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1 Introduction

Submanifold theory is an important concept used in
the fields of physics and geometry. The term Quasi
Hemi Slant Submanifolds plays a very important
role in differential geometry and submanifold
theory. This concept is of great importance in
differential geometry. Quasi Hemi Slant Manifolds
have some important features specific to the
geometry of that manifold. These properties can be
detailed with mathematical expressions. Practical
applications and real-world examples of this
theoretical concept can be examined. Ways in which
this concept can be applied in physics, engineering,
or other scientific fields can be highlighted.

To understand Lorentz Circular Structures, it is
crucial to have a foundation in Lorentz geometry.
Circular structures in Lorentz manifolds involve
certain geometric relationships between vectors. The
interaction between Lorentz geometry and circular
structures has notable applications in theoretical
physics, especially in the context of spacetime
curvature and relativistic effects. Like any
mathematical concept, Lorentzian Concircular
Structures present challenges and areas for further
exploration. Lorentzian Concircular Structures offer
a fascinating intersection of geometry and physics,
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providing a deeper understanding of spacetime
within the context of special relativity.

[1], introduced and studied the concept of
Lorentzian almost paracontact manifolds. Then
after, many other authors studied the Lorentzian
almost paracontact manifolds, [2], [3], [4], [5], [6],
[7], [8], [9], [10]. The application of (LCS), -
manifolds was investigated by [11], in the field of
general theory of relativity and cosmology. [12],
defined and introduced the geometry of slant
submanifolds naturally generalizes both
holomorphic and totally real immersions. Then
many more expert mathematicians of geometry
previous more than the last two decades studies this
interesting topic, [13], [14], [15]). [16], studied
submanifolds of (LCS),,- manifolds. This concept
was studied by many authors in differentiable
manifolds, [17], [18], [19], [20], [21], [22]. In [11],
the authors examine the geometry of hemi-slant £*-
Lorentzian submersions from (LCS), - manifolds.
[23], also studied slant and pseudo slant
submanifolds of (LCS), - manifolds. In [24],
author’s focus to studied quasi-hemi-slant
submanifolds of (a,B) — type almost contact
manifolds and allow an description of a submanifold
with a quasi-hemi-slant factor and discusses its use
in the field of number theory.

Volume 4, 2024



PROOF
DOI: 10.37394/232020.2024.4.1

2 Lorentzian Concircular Structures —
Manifolds or (LcS),,- Manifolds

A non-zero vector u € T, M is said to be time-like
(non-space-like, null, space-like) if it fulfils the
condition g, (u, u) < 0), [6].

Definition 2.1. In a Lorentzian manifold (M, g), a
vector field P given by:

g(X,P) = A(X) (M

for any X € I'(TM), is said to be a concircular
vector field if:

(P A)Y = a(g(X,Y) + ACOA)) (2)
where 0 is a non-zero scalar and P denotes the
covariant differentiation operator with respect to the
Lorentzian metric g.

Let the Lorentzian manifold M admit a unit

time-like concircular vector filed &, called the
characteristic vector field of manifold, then we
have:

9¢.§)=-1 )

Since & is unit concircular vector field, it

follows that there exist 1-form 7 which is a non-
zero such that:

9X, &) =nX) (4)

for which the equation of the following form holds:

(Y = a(g(X,Y) +nCOn(Y)) (5)

for all vector fields X and Y, where ¥ denotes the
operator of covariant differentiation with respect to

the Lorentzian metric g and « is a non-zero scalar
function satisfying

Pen = (Xa) = da(X) = pn(X)  (6)

where p being a definitive scalar function given by

p=—(Ca) ™

If we substitute, then

PX = —Pyé (8)

then using (2.5) and (2.8), we get
¢X =X +nX)$ 9

where ¢ is symmetric (1,1) tensor field and is
called structure tensor field of the manifold.

