomor-
phism maps. The last section is devoted to total
graphic topology and connectedness.

2 Preliminaries
In this section, we will recall some definitions and
properties of directed graph theory and topology,
[16], [17], [18]. Then, we introduce a new topology
for the graph which will be have the total graphic
topology as name.

Definition 2.1 A directed graph G = (V,E) is a
pair of sets: a nonempty set V and a set E such

Total Graphic Topology on the Vertex Sets of Directed Graphs 
 

HANAN OMAR ZOMAM 
Department of Mathematics 

College of Science Al-Madinah Al-Munawarah 
Taibah University 
SAUDI ARABIA. 

Department of Mathematics 
Faculty of Science 
Shendi University 

SUDAN. 

PROOF 
DOI: 10.37394/232020.2024.4.3 Hanan Omar Zomam

E-ISSN: 2732-9941 18 Volume 4, 2024



that E ⊂ V ×V . More precisely, if e = (x, y) ∈ E,
e has a direction from x to y. We also say e is an
edge from x to y.
A directed graph G = (V,E) is called simple if
∀x ∈ V, (x, x) /∈ E and ∀x, y ∈ V there is no
multiple edges from x to y.

Definition 2.2 A digraph G = (V,E) is called
complete if it is simple and for any distinct x, y ∈
V , there exist a unique edge from x to y and a
unique edge from y to x.

Definition 2.3 Let G = (V,E) be a digraph. G
is called an oriented graph if at most one of the
two edges (x, y) and (y, x) is in E, for all x and y
vertices of G.
If G is a simple graph and (x, y) ∈ E if and only
if (y, x) /∈ E, for all x, y ∈ V , we call G is a
tournament.

Definition 2.4 Let G = (V,E) be a simple di-
graph. The digraph G = (V,E) defined by
(x, y) ∈ E if and only if (x, y) /∈ E is called the
complement of G.

Definition 2.5 Consider a directed graph G =
(V,E).
In G, a directed path P from a0 to an is a sequence
of the form P : a0, e0, a1, e1, · · · , an−1, en−1, an,
where ak ∈ V and ek an edge from ak to ak+1,
k = 0, · · · , n− 1.
We say that a and b are connected in G if there
is a directed path from a to b and a directed path
from b to a. Also, G is called strongly connected
if any two distinct vertices are connected in G.

Let x a vertex of a simple directed graph G =
(V,E). We define the out-neighborhood set of x
as

KHx = {y ∈ V, (x, y) ∈ E}. (1)
and the int-neighborhood set of x as

Dx = {y ∈ V, (y, x) ∈ E}. (2)

It is clear from (1) and (2) that

y ∈ KHx if and only if x ∈ Dy.

Let
Mx = KHx ∪ Dx. (3)

The cardinal of the out-neighborhood KHx of x is
called the out-degree of x, we denote

d+(x) = card(KHx), (4)

the cardinal of int-neighborhood Dx of x is named
int-degree of the vertex x and we set

d−(x) = card(Dx) (5)

Figure 1: A directed graph G = (V,E)

and we donate

dt(x) = card(Mx) (6)

the total degree of the vertex x.
We set the minimum out-degree, the minimum int-
degree and the minimum total degree of a digraph
G = (V,E) as

δ+(G) = min{d+(x), x ∈ V }, (7)

δ−(G) = min{d−(x), x ∈ V } (8)
and

δt(G) = min{dt(x), x ∈ V } (9)
However, the maximum out-degree, the maximum
int-degree and the maximum total degree of G are
respectively given by

∆+(G) = max{d+(x), x ∈ V }, (10)

∆−(G) = max{d−(x), x ∈ V } (11)
and

∆t(G) = max{dt(x), x ∈ V }. (12)

Example 2.1 For the graph G given by Fig. 1, we
have Ma = {b, c, d}, Mb = {a, c}, Mc = {a, b}
and Md = {a}.

