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Abstract: - This paper extends the work presented at IX. International Istanbul Scientific Research Congress 
held on May, 14-15, 2022, Istanbul/Türkiye. In that Congress the Authors narrowly focused on the numerical 
solutions of a boundary value problem for the Covid-19 SIR model appearing in literature. In this study this 
boundary value problem is solved numerically for all cases and also the stability analysis of the equilibrium 
points of the model is presented. The basic reproduction number R0 is obtained and the importance of this 
number for the stability and the instability of the equilibrium points is emphasized. Numerical solutions are 
obtained using bvp4c, a boundary value problem solver in MATLAB and the results are presented in figures.  
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1   Introduction 
The Covid-19 disease, which first appeared in China 
in December 2019 and spread all over the world in a 
short time, has taken its place among the epidemics, 
which has significantly affected life globally. 
Explaining the effects of this epidemic with 
mathematical models, as in other epidemics that 
have radically changed the life of humanity, has an 
important place in the literature. 

Understanding past outbreaks can help us better 
prepare for future ones. Communicable diseases 
such as plague, malaria, smallpox, cholera, measles, 
tuberculosis, AIDS and flu, which are transmitted 
from animals, soil, water or human to human, have 
affected social life throughout history, causing 
demographic, social and economic problems. The 
answer to the question of how we will deal with 
future outbreaks can be obtained by examining past 
outbreaks, [1]. 

Mathematical models are very important in 
analyzing the spread and control of infectious 
diseases, [2], [3], [4], [5], [6], [7], [8], [9], [10]. 
Various mathematical models were used to be able 
to comment on these diseases and examine 

infectious diseases. In the SIR model, the society is 
divided into three groups, [11]. 

The well-known compartment model, consisting 
of susceptible, infected and recovered 
compartments, abbreviated as the SIR model, has 
been commonly used in infectious disease spread 
simulations for more than half a century although 
the mathematical model is very simple, [12]. 

Susceptible individuals have never been 
infected and therefore can catch the disease. 
Individuals who are infected can spread the disease, 
also individuals in the recovered state are assumed 
to be immune for life, [13]. 

Epidemiologically SIR model is used to 
determine the causes of diseases and health 
problems, to eliminate the natural development of 
diseases, to determine the health levels of the 
population, to investigate the change in time and 
when compared with other societies, to evaluate the 
results of clinical research, to evaluate the 
effectiveness of health services, and to determine 
the risks of encountering certain health problems of 
individuals in the population, [14].  
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2   The Model 
The SIR model, [10], uses the system of ordinary 
differential equations 
 
𝑑𝑆

𝑑𝑡
= −𝛼𝑆𝐼 (1) 

𝑑𝐼

𝑑𝑡
= 𝛼𝑆𝐼 − 𝛽𝐼 (2) 

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 (3) 

 
where S, I and R mean the susceptible, 

infectious, and removed populations, respectively, 
and the parameter 𝛼 is the transmission rate and 𝛽 is 
the recovery rate (or in other words, the duration of 
infection 𝐷 =  1/𝛽). In the SIR model, for 
example, a person could change his or her condition 
from susceptible to infected with a ratio 𝛼, then to 
removed with a ratio 𝛽. Removed persons will never 
become susceptible. From eqs. (1)-(3) we have: 
 
𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 0 

(4)  

 
which means that S(t) + I(t) + R(t) = const. 

This is the total population size, and we denote it by 
N. At the time t=0 we assume 𝑆(0) = 𝑆0 = 𝑁 − 𝐼0, 
𝐼(0) = 𝐼0 and 𝑅(0) = 0. From eqs. (1) and (2) we 
get: 
 
𝑑𝐼

𝑑𝑆
=
𝛼𝑆𝐼 − 𝛽𝐼

−𝛼𝑆𝐼
, (5) 

 
which yields that: 
𝑑𝐼

𝑑𝑆
= −1 +

𝛽

𝛼𝑆
 (6) 

 
Integrating both sides we get: 