In (LCS),, - manifold M(n > 2), the following
relation holds:

¢*X =X +n(X)§ (10)
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g(@X,¢Y) = g(X,Y) + n(X)n(¥) (11)
g(@X,Y) =gX, oY) =X, Y) (12)
¢ =0,7() =-1,n(pX) =0 (13)

(Pxd)Y = alg(X,Y)E + 2n(X)n(Y)E +
n(Y)X] (14)

(Xp) =dp(X) =pnX)  (15)

RX,Y)¢ = (a® = p)[n(X)Y —
n(Y)X] (16)

R, Y)Z = (a® = p)[g(Y,2)¢ -
n(2)Y] (17)

SX,8) =m-D(a®—pnX) (18)

R(X,Y)Z = ¢R(X,Y)Z

+(a? = p){g(Y, 2nX) — g(X, (VK 19)

forall X,Y,Z € I'(TM), [16].

For a special case, if we consider @ = 1, then
we can obtain the LP-Sasakian structure [24].
From (14), putting Y = & and using (8) and
(13), we have:
n(Px&)§ = 0. (20)

Let M be a submanifold of a (LCS),,- manifold

Bt with induced metric g. Also, let ¥ and V' be the

induced connections on TM and T*M of M

respectively, then Gauss and Weingarten formula
are given by:

Y =VyY +h(X,Y) (21)

PV =—AyX + VgV (22)

forallX,Y € '(TM) and V € I'(T*M), where h
is second fundamental form and Ay is shape
operator. These are related as follows:

forall X,Y € '(TM) and V € I'(T1M).

The mean curvature vector H of M is defined
by:
1 1
H = =trace(h) = - (24)

n
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where nis the dimension of M and e;,i = 1 ....nis
a local orthogonal frame of M.
A submanifold M of an almost contact metric
manifold M is said to be totally umbilical if
h(X,Y) =gX,Y)H (25)

A submanifold M of an almost contact metric
manifold M is said to be totally geodesic if
h(X,Y) =0, and minimal submanifold if H = 0,
foreach X,Y € I'(TM).

Forany X € TM, we can write:
X =TX + NX (26)

where TX and NX are known as  tangential

components and normal component of ¢pXon M,
respectively.

Similarly, for any V € T+ M, we have:
oU =tV +nV (27)

where tU and nU are the tangential component and
normal component of ¢V on M, respectively.
The covariant derivative of projection morphisms in
(26) and (27) are defines as:
(PT)Y = VyTY — TVyY,
i(VXN)Y = VENY — NV, Y, 28)
(Pxt)V = VgtV — tVyV,
(Pyn)V = VgnV — nWyV
forany X,Y € I'(TM) and V € I'(T1M).

3 Quasi Hemi-Slant Submanifolds of
Lorentzian Concircular Structures

— Manifolds or (LcS),,- manifolds
Quasi hemi-slant submanifolds stand out as a
significant concept in the field of differential
geometry. Representing a broad class that includes
various types of submanifolds such as semi-slant,
slant, hemi-slant, invariant, anti-invariant, and semi-
invariant submanifolds, this article delves into the
fundamental  features of quasi hemi-slant
submanifolds and their importance in terms of
generalization. Quasi Hemi-Slant Submanifolds are
associated with Lorentzian Concircular Structures
and other concepts in differential geometry. These
submanifolds represent a generalization concept
with specific geometric properties, encompassing
different classes of submanifolds.

In this part of an article, we introduce and study
the definition of quasi-hemi-slant submanifold of
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Lorentzian concircular structures — manifolds or
(LCS),,- manifolds.

Definition 3.1. A submanifold M of Lorentzian
concircular structures — manifolds or (LCS), -
manifolds M is known as quasi-hemi-slant
submanifold if there exist distributions D, D?
andDtsuch that

(1) TM admits the orthogonal direct decomposition
as:

TM=D@®D°®D-P<&> (29

(ii) The distribution D is ¢ invariant, i.e., D = D.

(ii1)) The distribution DY is slant with an angle 6.
The angle 6 is known as slant angle.

(iv) The distribution Dt is ¢ anti-invariant, i.e.,
¢Dt S TiM.

If this situation is met, we call the angle 6
quasi-hemi-slant angle of M. Supposen,, n, and n;
are dimension of distributions D,De and Dt

respectively. In this situation, We obtain a
classification as follows:

(i) If ny =0, then M is called hemi-slant
submanifold.

