
Existence of the solution
We consider a boundary problem for the system (1),
namely, the function u that satisfies
∂
∂tu =X
i,j=1,...,l ∇i(aij (x, t, u)∇ju) +
b(x, t, u, ∇u)
over the closure of DTand on the boundary coincides
with the given function ϕ∈H˜α, ˜α
2(clos (DT)).
Theorem 2. Let functions aij and
bsatisfy
conditions (2)-(5) with γ0, γ2
1, γ2∈P K (β)
and (22)-(24) with lim
|∇u|→∞θ(|∇u|,|u|)=0
and ε(M1)is a small number. Let
ϕ∈C2,1({(x, t) : x∈∂Ω, t ∈[0, T ]}),
max
x∈Ω|∇ϕ(x, 0)|<∞,ϕ∈H˜α, ˜α
2(clos (DT)); and
let
∂
∂t ϕ=X
i,j=1,...,l ∇i(aij (x, t, ϕ)∇jϕ) +
b(x, t, ϕ, ∇ϕ).
Let function aij satisfy the Lipschitz condition at
u on any compact.
Then, there exists a unique solution u ∈
Hα, α
2(clos (DT)) to the problem
u|{(x, t) : x∈∂Ω, t∈[0, T ]}∩{(x, t) : x∈Ω, t=0}=
=ϕ|{(x, t) : x∈∂Ω, t∈[0, T ]}∩{(x, t) : x∈Ω, t=0}
for the system (1).
This theorem can be proven by the Leray–Schauder
method with the application estimations obtained in pre-
vious chapters. A linearized system is given as
∂
∂t w = (τaij (x, t, v) + (1 −τ)δij )∇i∇jw+
−τB (x, t, v, ∇v) + (1 −τ)∂
∂t ϕ−∆ϕ, τ ∈[0,1] ,
where we denote
B(x, t, v, ∇v) =
=−
b(x, t, v, ∇v)−∂aij (x, t, v)
∂vk∇jv∇ivk−
−∂aij (x, t, v)
∂xi∇jv,
and we consider function w to be unknown and v to be
given.
The linearized system defines the nonlinear operator
Φ (τ) : v 7→ w given by w = Φ (v, τ ), where the func-
tion w is a solution to the linearized system for each given
parameter τ∈[0,1]. The fixed point of the operator Φ
at the point τ= 1 is a solution to the boundary problem
for system (1). The existence of such a fixed point is
guaranteed by the Leray–Schauder theorem, uniqueness
follows from the Lipschitz condition straightforwardly by
the contradiction method.
[1] M. Agueh, Gagliardo-Nirenberg inequalities involv-
ing the gradient L2 -norm, C. R. Acad. Sci. Paris,
Ser., 346 (2008), 757–762.
[2] H. Amann, Invariant sets and existence theorems for
semilinear parabolic and elliptic systems, J. Math.
Anal. Appl., 65 (1978), pp. 432–467.
[3] J. Jackson and G, Zitkovic, Existence, and unique-
ness for non-Markovian triangular quadratic BSDEs,
(2021).
[4] C. Chen, R.M. Strain, H. Yau, T. Tsai, Lower
bounds on the blow-up rate of the axisymmetric
Navier-Stokes equations II, Comm. Partial Differen-
tial Equations 34 (2009) no. 1-3, 203–232.
[5] M. Kassmann, M. Weidner, The parabolic Harnack
inequality for nonlocal equations. arXiv:2303.05975
(2023).
[6] O. A. Ladyzenskaja, V. A. Solonnikov and N.
N. Ural’ceva, Linear and Quasilinear Equations of
Parabolic Type, Translations of Mathematical Mono-
graphs, Amer. Math. Soc., Vol. 23, (1968).
[7] J. M. Lee, T. Hillena and M. A. Lewis, Pattern for-
mation in prey-taxis systems, J. Biol. Dynamics, 3
(2009), 551–573.
[8] E. DeGiorgi, Sulla differenziabilita e l’analiticita delle
estremali degli integrali multipli regolari, Mem. Ac-
cad Sc. Torino, C. Sc. Fis. Mat. Natur. 3 (1957), 25-
43.
[9] E. DeGiorgi, Un esempio di estremali discontinue per
un problema variazionale di tipo ellitico, Bull. UMI
4 (1968), 135-137.
[10] J. Dieudonne, History of Functional Analysis,
North-Holland, Amsterdam, (1981).
[11] H. Dong, S. Kim, and S. Lee, Estimates for fun-
damental solutions of parabolic equations in non-
divergence form. J. Differential Equations, 340:557–
591, (2022).
[12] D., Hongjie, L. Escauriaza, S. Kim, On C1/2,1,
C1,2, and C0,0 estimates for linear parabolic oper-
ators. J. Evol. Equ. 21 (2021), no. 4, 4641–4702.
[13] E. Giusti, Minimal Surfaces and Functions of
Bounded Variation, Birkha user, Basel, (1984).
[14] C. Gordon, L. Webb, and S. Wolpert, One cannot
hear the shape of a drum, Bull. Amer. Math. Soc. 27
(1992), 134-138.
[15] R. Landes and V. Mustonen, On the pseudo-
monotone operators and nonlinear noncoercive prob-
lems on unbounded domains, Math. Ann. 248 (1980),
241-246.
[16] J. Mawhin and M. Willem, Critical Point Theory
and Hamiltonian Systems, Springer-Verlag, Berlin,
(1989).
[17] L. Nirenberg, Partial differential equations in the
first half of the century, in “Development of Math-
ematics 1900-1950” (J. P. Pier, Ed.), Birkha user,
Basel, (1994).
[18] S. Kim, S. Lee, Estimates for Green’s functions of
elliptic equations in non-divergence form with con-
tinuous coefficients. Ann. Appl. Math. 37 (2021), no.
5HIHUHQFHV
PROOF
DOI: 10.37394/232020.2023.3.2