𝐼 = −𝑆 +
𝛽

𝛼
ln(𝑆) + 𝐶, (7) 

 
where C is an arbitrary constant. Using initial 
conditions we have: 

𝐶 = 𝐼0 + 𝑆0 −
𝛽

𝛼
ln(𝑆0). (8) 

 
If eq. (8) is substituted in eq. (7) we get: 

𝐼 = 𝑁 − 𝑆 +
𝛽

𝛼
ln (

𝑆

𝑆0
) . (9) 

 
Similarly, from eqs.(1) and (3) we obtain: 
𝑑𝑆

𝑑𝑅
= −

𝛼

𝛽
𝑆, (10) 

 

whose solution is: 

𝑆 = 𝑆0 𝑒
−
𝛼

𝛽
𝑅.  (11) 

 
 
3 Stability Analysis of the Equilibrium 

Points of the Model 
In this section [15], we find the equilibrium points 
of the model by considering that the model has two 
different set of equilibrium points, namely the 
disease-free equilibrium points and the disease-
present equilibrium points. 

Since R represents the number of the removed 
populations, it is enough to consider only the eqs. 
(1) and (2) to find the disease-free equilibrium 
points of the model. Therefore, it is easy to see that 
the disease-free equilibrium points of the system 
(1)-(2) are 𝐸𝑒𝑞0 = (𝜇, 0) for any real number 𝜇. 

We must consider the whole model consisting 
of eqs. (1)-(3) to find the disease-present 
equilibrium points which we call it 𝐸𝑒𝑞

∗ =
(𝑆∗, 𝐼∗, 𝑅∗). 

If eq. (2) is set equal to zero we find 𝑆∗ = 𝛽

𝛼
 

since 𝐼∗ ≠ 0. From eq. (9) one gets: 
 

𝐼∗ = 𝑁 − 𝑆∗ +
𝛽

𝛼
ln (

𝑆∗

𝑆0
) . (12) 

 
Therefore, we obtain: 

𝐼∗ = 𝑁 +
𝛽

𝛼
[ln (

𝛽

𝛼𝑆0
) − 1] (13) 

     =
𝛽

𝛼
(𝑁

𝛼

𝛽
+ ln

𝛽

𝛼𝑆0⏟        
𝑅0

)−
𝛽

𝛼
      

 
(14) 

 
Let 𝑅0 = 𝑁

𝛼

𝛽
+ ln

𝛽

𝛼𝑆0
 be the basic reproduction 

number (replicate number) that measures the 
average number of the new infected individuals 
generated by a single infected individual in a 
population of susceptible individuals. The value of 
𝑅0 will indicate whether the epidemic could occur 
or not. 

As a result, the disease-present equilibrium 
points become  
𝐼∗ =

𝛽

𝛼
(𝑅0 − 1), 𝑆∗ =

𝛽

𝛼
, 𝑅∗ = − 𝛽

𝛼
ln

𝛽

𝛼𝑆0
. (15) 

 
Since ln 𝛽

𝛼𝑆0
 must be < 0 one obtains 0 < 𝛽

𝛼𝑆0
< 1. 

 
 
 
 

PROOF 
DOI: 10.37394/232020.2024.4.2 Serdar Saldiroğlu, Serdal Pamuk

E-ISSN: 2732-9941 12 Volume 4, 2024



3.1  Local Stability Analysis of the Equilibria 
Now we proceed to study the stability behavior of 
equilibria 𝐸𝑒𝑞0  and 𝐸𝑒𝑞∗ . 
 