(ii) If n,=0, then M is called semi-
invariant submanifold

(iii) If ng =0, then M is called semi-slant
submanifold

We can express that M is proper if D #

0,D% # {0} and  # =,

The statement suggests that above submanifolds
serve as examples of quasi hemi-slant submanifolds,
highlighting  their role as instances and
demonstrating the concept's generalization. .
Remark 3.2. We can generalize this concept by
considering the following expressions :

TM =D @ D% @ D% ... ..... @ Db @ D+ P
< &> This structure are called multi-slant
submanifolds,

Let M be a quasi hemi-slant submanifold of
Lorentzian concircular structures — manifolds or
(LCS),, - manifolds M . Let P,Q and R re the

projection of the distributions D, D and D*
respectively. Then we can write:

X = PX + QX + RX +n(X)§  (30)
Forall X € I'(TM)

Now we put,
X =TX + NX (31D
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where TX and NX are called tangential component
and normal component of X on M.
By using equations (3.2) and (3.3), we get
¢X =TPX + NPX +TQX + NQX + TRX
+ NRX.
(32)

As ¢D = D and ¢pD* S T+ M, we have NPX =
Oand TRX = 0.So, we get:
¢X =TPX +TQX + NQX + NRX (33)

Then for any X € I'(TM), we can write:
TX =TPX +TQX,
and

NX = NQX + NRX.

So, from (33), we get the following decomposition

d(TM) =D D TD? @ ND? @ ND+ (34)

where, ‘€D ’denotes orthogonal direct sum. Since
ND? ¢ T*M and ND+ < T+ M, we have:
T*M =ND? @ND*dp (35)

where [ is known as the orthogonal complement of
ND? @ ND* in I'(T+M) and it is invariant with
respect to ¢ . For non-zero vector filed V €
I'(T*M), then:

oV =tV +nlV (36)
where, tV € I'(D? @ D*) &nV € I' ().

Proposition 3.3. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS),,- manifolds M, then for any
X € I'(TM), we have:
VyTY — AyyX — TVyY — ta(X,Y)
= a[g(X, V)¢ + 2n(X)n(Y)¢

+n(Y)X],
h(X,TY) + VENY — NVyY —nh(X,Y) = 0,
and, TD =D, TD? = D, TD+ =

{0},tND® = D%, tND* = D*.

Proof. Using equations (14), (21), (22), (26) and
(27) and equating tangential component and normal
component.

Proposition 3.4. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS), - manifolds M Then the
endomorphism T, N, t and n in the tangent bundle
of M satisfy the following identities.

T?+tN =1+n®&onTM,
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NT +nN =00onTM,
Nt+n?>=1IonT*M,
Tt+tn=00onT'M,

where [ is the identity.

Proof. Using the equations (31) and (36) and using
the fact that ¢p2 = I + n®&, then on comparing
tangential component and normal component.

Lemma 35. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS),,- manifoldsM, then:
T?X = (cos?0)X,
g(TX,TY) = (cos?0)g(X,Y),
g(NX,NY) = (sin?0)g(X,Y),
forany X,Y € De.

Proof. The proof is analogous to Proposition 2.8 in
[19].
Proposition 3.6. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS),,- manifoldsM, then:
(PT)Y = ApyX + th(X,Y) + a[g(X,Y)E +
n(NX + 2n(Xn(¥Y)¢l,
(’yN)Y =nh(X,Y) — h(X,TY),
(Pt)V =A,X —TA X
(Pyn)V = —h(X,tV) — NA,X.
forany X,Y € '(TM) andV € I'(T1M).

Proof. By utilizing equations (14), (21), (22), (26),
(27), and (28) and equating their tangential and
normal components."
Proposition 3.7. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS) - manifoldsM, then
h(X,&) = aNX and Vyé = aTX for any X €
r(rm).
Proof. The proof is completed by equating the
tangential and normal components using (8), (21)
and (22).
Lemma 3.8. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS),,- manifoldsM, then
T([Z, W]) = A(I)ZW - Aqf)WZ:
N([Z,W]) = VoW — Vip¢Z
foralland Z, W € D*.
Proof. For all and Z, W € D+ and using covariant
differentiation in (14), we have
7zoW — ¢ (7 W)
= alg(Z,W)E + 2n(Z)n(W)§
+n(W)Z]
Using (21) and (22), we have
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—ApwZ + VW — d(V,W + h(Z,W))
=ag(Z,W)§
—ApwZ + Vz¢W — ¢(V;W) — ph(Z, W)
= ag(Z,W)§
Using (26) and (27), we have
— th(Z,W) —nh(Z,W)
= ag(Z,W)§
Using tangential and normal of this equation, we
obtain:

ApwZ + T(V,W) + th(Z, W) = —ag(Z, W)E
(37)

N(V,W) = VoW +nh(Z, W) =0 (38)

Interchanging Z and W in (37) and (38), we can
easily get the required outcomes.
Lemma 3.9. Let M be a quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS),,- manifoldsM, then
3.1 g([v,z1,$) =0,
3.12) g(»Zz,&) = —ag(TY,Z)
forallY,Z € '(D®DY@®D*).
Proof. The equations (8) and (26) give us the proof.

4 Integrability of Distribution

When a differential distribution is integrable, it
signifies that there is a specific order or structure
defined on the submanifold. This concept has found
application in geometry, mathematical physics,
control theory, and various other mathematical
subdisciplines. For example, it is often used to
understand how a submanifold varies under a
particular distribution.

Theorem 4.1. Let M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS), - manifolds M , then the
distribution D is integrable if and only if
(VyTY =V, TX, TQZ) + g(h(X,TY) —
h(Y,TX),NQZ + NRZ) =0
(39)

forall X,Y € I'(D) and Z € I'(D9®DY).
Proof. For all X,Y €T and Z=QZ+ RZ €
r(D°e®D+), we know that

9(X,Y,Z) = g(VxY,Z) — g(WX,Z)
Using (11) in above equation, we have

Using (14),we have

E-ISSN: 2732-9941

Toukeer Khan, Sheeba Rizvi, Oguzhan Bahadir

g(@(VxY), ¢Z) = g(VxdY — a[g(X,Y)E +
2n(Xn(Y)E +n(YV)X], ¢pZ) (40)

As ¢Z € T1M, then from above

9(@(VxY),¢Z) = g(Vx oY, $Z).

Using (40), we get
1

Using (21) in (41), we have:
9([X,Y],Z) = g(VxpY + o (X, ¢Y), ¢pZ) —

Using (26) in above equation , we have:
—gWWTX +h(Y,TX),$pZ)

Using equation (31) and as ¢D*+ € TTM , so,
TRZ = 0, then from above, we have:
+ g(h(X,TY),NQZ + NRZ)
— g(%TX,TQZ)
—gh(Y, TX),NQZ + NRZ)
9([X,Y1,2) = g(VyTY — %, TX,TQZ)
+ g(h(X,TY) — h(Y,TX),NQZ
+ NRZ)

As D is integrable, so we have the required
outcomes.

Theorem 4.2. Let M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS),,- manifoldsMf, then the slant
distribution D? is integrable if and only if:
9AnrzY — AnryZ, W)
+ g(AnyZ — AyzY, TPW)
+ g(V#NZ — V;ANY,NRW) =0
(42)

forallY,Z € I'(D%) and W € I'(D®D?).
Proof. For all Y,Z € F(Dg) and W = PW +
RW € I'(D®D?1), we know that
g([yﬁ Z]F W) = g(vYZr W) - ‘q(VZYI W)
By employing equations (3) and (4), along with the
concept of covariant differentiation, we obtain.
(43)

Using (11) in (43), we have:
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gy, Z1,w) = g% (TZ + NZ), pW)
— g7z (TY + NY), W)
g(Y,ZL W) = g(WTZ,¢W) + g(WyNZ, W)

— g7, TY, W)
— g(FzNY), oW

g(Y,Zl, W) = —g(W¢TZ, W)

+ g(P,pTY, W)

+ g(BNZ, pW)

— g(FNY, pW)

Substituting equations (22) and (26) into the
aforementioned equation, we obtain:
g([Yr Z], W) = _g(VYTZZ’ W)
—g(WNTZ, W)
+ g(%,T?Y, W)
+ g(P,NTY, W)
+ g(—AnzY + VENZ, W)
— g(=AnyZ + V;NY, pW)
gy, Z], W) = g(AnyZ, ¢W) — g(AnzY, W)
+ g(VENZ, pW)
~ g(VNY, pW)
—g(®T?Z,W) + g(P,T?Y, W)
+ g(P,NTY, W)
—g(BNTZ, W)