Definition 2.6 Suppose that G = (V,E) is a di-
graph. A vertex x ∈ V is called isolated if
Mx = ∅.

Definition 2.7 Let G = (V,E) be a digraph. We
say that G is locally finite if Mx is a finite set for
all x ∈ V .

It is clear that a finite digraph is locally finite one.
We pass to give some definitions and notations for
topological spaces that we will need them later.

Definition 2.8 Let V be a non empty set and let
τ be a family of subsets of V . If the following
conditions
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(1) ∅, V ∈ τ ;
(2) ∀ U1, U2 ∈ τ , we have U1 ∩ U2 ∈ τ ;
(3) ∀ {Ui}i∈I a family of elements in τ , the union

∪i∈IUi ∈ τ

are satisfied, we say τ is a topology for V or (V, τ)
is a topological space.
An element of τ is named an open set of V .
Definition 2.9 Suppose that (V, τ) is a topological
space and U ⊂ V .
(i) The set U c = V \ U is called the complement

of U in V .
(ii) The set U is called a closed set of V if and

only if U c is an open set.
(iii) We denote U the smallest closed set of V con-

taining U . U is called the closure of U in V .
Next, suppose that the digraph G = (V,E) is sim-
ple and without isolated vertices. Consider the set

Stot
G = {Mx; x ∈ V }, (13)

where Mx is given by (3).
Theorem 2.1 Let G = (V,E) be a simple directed
graph without isolated point. Then, Stot

G is a sub-
bases for a topology of the vertices set V .
Proof. Since

⋃
x∈V Mx ⊂ V , we have to prove

that V ⊂
⋃

x∈V Mx.
Let z ∈ V , Since Mz 6= ∅, there exists x ∈ Mz.
So, z ∈ Mx and we get the result.

2

The topology induced by the subbases Stot
G is

called the total graphic topology of G and it is
denoted T tot

G .
Example 2.2 For the graph in the Example 2.1,
we have Stot

G =
{
∅, {b, c, d}, {a, c}, {a, b}, {a}

}
,

B =
{
{a}, {b}, {c}, {a, b}, {a, c}, {b, c, d}

}
and

T tot
G =

{
∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},

{a, b, c}, {b, c, d}, {a, b, c, d}
}
.

Throughout this paper, a digraph means a simple
locally finite digraph without isolated vertex.

3 Preliminary Results
An Alexandroff space is a topological space sat-
isfying any intersection of open sets is an open
set. With an Alexandroff space and so Alexandroff
topology we have a minimal bases of the topology
and we can use it to study the properties of the
topological space as we will do in the rest of this
paper.

Theorem 3.1 suppose that G = (V,E) is a di-
rected graph. Then (V, T tot

G ) is an Alexandroff
space.

Proof. The total graphic topology T tot
G is con-

structed from the subbases Stot
G , so it is sufficient

to prove that any intersection of elements in the
subbases is an open set.
Consider ∩x∈AMx, where A ⊂ V , and suppose
that ⋂

x∈A
Mx 6= ∅.

Suppose that y ∈ ∩x∈AMx. Then, y ∈ Mx, for
all x ∈ A.
We get for all x ∈ A, x ∈ My. Therefore
this means A ⊂ Mx and so A is finite. Hence
∩x∈AMx is an open set.

As consequence of the above theorem, Let G
be a digraph, then the total graphic topology T tot

G
of a directed graph G = (V,E) has a minimal
basis which we denote

BG = {Mx; x ∈ V }, (14)

where Mx is the intersection of all open sets con-
taining x, it is the smallest open set containing the
vertex x. We can characterise the smallest open
sets by using the subbases as follows.

Theorem 3.2 Suppose that G = (V,E) is a di-
graph and x is a vertex of G. Then,

Mx =
⋂

z∈Mx

Mz. (15)

Proof. Since x is a vertex of G, Mx is a nonempty
set. Consider z ∈ Mx, then x ∈ Mz and so the
open set ∩z∈Mx

Mz contains x and so

Mx ⊂
⋂

z∈Mx

Mz.