3.1.1 Local Stability Analysis of the Disease-Free 

Equilibrium 

In this section, we analyze the local stability of the 
COVID-19 disease-free equilibrium. Computing the 
Jacobian matrix: 

𝐽(𝐼, 𝑆) = (  
−𝛼𝐼        − 𝛼𝑆 

 
 

  𝛼𝐼         𝛼𝑆 − 𝛽 
), (16) 

 
at the disease-free equilibrium points 𝐸𝑒𝑞0 , we get: 

𝐽(𝐸𝑒𝑞
0 ) = (  

0           − 𝛼𝜇
 

  0        𝛼𝜇 − 𝛽 
) . (17) 

 
The characteristic equation of this matrix becomes: 
(−𝜆)(𝛼𝜇 − 𝛽 − 𝜆) = 0, (18) 

 
whose solutions are 𝜆1 = 0 and 𝜆2 = 𝛼𝜇 − 𝛽. 

These are the eigenvalues of J. If 𝛼𝜇 < 𝛽 we get 
𝜆1 = 0 and  𝜆2 < 0  , so that we have an attractive 
equilibrium line. Therefore, the equilibrium points 
are stable but not asymptotically. 

If 𝛼𝜇 > 𝛽 we obtain  𝜆1 = 0 and  𝜆2 > 0  , so 
that we have a repulsive line of the equilibria, which 
means that the equilibrium points are unstable, [16]. 
 
3.1.2 Local Stability Analysis of the Disease-

Present Equilibrium 

In this section, we analyze the local stability of the 
disease-present equilibrium. If we now use the 
disease-present equilibrium point in eq. (16) we get: 

𝐽(𝐸𝑒𝑞
∗ ) = (  

−𝛽(𝑅0 − 1)        − 𝛽 
 𝛽(𝑅0 − 1)                0 

) . (19) 

 
In this case the characteristic equation becomes: 
𝜆2 + 𝜆𝛽(𝑅0 − 1) + 𝛽

2(𝑅0 − 1) = 0. (20) 
 

According to the Routh Hurwitz stability 
criterion, if 𝑅0 > 1 the equilibrium point is 
asymptotically stable and it is unstable if 𝑅0 ≤ 1, 
[16], [17], [18], [19], [20]. 
 
 
4 Solutions to the Boundary Value 

Problem for the SIR Model 
In the following computations we take 
𝑁 = 60.48𝑥106, 𝑆0 = 6.48𝑥106, 
𝑅(30) = 2.5𝑥103, 𝐼(30) = 31𝑥103, 𝑅(0) = 0,  
𝑟0 =10, 𝑅0 = 0, 𝛽 = 1

5
, 𝛼 = 𝑟0𝛽/𝑁. 

 

4.1  Susceptible Individuals 
If we differentiate eq. (1) we get: 
𝑑2𝑆

𝑑𝑡2
= −𝛼(

𝑑𝑆

𝑑𝑡
𝐼 + 𝑆

𝑑𝐼

𝑑𝑡
). (21) 

 
Using eq. (2) one obtains: 
𝑑2𝑆

𝑑𝑡2
= −𝛼 [

𝑑𝑆

𝑑𝑡
𝐼 + 𝑆(𝛼𝑆𝐼 − 𝛽𝐼 )] . (22) 

 
From eq. (1) it is easy to see that: 

𝑆
𝑑2𝑆

𝑑𝑡2
= (

𝑑𝑆

𝑑𝑡
)
2

+ 𝑆(𝛼𝑆 − 𝛽)
𝑑𝑆

𝑑𝑡
. 

(23) 

 
We now solve this ordinary differential equation 

(ODE) with the boundary conditions provided above 
to study the number of healthy individuals who may 
contract the disease in 30 days.  
 

 
Fig. 1: Susceptible Individuals and the Change of 
Them in Time. 

 
As seen in Figure 1, the dashed curve is the 

graph of susceptible individuals while the solid 
curve is the graph of the derivative of susceptible 
individuals over 30 days. While the number of the 
population that can get sick is small at the 
beginning, it increases over time and progresses to 
the entire population. The solid curve shows that the 
population that may be sick continues to increase 
over time and progress toward the entire population.  
 