Employing equation (22) in the preceding equation
yields:
g([Yr Z], W) = g(ANYZr ¢W) - g(ANZY, ¢W)
+g(Vy NZ, W)
— g(V;*NY, pW)
- g(VYTZZ, W) + g(V‘ZTZY, w)
+ g(—ANTYZ + VZJ_NTY, W)
- g(_ANTZY + V}}NTZ, W)
g([Y, Z], W) = g(ANYZ - ANZYt ()bW)
+ g(VYLNZ - \7ZJ'NY, qu)
— g(VYTZZ — VZTZY, w)
— g(AnryZ, W) + g(AnrzY, W)
g([Y, Z], W) = g(ANYZ - ANZYJ ()bW)
+ g(V#NZ — VANY, pW)
- g(V‘YTzZ - VZTZY, w)
+ g(AnrzY — AngyZ, W)

Applying equation (31) and Lemma 3.5 to the
previous equation, we get:
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g([Y,Z1,W) = g(AyyZ — AyzY, TPW + TRW

+ NPW + NRW)

+ g(VENZ — VANY, TPW

+ TRW + NPW + NRW)

—cos?0g([Y,Z],W)

+ g(AnrzY — AnryZ, W)

(1 + cos?0)g([Y,Z],W)

= g(AnyZ — AyzY, TPW)
+ g(VENZ — VANY, NRW)
+ g(AnrzY — AnryZ, W)

Since distribution D? is integrable, we have
obtained the desired result.

Theorem 4.3. Let M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS), - manifolds M , then the
antiderivative D is integrable if and only if f:
VANY — V#+NZ € ND @y,
AnrzY — AyryZ € D?, and
AnzY — AyyZ € DE®D?
forallY,Z €T (De), then the slant distribution D?
is integrable.

Theorem 4.4. If M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS), - manifolds M , then the
antiderivative distribution D is integrable if:
9Tz, W], TY) + g(N[Z, W], NQY) = 0
(44)
forall Z,W € I'(DY) and Y € I'(D@®D?).
Proof. For all Z, W € I'(D*) and Y = PY +
QY € I"(DGBDG), as we know that

Applying equations (3) and (4) to the equation
above, we obtain:

g(Z,W]Y) = g(V2¢W, ¢Y) — g(Vw¢Z, ¢Y)

Using (7) in above we have:
9z, W] Y) = g(—AgwZ + V; W, ¢Y)
— g(—ApzW + Vg pZ, ¢Y)
gz, W1 Y) = g(ApzW — ApwZ, ¢Y)
— g(ViydZ — V;-pW, ¢Y)

Applying equation (31) in above, we obtain:
9([Z,W1,Y) = g(ApzW — ApwZ,TPY + TQY
+ NPY + NQY)
—~ g(VH$Z — VAW, TPY
+ TQY + NPY + NQY)
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gz, W1,Y) = g(Ap;W — AgwZ, TPY
+TQY)
— g(VivypZ — V;-¢W,NQY)

Using result of Lemma (3.8) in above, we have:
9z, W], Y) = g(T(Z,W]),TY)
9([Zz,W],Y) = g(T([Z,W]),TY)
—g(N([W, Z]), NQY)

Since the antiderivative distribution Dt s
integrable, therefore we have the desired result.

5 Totally Geodesic Foliations

Geodesicness and foliations are significant
geometric notions. In this section, we will
investigate the geometry of foliations of quasi hemi-
slant submanifolds of Lorentzian concircular

structures — manifolds or (LCS),- manifolds, also,
some conditions are given for the totally
Geodesicness.
Theorem 5.1. If M is a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS), - manifolds M , then M is
totally geodesic if
g(h(X,PY) — cos?0h(X,QY),V)
+ g(V¢NY, nV)
= g(AnorX + Angy X, tV)
+ g(VENTQY,V)
(45)

Forevery X,Y € '(TM) andV € I'(T*M).
Proof. For all X,Y € '(TM) and V € I'(T*M)
and using (30), we have
g(Y, V) = g(P(PY + QY + RY
+n(¥)$),V)