Conversely, since T tot
G has Stot

G as subbases there
exists A ⊂ V such that Mx = ∩z∈AMz.
For all z ∈ A, x ∈ Mz. Therefore, for all z ∈ A,
z ∈ Mx. Then, A ⊂ Mx and so,⋂

z∈Mx

Mz ⊂
⋂
z∈A

Mz = Mx.

2

Remark 3.1 For a directed G = (V,E), each min-
imal open set Mx is a finite set since each set Mz

is finite et
Mx =

⋂
z∈Mx

Mz.
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Corollary 3.1 Let G be a digraph and let x and a
two distinct vertices of G.

(i) If Mx = {a}, then Mx = Ma.

(ii) If a ∈ Mx, then Mx ⊂ Ma.

(iii) If Ma ⊂ Mx, then Mx ⊂ Ma.

Proof.

(i) If Mx = {a}, from the fact that Mx =
∩z∈Mx

Mz we get Mx == Ma.

(ii) From the last theorem, Mx = ∩z∈Mx
Mz, so

Mx ⊂ Mz for all z ∈ Mx. In particular,
Mx ⊂ Ma.

(iii) When Ma ⊂ Mx, we have a ∈ Ma ⊂ Mx.
The result follows From (ii).

The following result follows from the Theorem 3.2,
but it very useful when dealing with the minimal
bases.

Theorem 3.3 When G = (V,E) is a digraph and
a a vertex of G. Then,

Ma = {x ∈ V ; Ma ⊂ Mx}.

Proof. We have

Ma =
⋂

z∈Ma

Mz,

so we have x ∈ Ma if and only if x ∈ Mz, ∀z ∈ Ma

which is equivalent to for all z ∈ Ma, z ∈ Mx and
this is true if and only if Ma ⊂ Mx.

Corollary 3.2 Suppose that G is a digraph and let
a be a vertex of G. Then, Ma ∩Ma = ∅. Also, if
Mx ⊂ Ma, we have Mx ∩Ma = ∅.

Proof. (i) By contradiction, suppose that there
exists y ∈ Ma ∩Ma.
y ∈ Ma gives Ma ⊂ My from Theorem 3.3.
y ∈ Ma implies y ∈ My, contradiction since G is
a simple directed graph.
(ii) If Mx ⊂ Ma, then Mx∩Ma ⊂ Mx∩Ma = ∅.

Theorem 3.4 For any vertex a in a directed graph
G = (V,E), we have

{a} = {x ∈ V ; Mx ⊂ Ma}.

Proof. x ∈ {a} if and only if A ∩ {x} 6= ∅, for
all open set A containing x. Using minimal bases,
this is equivalent to Mx ∩ {a} 6= ∅, this means
a ∈ Mx. That is, by Theorem3.3

x ∈ {a} ⇔ Mx ⊂ Ma.

4 Some Properties of Graphic
Topology

Theorem 4.1 For a directed graph G = (V,E, the
space (V, T tot

G ) is a compact topological space if
and only if the vertices set V is finite.
Proof. Recall that the topological space (V, T tot

G )
is said compact if every open cover of the space
V ⊂

⋃
x∈V Ux has a finite subcover.

If V is a finite set, then from any open cover of
V , we have a finite subcover by definition of the
compactness.
Conversely, suppose that (V, T tot

G ) is a compact
topological space. Consider the minimal basis BG.
The family BG is an open cover of V , so there
exists a finite subcover of BG. Since it is minimal
as basis, BG is equal to this subcover. Since from
(14), we have

BG = {Mx; x ∈ V },
we conclude that V is finite.
Proposition 4.1 Let G = (V,E) be a digraph.
Then, A = {x ∈ V, dt(x) = ∆t(G)} is an open
set for the total graphic topology of G.
Proof. Let x ∈ A. We will prove that Mx ⊂ A.
Let y ∈ Mx, we have Mx ⊂ My (from Theorem
3.3). We obtain

card(Mx) ≤ card(My) ≤ ∆t(G).

