The Stability of the Functional Equation f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y) on Semigroup

KARIM FARHAT, IDRISS ELLAHIANI, BELAID BOUIKHALENE, OMAR AJEBBAR Department of Mathematics and Informatics, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, MOROCCO

Abstract: - In this work, we establish the stability properties of the functional equation f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y), x,y in G on semigroup by using the invariant properties of a linear space **T**.

Key-Words: - Stability, semigroup, functional equation, two-sided invariant, linear space, multiplicative function, bounded function.

Received: December 18, 2022. Revised: October 21, 2023. Accepted: November 15, 2023. Published: December 19, 2023.

1 Introduction

The problem of the stability of functional equations goes back to, [1], who first asked the question concerning the stability of group homomorphisms as follows: Let (G₁,*) be a group and let (G₂,•,d) be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist $\delta(\varepsilon) > 0$ such that if a mapping h:G₁ \rightarrow G₂ satisfies the inequality $d(h(x^*y), h(x)h(y)) \le \varepsilon$ for all x, y \in G₁, then there is a homomorphism H: G₁ \rightarrow G₂ with $d(h(x), H(x)) \le \delta(\varepsilon)$ for all $x \in$ G₁?

And then, [2], took the case of an approximately additive map f of E into E', (where E and E' are Banach spaces) that satisfies Hyers' inequality $|f(x+y)-f(x)-f(y)| \le \varepsilon$ for all x, $y \in E$. Moreover, he proved that there exists a unique additive map l of *E* into *E'* satisfying $|f(x) - l(x)| \le \varepsilon$ for all $x \in E$. [3], generalized Hyers' theorem for additive mappings and, [4], for linear mappings by considering an unbounded Cauchy difference.

Several researchers have widely studied the stability of functional equations. The progress and developments of this discipline can be found in, [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].

This paper aims to study the stability properties of the following functional equation:

$$f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y), x,y \text{ in } G \quad (1)$$

where G denotes a semigroup, C is the set of complex numbers, f, and g are C-valued functions on G with g being a nonzero function.

In the case where g is a zero-function, equation (1) will be written as:

$$f(xy)=f(x)f(y), x, y \text{ in } G$$
(2)

So f is a multiplicative function.

The stability of the Cosine-Sine functional equation:

$$f(xy)=f(x)f(y)+g(x)g(y)+h(x)h(y), x,y in G$$
 (3)

Obtained by, [25], on an amenable group, and the general solution acquired by, [26], on groups.

The stability of the functional equations

$$f(x\sigma(y))=f(x)f(y)-g(x)g(y), \ x,y \ in \ G \eqno(4)$$
 and

$$f(x\sigma(y))=f(x)g(y)+g(x)f(y), x,y \text{ in } G$$
 (5)

where G is an amenable group and $\sigma: G \rightarrow G$ is an involutive automorphism (σ is an involutive automorphism meaning that: $\sigma(xy) = \sigma(x)\sigma(y)$ and $\sigma(\sigma(x)) = x$ for all x, y in G) was established by, [27]. For $\sigma = I$, where I designates the identity map of G, the functional equation (4) and (5) becomes the cosine addition law

$$f(xy)=f(x)f(y)-g(x)g(y), x,y \text{ in } G$$
(6)

and sine addition law

$$f(xy)=f(x)g(y)+g(x)f(y), x,y in G$$
 (7)

that, [28], proved the stability properties.

In this work, we extend the results of, [28], to the functional equation (1) from amenable group to semigroup.

To begin we need some definitions.

Definition 1.

Let G be a semigroup and **T** the linear space of a complex-valued function on G.

Then we say that the functions f,g: $G \rightarrow C$ are linearly independent modulo **T**, if $\lambda f + \mu g \in \mathbf{T}$ imply that $\lambda = \mu = 0$ for all λ and μ in **C**.

We say that the linear space **T** is two-sided invariant if the $f \in \mathbf{T}$ implies that the functions $x \rightarrow f(xy)$ and $x \rightarrow f(yx)$ belongs to **T** for all y in G.

Definition 2.

Let G be a semigroup and $\mathbf{m}: G \rightarrow \mathbf{C}$ a function.

We say that **m** is a multiplicative function if $\mathbf{m}(xy) = \mathbf{m}(x)\mathbf{m}(y)$ for all x, y in G.

2 The Main Result

Our main result is, by lemma 1 we prove that equation (1) holds on in the case that f and g are linearly independent, second by lemma 2 we get some properties of the solutions of equation (1), third by the theorem we prove the stability of the functional equation (1).

Lemma 1.

Let G be a semigroup, f,g: $G \rightarrow C$ tow functions with g a nonzero function and T the linear space of C valued functions tow sided invariant on G.