4.2  Infected Individuals 
Similarly, if we differentiate eq. (2) we get: 
𝑑2𝐼

𝑑𝑡2
= −𝛼 (

𝑑𝑆

𝑑𝑡
𝐼 + 𝑆

𝑑𝐼

𝑑𝑡
) − 𝛽

𝑑𝐼

𝑑𝑡
. (24) 

 
Using eq. (1) one obtains: 
𝑑2𝐼

𝑑𝑡2
= 𝛼(−𝛽𝑆𝐼)𝐼 + 𝛼𝑆

𝑑𝐼

𝑑𝑡
− 𝛽

𝑑𝐼

𝑑𝑡
, (25) 
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and 

𝐼
𝑑2𝐼

𝑑𝑡2
= −𝛼

𝑑𝐼

𝑑𝑡
𝐼2 − 𝛼𝛽𝐼3 + (

𝑑𝐼

𝑑𝑡
)
2

. 
(26) 

 
We now solve this ODE with the boundary 

conditions given above to study the number of 
infected individuals in 30 days.  
 

 
Fig. 2: Infected Individuals and the Change of Them 
in Time. 

 
The dashed curve is the graph of infected 

individuals while the solid curve is the graph of the 
derivative of infected individuals over 30 days. 
Although the number of infected populations is 
small at the beginning, it increases over time. Also, 
the solid curve appears as evidence that the 
population that may become ill continues to increase 
over time. Figure 2 also shows us that the change in 
the number of infected individuals in society is 
proportional to the change in the number of infected 
individuals over time. 
 
4.3  Removed Individuals 
Recalling S(t) + I(t) + R(t) = N and differentiating 
eq. (3) we get: 
𝑑2𝑅

𝑑𝑡2
= 0 − 𝛽

𝑑𝑆

𝑑𝑡
− 𝛽

𝑑𝑅

𝑑𝑡
. (27) 

 
From eq. (1) one obtains: 
𝑑2𝑅

𝑑𝑡2
= −𝛽(−𝛼𝑆𝐼) − 𝛽

𝑑𝑅

𝑑𝑡
. (28) 

 
After some tedious work we come up with the 

differential equation 
𝑑2𝑅

𝑑𝑡2
= (𝛼𝑆0 ∙ 𝑒

−
𝛼

𝛽
𝑅
− 𝛽)

𝑑𝑅

𝑑𝑡
. 

(29) 

 

We now obtain the solution of this ODE with 
the boundary conditions provided above to study the 
number of removed individuals in 30 days.  
 

 
Fig. 3: Removed Individuals and The Change of 
Them in Time 

 
The dashed curve is the graph of deceased 

individuals while the solid curve is the graph of the 
derivative of deceased individuals over 30 days. 
Although the number of individuals who died due to 
the epidemic is very low at the beginning, it 
continues to increase over time. Both curves 
continue linearly as they represent the number of 
dead individuals over time. According to Figure 3, a 
total of 2500 individuals died in the first 30 days. 
Therefore, an average of 83-84 people died daily. 
Indeed, Figure 3 reveals to us the whole reality 
regarding the number of changes in society. The 
daily number of dead individuals clearly expresses 
the number of changes in total deaths over time. 
Therefore, Figure 3 gives us descriptive information 
about all possible situations. 
 
 
5   Discussion 
In this paper we have shown numerically that as the 
virus infects individuals, the number of susceptible 
individuals decrease, while the number of 
individuals exposed to the virus increase. In this 
model, transitions from one group to another are 
unidirectional and there are no returns. In other 
words, an individual who has recovered will not be 
re-infected with the disease. Those who catch the 
virus interact with people who cannot be isolated 
and who do not have protection, and they transmit 
the disease to them, and the epidemic continues in 
this way. As the infected people regain their health 
or die, the number of individuals in the non-
infectious group naturally increases. 
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In summary, among epidemiological models; 
the susceptible-infected-recovered (SIR) model, 
which says that infection provides permanent 
immunity, they have been used to describe diseases 
that spread where there is healing. 

However, the SIR model does not have a latent 
stage (no exposed individual) and in this case is not 
suitable as a model for infectious exposure-
progressed diseases such as COVID-19, [2]. 
 