Then dt(x) = ∆t(G) = dt(y) and hence y ∈ A.
We get x ∈ Mx ⊂ A, for all x ∈ A and the result
is proved.
Proposition 4.2 Let G = (V,E) be a digraph.
Then the following set

B = {x ∈ V, dt(x) = δt(G)} (16)
is a closed set for the total graphic topology of G.
Proof. We have B ⊂ B. We will prove the inverse
inclusion.
Let x ∈ B, since Mx is an open set containing x,
we have Mx ∩B 6= ∅.
Set z ∈ Mx ∩B, we obtain the two facts:
Mx ⊂ Mz and dt(z) = δt(G).
So,

card(Mx) ≤ card(Mz) = δt(G).

Therefore dt(x) = δt(G) and we get x ∈ B.
Proposition 4.3 Suppose that G = (V,E) is a fi-
nite directed graph. Then the following set

T c
G = {A; Ac ∈ T tot

G } (17)
is a topology for V and if G is an oriented graph
such that T tot

G
= T c

G, then T tot
G is the discrete

topology.
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Proof. We have ∅, V ∈ τ since their complements
are in T tot

G .
When A and B are in T c

G, we have (A ∩ B)c =
Ac∪Bc and so (A∩B)c ∈ T tot

G . Hence A∩B ∈ T c
G.

Now, if we have a countable family {Ai} of ele-
ments of T c

G, we know that

(∪iAi)
c = ∩iA

c
i .

But T tot
G is an Alexandroff topology, we deduce

that ∪iAi ∈ T c
G.

Then T c
G is a topology for V .

Next, suppose that G is an oriented graph
and T tot

G
= T c

G. Let x ∈ V , we have
(
Mx ∪{x}

)c

as the set of all vertices adjacent to x in G. Then,(
Mx ∪ {x}

)c
∈ T tot

G
since it is an element of its

subbases.
Therefore,

(
Mx ∪ {x}

)c
∈ T c

G and so,

Mx ∪ {x} ∈ T tot
G .

Since Mx is the minimal open set containing x, we
get

Mx ⊂ Mx ∪ {x}.
Since Mx ∩ Mx = ∅ (Corollary 3.2), we obtain
Mx = {x}. We have so T tot

G is the discrete topol-
ogy.

5 Isomorphic Digraphs and
Homeomorphic Graphic Topologies

Definition 5.1 Un homomorphism h from a di-
graph G = (V,E) to a digraph G′ = (V ′, E′) is
a function h : V → V ′ satisfying

∀(x, y) ∈ E, (h(x), h(y)) ∈ E′.

h is called isomorphism if h : V → V ′ is bijective
and ∀(x, y) ∈ V 2, we have

(x, y) ∈ E if and only if (h(x), h(y)) ∈ E′.

We say that the two graphs are isomorphic.

Definition 5.2 An homeomorphism h from a topo-
logical space (V, T ) to a topological space (V ′, T ′)
is a continuous bijective map h : V → V ′ such
that its inverse is also continuous. In this case,
the two spaces or the two topologies are called
homeomorphic.

Our first result in this section is the following.
Theorem 5.1 Suppose that two directed graphs
G = (V,E) and G′ = (V ′, E′) are isomorphic and
h : V → V ′ is an isomorphism. Then, their total
graphic topologies are homeomorphic.

Figure 2: These two graphs have the discrete
topology as total graphic topology but they are
not isomorphic.

Proof. It is sufficient to prove that for all A ∈ Stot
G′ ,

h−1(A) is in T tot
G . For this, let z ∈ V ′ satisfying

A = Mz and let x = h−1(z).
In this case, we get

h−1(A) = {a ∈ V ; h(a) ∈ Mz}
= {a ∈ V ; (z, h(a)) ∈ E′ or (h(a), z) ∈ E′}

= {a ∈ V ; (h(x), h(a)) ∈ E′ or (h(a), h(x)) ∈ E′}
= {a ∈ V ; (x, a) ∈ E or (a, x) ∈ E}

= Mx ∈ T tot
G .