We suppose that f and g are linearly independent modulo \mathbf{T} if the functions

$$x \rightarrow f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y)$$

and

$$x \rightarrow f(xy)-f(yx)$$

belongs to **T** for all y in G, then f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y), for all x,y in G

Proof.

We use a similar calculation to that of the proof of [28], Lemma 3.1 Let F(x,y)=f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y) for all x, y in G

As $g \neq 0$, then there exist y_0 in G such as $g(y_0) \neq 0$

Therefore

$$F(x, y_0) = f(xy_0) - f(x)f(y) - g(x) g(y_0) - f(x)g(y_0)$$
So,

$$g(x) = \frac{1}{g(y_0)} f(xy_0) - (\frac{f(y_0)}{g(y_0)} + 1)f(x) - \frac{1}{g(y_0)} F(x, y_0)$$
Let $\alpha_0 = \frac{1}{g(y_0)}$ and $\alpha_1 = \frac{f(y_0)}{g(y_0)}$
We get,

$$g(x) = \alpha_0 f(xy_0) - (\alpha_1 + 1) f(x) - \alpha_0 F(x, y_0)$$
We have,

$$f[(xy)z] = f(x)f(z) + g(xy)g(z) + f(xy)g(z) + F(x y, z)$$

$$= [f(x)f(y) + g(x)g(y) + f(x)g(y) + F(x, y)]f(z)$$

$$+ [\alpha_0 f(xyy_0) - (\alpha_1 + 1) f(xyy_0)$$

$$-\alpha_0 F(xy, y_0)] g(z)$$

$$+ [f(x)f(y) + g(x)g(y) + f(x)g(y)$$

$$+ F(x, y)f(z) + \alpha_0 f(x y)g(z) + \alpha_1 f(xyy_0)g(z)$$

$$-\alpha_1 F(xy, y_0)g(z) + F(x, y)g(z) + F(xy, z)$$
and,

$$f[(xy)z] = f(x)f(y)f(z) + g(x)g(y)f(z) + f(x)g(y)f(z)$$

$$+ F(x, y)f(z) + \alpha_0 f(x) f(yy_0) g(z)$$

$$+ \alpha_0 g(x)g(yy_0)g(z) + \alpha_0 f(x) g(yy_0)g(z)$$

$$+ \alpha_0 F(x, yy_0)g(z) - (\alpha_1 + 1)f(x)f(y)g(z)$$

$$+ \alpha_0 F(x, yy_0)g(z) - (\alpha_1 + 1)f(x)f(y)g(z)$$

$$- (\alpha_1 + 1)g(x)g(y)g(z) - (\alpha_0 F(x, y, y_0)g(z)$$

+f(x)f(y)g(z)+g(x)g(y)g(z)+f(x)g(y)g(z)+F(x, y)g(z)+F(xy, z)

on the other hand,

$$\begin{aligned} f[(xy)z] &= f[x(yz)] \\ &= f(x)f(yz) + g(x)g(yz) + f(x)g(yz) + F(x,yz) \\ &= f(x)[f(yz) + g(yz)] + g(x)g(yz) + F(x,yz) \end{aligned}$$

By using the fact that f and g are linearly independent modulo T and also T is a tow sided invariant linear space, we get:

 $g(yz)=g(y)f(z)+g(y)g(z)+\alpha_0g(y)g(z)+\alpha_1g(yy_0)g(z)$

and

$$\begin{split} f(yz) + g(yz) = & f(y)f(z) + g(y)f(z) + f(y)g(z) + g(y)g(z) \\ & + \alpha_0 f(y)g(z) + \alpha_0 g(y)g(z) \\ & + \alpha_1 f(yy_0)g(z) + \alpha_1 g(yy\alpha_0) \ g(z) \end{split}$$

then

$$F(xy,z)-F(x,yz)=[\alpha_0F(xy, y_0)+\alpha_1F(x,y) - \alpha_0F(x,yy_0)]g(z) - F(x,y)f(z)$$

Again, using f and g are linearly independent modulo **T** and the fact that **T** is a tow sided invariant linear space, we obtain: F=0The lemma is proved.

Lemma 2.

Let G be a semi-group, $f,g:G \rightarrow C$ tow functions with g a nonzero function and T be a tow-sided invariant linear space of C valued functions on G. If the functions

and

$$x \rightarrow f(xy)$$
-f(yx)

 $x \rightarrow f(xy) - f(x)f(y) - g(x)g(y) - f(x)g(y)$

Belongs to **T** for all y in G, then we have one of the following possibilities:

1) f, g in **T**

Proof.

We use a similar calculation to that of the proof of, [28], Lemma 3.2.

If g in T

By using a similar demonstration of the theorem in, [3], we suppose that f is not in \mathbf{T} and f+g is not multiplicative.