 
6   Conclusion 
In this study we have solved numerically a boundary 
value problem related to the Covid-19 SIR model 
over a period of time. By doing this we have 
observed the changes in the number of susceptible, 
infected and removed individuals and shown these 
changes in figures.  Also, we have provided the 
stability analysis of the equilibrium points of the 
model and emphasized the  importance of basic 
reproduction number R0 (replicate number) for the 
stability and for the instability of the equilibrium 
points. We have seen that if 𝑅0 > 1, there is an 
increase in the  epidemic growth rate, if 𝑅0 < 1 
there is a decrease in the epidemic growth rate and if  
𝑅0 = 1 the epidemic growth rate is traveling at a 
constant speed.  
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APPENDIX 

 
MATLAB CODES 
MATLAB Code to obtain the number of Susceptible 
Individuals 
 
N = 60480000; % total population 
r0 = 10; % breeding value 
R0 = 0; % first population to recover 
i_period = 5; % infectious period duration 
beta = 1/i_period ;% recycling rate 
alpha = r0*beta/N; % infection rate 
ya(1) = 6048000; 
yb(1) = 60446500; 
f=@(x,y)[y(2);y(2)^2/y(1)+(alpha*y(1)-beta)*y(2)]; 
bc=@(ya,yb) [ya(1)-6048000;yb(1)-60446500]; 
%boundary conditions 
xmesh= linspace (0,30,100); %create a network 
solinit = bvpinit(xmesh, [1 0]); % first guess of the 
solution 
sol = bvp4c(f, bc, solinit); % run solver 
figure; 
plot(sol.x, sol.y(1,:), '--') 
hold on; 
plot(sol.x, sol.y(2,:), '-') 
xlabel('Day'); 
ylabel('Susceptible Individuals S'); 
legend('S', 'dS/dt'); 
hold off; 
MATLAB Code to obtain the number of Infected 
Individuals 
 
N = 60480000; % total population 
r0 = 10; % breeding value 
R0 = 0; % first population to recover 
i_period = 5; % infectious period duration 
beta = 1/i_period ;% recycling rate 
alpha = r0*beta/N; % infection rate 
ya(1) = 1; 
yb(1) = 31000; 
f=@(x,y)[y(2);-alpha*y(2)*y(1)+y(2)^2/y(1)-
alpha*beta*y(1)^2]; 
bc=@(ya,yb) [ya(1)-1;yb(1)-31000]; % boundary 
conditions 
xmesh= linspace (0,30,200); % create a network 
solinit = bvpinit(xmesh, [100 0]); % first guess of 
the solution 
sol = bvp4c(f, bc, solinit); % run solver 
figure; 
plot(sol.x, sol.y(1,:), '--') 
hold on; 
plot(sol.x, sol.y(2,:), '-') 
xlabel('Day'); 
ylabel('Infected Individuals'); 
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legend('I', 'dI/dt'); 
hold off; 
 
MATLAB Code to obtain the number of Removed 
Individuals 
 
N = 60480000; % total population 
H0 = 6048000;  
r0 = 10; % breeding value 
R0 = 0; % first population to recover 
i_period = 5; % infectious period duration 
beta = 1/i_period ;% recycling rate 
alpha = r0*beta/N; % infection rate 
ya(1) = 0; 
yb(1) = 2500; 
f=@(x,y)[y(2);(alpha*H0*exp(-(alpha/beta)*y(1))-
beta)*y(2)]; 
bc=@(ya,yb) [ya(1);yb(1)-2500]; %boundary 
conditions 
xmesh = linspace (0,30,31); % create a network 
solinit = bvpinit(xmesh, [1 0]); %% first guess of 
the solution 
sol = bvp4c(f, bc, solinit); % run solver 
figure; 
plot(sol.x, sol.y(1,:), '--') 
hold on; 
plot(sol.x, sol.y(2,:), '-') 
xlabel('Day'); 
ylabel('Removed Individuals'); 
legend('R', 'dR/dt'); hold off; 
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