Hence the bijective function h : V → V ′ is
continuous. In a similar way, we prove that h−1

is continuous.

For the converse, see Fig. 2. The two graphs
have the the discrete topology as total graphic
topology but they are not isomorphic.

Theorem 5.2 Suppose that G = (V,E) and G =
(V ′, E′) are two digraphs and h : V → V ′ is a
function. Then, h is continuous if and only if

∀ y, z ∈ V, My ⊂ Mz =⇒ Mh(y) ⊂ Mh(z).
(18)

Proof. If the function h is a continuous function
and y, z ∈ V such that

My ⊂ Mz.

In order to get Mh(y) ⊂ Mh(z), we are going to
prove that h(z) ∈ Mh(y) and the result follows
from Theorem 3.3.
Now, consider the minimal open set Mh(y). such
that y ∈ h−1

(
Mh(y)

)
and My the smallest open

set containing y, we get My ⊂ h−1
(
Vh(y)

)
.

As My ⊂ Mz, we obtain z ∈ My and so
z ∈ h−1

(
Mh(y)

)
, this means, h(z) ∈ Mh(y).

For the converse, Suppose that the property
(18) is satisfied and we have to prove that the
function h is continuous. Let A an open set of V ′
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and consider y ∈ h−1(A). We have h(y) ∈ A and
so Mh(y) ⊂ A.
Let z ∈ My, then My ⊂ Mz from The-
orem 3.3. Therefore, Mh(y) ⊂ Mh(z) and
hence h(z) ∈ Mh(y). Or, we have Mh(y) ⊂ A

then h(z) ∈ A and so z ∈ h−1(A). We get
My ⊂ h−1(A), for all y ∈ h−1(A) and the result
follows.

Theorem 5.3 Suppose that G = (V,E) and G′ =
(V ′, E′) are two digraphs and h : V → V ′ a func-
tion. Then, h : (V, T tot

G ) → (V ′, T tot
G′ ) is an home-

omorphism if and only if

∀ y, z ∈ V, My ⊂ Mz ⇐⇒ Mh(y) ⊂ Mh(z).
(19)

Proof. First, by the Theorem 5.2, we have: h
continuous if and only if

∀ y, z ∈ V, My ⊂ Mz =⇒ Mh(y) ⊂ Mh(z).

Using Theorem 5.2 for the function h−1, we get:
h−1 continuous if and only if

∀ y′, z′ ∈ V ′, My′ ⊂ Mz′ =⇒ Mh−1(y′) ⊂ Mh−1(z′).

Since h is bijective, we get: h−1 continuous if and
only if

∀ y, z ∈ V, Mh(y) ⊂ Mh(z) =⇒ My ⊂ Mz

and so, the result follows.

6 Graphic Topology and
Connectedness

Being connected, is a property can be defined for a
topological space as for a graph. Here, we will con-
sider the strongly connectivity for directed graph,
[16], [17], [18]. Let us recall the definitions.

Definition 6.1 Let (V, T ) be a topological space.
The space V is said connected if whenever
V = A∪B such that A∩B = ∅, we have necessary
A = ∅ or B = ∅. That is, V can not written as
the union of two disjoint proper open sets.

Definition 6.2 Let G = (V,E) be a digraph. G is
called strongly connected if for all a, b ∈ V there
exist at least two paths joining a and b: one from
a to b and one from b to a.

In general, a digraph G = (V,E) does not have
to be strongly connected, so we can define their
connected components.

Definition 6.3 Suppose that G = (V,E) is a di-
graph. Let U1, U2, · · · be subsets of V such that

Figure 3: This is a non strongly connected digraph
but its total graphic topology is connected.