Then there exists y_1, z_1 in G that $f(y_1z_1)+g(y_1z_1)\neq (f(y_1)+g(y_1))(f(z_1)+g(z_1))$

We have,

$$\begin{split} f(xyz)-f(xy)(f(z)+g(z)) &= f(xyz)-f(x)(f(yz)+g(yz)) \\ &\quad - [f(xy)-f(x)(f(y)+g(y))](f(z) \\ &\quad + g(z))+f(x)[f(yz)+g(yz) \\ &\quad - (f(y)+g(y))(f(z)+g(z))] \end{split}$$
 For y=y₁ and z=z₁ we get,

$$f(x) &= [f(xy_1z_1)-f(xy_1)(f(z_1)+g(z_1)) \\ &\quad - (f(xy_1z_1)-f(x)(f(y_1z_1)+g(y_1z_1))) \\ &\quad + (f(xy_1)-f(x)(f(y_1)+g(y_1)))(f(z_1)+g(z_1))] \\ &\quad \times [f(y_1z_1)+g(y_1z_1) \\ &\quad - (f(y_1)+g(y_1))(f(z_1)+g(z_1))]^{-1} \end{split}$$

Since the function $x \rightarrow f(xy_1)-f(x)(f(y_1)+g(y_1))$ belong to **T**,

Then f in **T** that contradicts the supposition. So f in **T** or f+g is multiplicative, then 1 and 2 of Lemma 2 is proved

If f, g in **T** and f, g are linearly dependent. There exist λ in C* and b in **T** such that $f = \lambda g + b$

Substituting f by λg +b in (1) we get,

$$\begin{split} f(x \ y) - f(x)f(y) - g(x)g(y) - f(x)g(y) \\ = \lambda g(x \ y) + b(xy) - (\lambda g(x) + b(x))(\lambda g(y) + b(y)) \\ - g(x)g(y) - (\lambda g(x) + b(x))g(y) \\ = \lambda g(xy) - [\lambda^2 g(y) + \lambda b(y) + \lambda g(y) \\ + g(y)]g(x) + b(xy) - b(x)b(y) - \lambda g(y)b(x) - b(x)g(y) \\ = \lambda [g(x \ y) - \frac{1}{\lambda} ((\lambda^2 + \lambda + 1)g(y) + \lambda b(y))g(x)] \\ + b(xy) - b(x)b(y) - (\lambda + 1)g(y)b(x) \end{split}$$

And by the hypothesis, the function $x \rightarrow f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y)$ belongs to **T**.

We deduce that the function $x \rightarrow g(xy) - \frac{1}{\lambda}((\lambda^2 + \lambda + 1) g(y) + \lambda b(y))g(x)$ belongs to **T**, and by using the theorem in, [29], we obtain,

$$\frac{\lambda^2 + \lambda + 1}{\lambda}g + b = m$$

Where m is a multiplicative function.

For
$$\lambda \neq e^{i\frac{2\pi}{3}}$$
 and $\lambda \neq e^{-i\frac{2\pi}{3}}$ we obtain

 $f = \frac{\lambda^2}{\lambda^2 + \lambda + 1} m + \frac{\lambda + 1}{\lambda^2 + \lambda + 1} b \text{ and } g = \frac{\lambda}{\lambda^2 + \lambda + 1} m - \frac{\lambda}{\lambda^2 + \lambda + 1} b$ then 3 of Lemma 2 is proved.

If f and g are linearly independent modulo **T**, applying lemma 1 we get 4 of Lemma 2. So lemma 2 is proved.

Theorem

Let G be a semigroup and f,g: $G \rightarrow C$ tow functions with g a nonzero function. The function

$$(x,y) \rightarrow f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y)$$

is bounded if only and if one of the following assertions hold on:

1) f and g are bounded functions

2) f+g is a bounded multiplicative function, g is a bounded function

3)
$$f = \frac{\lambda^2}{\lambda^2 + \lambda + 1} m + \frac{\lambda + 1}{\lambda^2 + \lambda + 1} b$$
, and

 $g = \frac{\lambda}{\lambda^2 + \lambda + 1}$ m- $\frac{\lambda}{\lambda^2 + \lambda + 1}$ b, where b:G \rightarrow C is a bounded function and m:G \rightarrow C is a bounded multiplicative function, λ in C*-{ $e^{i\frac{2\pi}{3}}$, $e^{-i\frac{2\pi}{3}}$ } is a constant.

4) f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y)

Proof.

Let **T** the space of **C** valued bounded functions on G. Applying the Lemma 2 we prove the necessity.

If g is a bounded function then we get the assertions 1 and 2.

And the assertions 3 and 4 are followed directly by Lemma 2

3 Conclusion

The results of this paper show that equation (1) has notable stability property, that the difference between the right-hand side and the left-hand side of the equation is bounded if and only if we add a bounded function to the exact solutions.