9(%QY,V) + g(WRY,V) 46

Using (11), we have:
9@ (Y), ¢V) = g(%Y,V) (47

From (2.14), we have:
Px@Y — ¢
d(PY) = PypY
—alg(X,Y)§ + 2n()n(Y)¢
+n(Y)X]
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g(d(VY), dV)
= g(vX(pY' d)V)
= 2an(X)n(Y)g(&, ¢V)
—an(Y)g(X, ¢V)
9P Y), V) = g(PxpY, V) (48)

Utilizing equations (30), (47) and (48) in (46), we
obtain:
g(PY, V) = g(%PY,V) + g(%x$QY, ¢V)
+ 9(PxPRY, V)

Utilizing equations (21) and (26) in above equation,
we have:
g(WY, V) = g(VxPY + h(X,PY),V)

+ 9P (TQY + NQY), ¢V)

+ g(Px(TRY + NRY), ¢V)
+9(FxNQY, ¢V)

+ g(PyNRY, pV)
+9(PxNQY, ¢V)
+ g(PyNRY, pV)

— g(P(T?QY + NTQY),V)

+ 9(PxNQY, ¢V)

+ g(PyNRY, pV)
—g(WNTQY,V)
+g(PNQY, ¢V)

+ g(PyNRY, pV)

Applying equation (22) and Lemma 3.5 in above
equation, we get:
— cos?0g(%QY,V)
— g(—AnrorX + VENTQY,V)
+ g(—AnorX + VENQY, ¢V)

Utilizing (21) in above equation, we have:
—c0s?0g(VxQY + h(X,QY),V)
— g(Vg NTQY,V)
- g(ANQYXr ¢V)
— g(AnryX, PV)
+g(Vx NQY, ¢V)
+ g(VENRY, V)
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g(%Y, V) = g(h(X,PY),V)
—cos?6g(h(X,QY),V)
— g(VgNTQY, V)
— 9(AnorX + Angy X, ¢V)
+ g(VENQY + VENRY, V)

Applying (27) in above equation, we have

g(®Y, V) = g(h(X,PY) — cos?6h(X,QY),V)
— g(V#NTQY,V)
— 9(AnorX + Ayry X, tV + V)
+ g(VENQY + V¢ NRY, tV
+ nV)

As NY = NPY + NQY + NRY and NPY =0,
thus we have

g(VXY) V) = g(h(X; PY) - COSZHh(X, QY); V)
— g(ViNTQY,V)
— 9(Anor X + Ayry X, tV)
+ g(VENY,nV)

Therefore, the proof follows.

Theorem 5.2. Let M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS), - manifolds M , then the
distribution D defines a totally geodesic foliation on
M iff

gWWyTY, TQZ) + g(h(X,TY),NQZ +
NRZ) =0 (49)

g(VxTY, tV) + g(h(X,TY),nV) = 0 (50)

for all X,Y € I'(D),Z € I'(D?®D*) and V €

r(T+*Mm).

Proof. For any X, Y€ I'(D),Z=QZ+ RZ €

F(DQGBDL) and using (11) and (14), we have:
9(7%Y,Z2) = g(Px Y, 9Z) (51

Utilizing (26) in (51), we get:
9(PxY,Z) = g(PTY, ¢pZ)

Utilizing (21) and (31), we get:
gWY,Z2) = g(VxTY + h(X,TY), TQZ + TRZ
+ NQZ + NRZ)

g(Y,Z) = g(VyTY, TQZ) +
g(h(X,TY),NQZ + NRZ)
(52)

Now, for any X,Y € I'(D),V € I'(T+M) and

using (11), (14) and (31), we have
9(%xY,V) = g(W%TY, V)  (53)
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Using (21) and (27) in (53), we have:
g(PY, V) =g(WxTY + h(X,TY), tV + nV)

g(%Y, V) = g(VxTY,tV) +
g(h(X,TY),nV) (54)

Since distribution D defines a totally geodesic
foliation on M, So, from (52) and (54), we obtained
the desired results.

Theorem 5.3. Let M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —
manifolds or (LCS), - manifolds M , then the
distribution D+ defines a totally geodesic foliation
on M if and only if
g(AnzY, TPW + TQW) = g(VFNZ,NQW)
(55)

g(AnzY, tV) = g(Vy NZ,nV) (56)

for any Y,Z € '(DY),W € I'(D®D?) and V €
r(T+m).