(i) V = ∪iUi;

(ii) Ui ∩ Uj = ∅, for all i 6= j;

(iii) For i = 1, 2, · · · , for all a, b ∈ Ui, there exist a
path from a to b and a path from b to a.

(iv) For all a ∈ Ui, b ∈ Uj and i 6= j, if there exists
a path from a to b, then there is no path from
b to a.

Then, each subset Ui is called connected compo-
nent of the digraph G.
It is clear that a strongly connected digraph has
one connected component. and a finite digraph
has a finite connected components. When the
graph is undirected and disconnected, the graphic
topological is disconnected and this is due to the
connected components are open sets [11], but for
directed graph this result no longer true. Our first
example is a proof for this fact.
Example 6.1 For the digraph given by Fig. 3,
we have: Mx = {x′, y, z},My = {y′, x, z},Mz =
{z′, x, y}, Mx′ = {x},My′ = {y},Mz′ = {z}
Mx = {x′},My = {y′},Mz = {z′}, Mx′ =
{x′, y, z},My′ = {y′, x, z},Mz′ = {z′, x, y}.

Example 6.2 The digraph given by Fig. 4 is a
non strongly connected digraph with disconnected
total graphic topology.

Example 6.3 The digraph, given by Fig. 5, is
strongly connected and its connected total graphic
topology.

Example 6.4 In the Fig. 6, the graph is non
strongly connected digraph and its total graphic
topology is disconnected.

In the rest of this paper, we prove some elementary
results about connectedness of the total graphic
topology.
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Figure 4: An example of digraph which is not
strongly connected and its total graphic topology
is disconnected.

Figure 5: This is a strongly connected digraph
with strongly connected total graphic topology.

Figure 6: This is an example of a non strongly con-
nected digraph with a disconnected total graphic
topology.

Theorem 6.1 Let G = (V,E) be a bipartite di-
graph. The total graphic topology T tot

G of G is a
disconnected topology.
Proof. G is a bipartite graph means there exist
two disjoint subsets B1 and B2 of V such that
V = B1∪B2 and if (x, y) ∈ E and (x, y) /∈ B1×B2

then (x, y) ∈ B2 ×B1.
Consider

U1 =
⋃

x∈B1

Mx and U2 =
⋃

x∈B2

Mx.

then, U1 and U2 are nonempty disjoint open
sets of V satisfying U1 ⊂ B2, U2 ⊂ B1 and
V = U1 ∪ U2. So, (V, T tot

G ) is a disconnected
topological space.

In fact, the last proof confirms the following
result.
Theorem 6.2 Let G = (V,E) be a strongly con-
nected bipartite digraph. The total graphic topol-
ogy T tot

G of G is a disconnected topology.

Theorem 6.3 Suppose that G = (V,E) is a finite
one sense directed cycle, that is, V = {x1, · · · , xn}
and E = {(xj−1, xj), i = 2 . . . , n} ∪ {(xn, x1)}.
The total graphic topology T tot

G of G is a discon-
nected topology.

Proof. For all xi ∈ V , i 6= 1, we have Mxi
=

{xi−1} and Mx1
= {xn}. Then, for all x ∈ V ,

{x} is an open set and so T tot
G is discrete.

7 Conclusion
In this paper, we introduce the total graphic
topology T tot

G on the vertices set of a directed
graph G = (V,E) by using a subbases. The
elements of this subbases are the sets of all
neighbors in any direction of all vertices of the
graph. That is, a neighborhood of a vertex is the
set of all out-neighbors and int-neighbors. For
this reason, the obtained topology are called total
graphic topology. We prove that this topology is
an Alexandroff topology that is any intersection
of open set is also an open set. The existing of
minimal bases follows. We give some characteri-
zations of minimal open sets using the subbases.
In addition, we investigate the relation between
isomorphic graphs and their graphic total topolo-
gies and prove that they will be homeomorphic.
The problem of connectedness was investigated
through some examples. As future work, we have
the following question: are there some necessary
and sufficient conditions for the connectivity of
(V, T tot

G )?
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