References:

- [1] S.M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960, ISBN: 9780598665133, 0598665137.
- [2] D. H. Hyers, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci.* U.S.A. 27(1941), 222-224.
- [3] T. Aoki. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2 (1950), pp.64-66.
- [4] Th. M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. vol.72 (1978), pp.297-300.
- [5] O. Ajebbar, E. Elqorachi and Th. M. Rassias. The stability of a cosine-sine functional equation on abelian groups. *Nonlinear Functional Analysis and Applications*, vol.24 (3), 2019, pp.595-625.
- [6] J.A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x+y)=f(x)f(y), *Proc. Amer. Math. Soc.* 74 (1979), 242-246.
- [7] J.A. Baker. The stability of the Cosine equation. *Proc. Amer. Soc.*, vol.80, 1980, pp.411-416.
- [8] J. Chang, C. Chang-K., J. Kim and P. K. Sahoo. Stability of the Cosine-Sine functional

equation with involution. *Adv. Oper. Theory*, vol.2 (4), 2017, pp.531-546.

- [9] J. Chang and J. Chung. Hyers-Ulam stability of trigonometric functional equations. Commun. *Korean Mathematical Society*, vol.23 (4), 2008, pp.567-575.
- [10] J. Chung and J. Chang. On a generalized Hyers-Ulam stability of trigonometric functional equations. J. Appl. Math., 2012, Article ID 610714, 14 pp.
- [11] J. Chung, C.-K. Choi and J. Kim. Ulam-Hyers stability of trigonometric functional equation with involution. *J.Funct. Spaces* (2015), Article ID 742648, 7 pp.
- [12] P. Găvruta. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., vol.184, 1994, pp.431-436.
- [13] D. H. Hyers, G. Isac and Th. M. Rassias. Stability of functional equations in several variables. Birkhäuser, Boston, 1998.
- [14] S.-M Jung. On the Hyers-Ulam-Rassias Stability of approximately additive mappings. *J. Math. Anal. Appl.*, vol.204, 1996, pp.221-226.
- [15] S.-M Jung, D. Popa and M. Th. Rassias. On the stability of the linear functional equation in a single variable on complete metric groups. J. Global Optim., vol.59 (1), 2014, pp.165-171.
- [16] Poulsen, T., Stetkær, H. On the trigonometric subtraction and addition formulas. *Aequ. math.* vol.59, pp.84–92, 2000, <u>https://doi.org/10.1007/PL00000130</u>.
- [17] Th. M. Rassias. On the stability of functional equations and a problem of Ulam, *Acta Appl. Math.*, vol.62, 2000, no. 1, pp.23-130.
- [18] Th. M. Rassias and P. emrl. On the Hyers-Ulam stability of linear mappings. *J. Math. Anal. Appl.*, vol.173, 1993, pp.325-338.
- [19] L. Székelyhidi. On the Levi-Civita functional equation. Berichte der Math. Stat. Sektion der Forschungsgesellschaft Joanneum-Graz, vol.301, 1988, 23 pp.
- [20] L. Székelyhidi. Fréchet equation and Hyers's theorem on noncommutative semigroup. *Ann. Polon. Math.*, vol.48, 1988, pp.183-189.
- [21] L. Székelyhidi. The stability of d'Alemberttype functional equations. *Acta Sci. Math.*, vol.44, 1982, pp.313-320.
- [22] H. Stetkær. Wilson's functional equation on groups. Aequ. Math., vol.49, no.3, 1995, pp.252-275.

- [23] H. Stetkær. Functional equations on abelian groups with involution. *Aequ. Math.*, vol.54, no. 1-2, 1997, pp.144-172.
- [24] H. Stetkær. Functional equations on groups. World Scientific Publishing Co, Singapore 2013.
- [25] O. Ajebbar and E. Elqorachi. The stability of the Cosine-Sine functional equation on amenable group, arXiv :2403254 [math. RA] 19 September 2018.
- [26] J. K. Chung, Pl. Kannappan and C.T. Ng. A generalization of the Cosine-Sine functional equation on groups. *Linear Algebra Appl.*, 66 (1985), 259-277.
- [27] O. Ajebbar and E. Elqorachi. Solutions and Stability of Trigonometric Functional Equations on an Amenable Group with an Involutive Automorphism. *Commun. Korean Math. Soc.*, vol.34 (1), 2019, pp.55-82.
- [28] L. Székelyhidi, The stability of the sine and cosine functional equations, *American mathematical society*, Vol. 110, Number 1, September 1990.
- [29] L. Székelyhidi, On the theorem of Baker, Lawrence and Zorzitto, *Proc. Amer. Math. Soc. V. 84 N. 1, January 1982.*

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

- Karim Farhat carried out this paper.
- Idriss Ellahiani, Belaid Bouikhalene and Omar Ajebbar have investigated the main result.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en US