Proof. For anyY,Z € I'(DY),W = PW + QW €
F(DEBDH) and using (11) and (14), we have:

g(VYZ' W) = g(vy(pzi d)W)

Applying (26), in above, we have:
9g(WZ, W) = g(WNZ,¢pW)

Utilizing (22) and (31), we have:
gV zZ, W) = g(—AyzY + ViFNZ, TPW
+ TQW + NPW + NQW)

9g(%Z,W) = —g(AnzY, TPW +
TQW) + g(Vy NZ, NQW) (57)

Now, for any Y,Z € I'(DY), V e '(T*M)
and using (11), (14) and(31), we have:
9wz, V) = g(%NZ,¢V)

Using (22) and (27), we have:

g(VXY; V) = _,g(ANZY; tV) +
g(VyNZ,nV) (58)

Given that the distribution D+ defines a totally

geodesic foliation on M, thus, from (57) and (58),
we obtain the desired results.
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Theorem 5.4. If M be a proper quasi hemi-slant
submanifold of Lorentzian concircular structures —

manifolds or (LCS),, - manifolds M , then the
distribution D? defines a totally geodesic foliation
on M iff

g(VNW,NRX) = g(AywZ, TPX) —

9AyrwZ, X) (59)
gANwZ, tV) = g(VENW,nV) —
g(VzNTW,V) (60)

for any Z,W € I'(D%),X € I(D®DL) and V €
r(T+m).
Proof. For every Z,W € I'(D?),X = PX + RX €
r'(D®D?) and utilizing equations (11), (14) and
(26), we obtain:
g W, X) = g7, TW, 9X) + g(7zNW, $X)

g(VZW'X) = _g(VZ(I)TWIX)

+ g(FNW, $X)

Applying (22) and (26) in above, we have:
g(HW,X) = —g(P,(T*W + NTW), X)
+ g(—AywZ + VFNW, pX)
g7 W, X) = —g(P,T*W,X) — g(P,NTW, X)
— 9(AywZ, $X)
+ g(VFNW, ¢pX)

Utilizing (22) and Lemma 3.5 in above equation, we
have:

g W,X) = —cos?0g (P, W, X)
— g(AnwZ, $X)
+g(VzNW, ¢X)
(1 + cos?0)g (P, W, X)
= g(AnrwZ,X)
— g(VFNTW, X)
— g(AnwZ, $X)
+ g(ViNW, ¢X)
(1 + cos?0)g (P, W, X)
= g(AnrwZ,X)
— g(AnwZ, $X)
+ g(ViNW, ¢X)

Using (31) in above, we have:
(1 + cos?0)g (P, W, X)
= g(AnrwZ,X)
— g(AywZ, TPX + TRX + NPX
+ NRX)
+ g(ViNW,TPX + TRX
+ NPX + NRX)
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Applying the fact that NPX = 0 in above, we have:
(1+ cos?0)g ("W, X) = g(AnrwZ, X) —
g(AywZ,TPX) + g(VFNW,NRX)
(61)

Now, for any Z,W € I'(D%),V € ['(T*M) and
using (11), (14) and (26), we have:
g W, V) = —g(F,pTW, V)

Using (22) and (26), we have:
g W, V) = —g(%,(T*W + NTW),V)
+ g(—AywZ + VFNW, V)
g W, V) = —g(%,T*W,V) — g(¥;,NTW,V)
+ g(—AywZ + VENW, pV)

Using (22), (27) and Lemma 3.5 in above, we have:
g W, V) = —cos?6g (P, W, V)
— g(—AntwZ + VFNTW, V)
— g(AywZ,tV +nV)
+ g(VENW, tV + nV)

(1 + cos?0)g(PW,V) = —g(VFNTW,V) —
9(AnwZ,tV) + g(VyNW,nV) (62)

Since the distribution D? defines a totally

geodesic foliation on M, therefore from (61) and
(62), we have desired results.

6 Conclusion

New researchers or audiences can use the above to find
some interesting results using Golden Structure or
Golden Riemannian Manifolds, 3-dimensional
Lorentzian Concircular Structures. These
intersections of mathematical concepts offer fertile
ground for research and can unveil fascinating
properties and relationships. Researchers and
audiences interested in these topics may discover
compelling results by investigating the interplay
between these areas and exploring the unique
characteristics they bring to each other.
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