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1   Introduction 
The problem of the stability of functional equations 
goes back to, [1], who first asked the question 
concerning the stability of group homomorphisms as 
follows: Let (G1,∗) be a group and let (G2,●,d) be a 
metric group with the metric d(·,·). Given ε> 0, does 
there exist δ(ε) > 0 such that if a mapping h:G1→G2 
satisfies the inequality d(h(x*y), h(x)h(y))≤ε for all 
x, y ∈G1, then there is a homomorphism H: G1→G2 
with d(h(x), H(x))≤ δ(ε) for all x∈G1? 
And then, [2], took the case of an approximately 
additive map f of E into E', (where E and E' are 
Banach spaces) that satisfies Hyers' inequality 
|f(x+y)-f(x)-f(y)|≤ 𝜀 for all x, y ∈ 𝐸. Moreover, he 
proved that there exists a unique additive map l of 𝐸 
into 𝐸′ satisfying |f(x) – l(x)| ≤ 𝜀 for all x ∈ 𝐸. [3], 
generalized Hyers' theorem for additive mappings 
and, [4], for linear mappings by considering an 
unbounded Cauchy difference.  
Several researchers have widely studied the stability 
of functional equations. The progress and 
developments of this discipline can be found in, [5], 
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], 
[16], [17], [18], [19], [20], [21], [22], [23], [24]. 
This paper aims to study the stability properties of 
the following functional equation: 
 

f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y),  x,y in G    (1) 
 
where G denotes a semigroup, C is the set of 
complex numbers, f, and g are C-valued functions 
on G with g being a nonzero function. 
 

In the case where g is a zero-function, equation 
(1) will be written as: 

 
f(xy)=f(x)f(y), x,y in G                   (2) 

 
So f is a multiplicative function.  
 
The stability of the Cosine-Sine functional equation: 

f(xy)=f(x)f(y)+g(x)g(y)+h(x)h(y),  x,y in G      (3) 

Obtained by, [25], on an amenable group, and 
the general solution acquired by, [26], on groups.  
 
The stability of the functional equations 

f(xσ(y))=f(x)f(y)-g(x)g(y),  x,y in G           (4) 
and 

f(xσ(y))=f(x)g(y)+g(x)f(y),  x,y in G           (5) 
 
where G is an amenable group and σ: G→G is an 
involutive automorphism (σ is an involutive 
automorphism meaning that: σ(xy) = σ(x)σ(y) and 
σ(σ(x)) = x for all x, y in G) was established by, 
[27]. For σ = I, where I designates the identity 
map of G, the functional equation (4) and (5) 
becomes the cosine addition law 

f(xy)=f(x)f(y)-g(x)g(y),  x,y in G           (6) 
 
and sine addition law 

f(xy)=f(x)g(y)+g(x)f(y),  x,y in G           (7) 
 
that, [28], proved the stability properties. 
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In this work, we extend the results of, [28], to 
the functional equation (1) from amenable group to 
semigroup. 
 

To begin we need some definitions. 
 

Definition 1. 

Let G be a semigroup and T the linear space of a 
complex-valued function on G. 

Then we say that the functions f,g: G→C are 
linearly independent modulo T, if λf + μg ∈ 𝐓 
imply that 𝜆 = 𝜇 = 0 for all 𝜆 and 𝜇 in C. 

We say that the linear space T is two-sided 
invariant if the f ∈ 𝐓 implies that the functions 
x→f(xy) and x→f(yx) belongs to T for all y in G. 
 
Definition 2. 

Let G be a semigroup and m:G→C a function. 
We say that m is a multiplicative function if 

𝐦(xy) = 𝐦(x)𝐦(y) for all x, y in G. 
 

 

2  The Main Result 
Our main result is, by lemma 1 we prove that 
equation (1) holds on in the case that f and g are 
linearly independent, second by lemma 2 we get 
some properties of the solutions of equation (1), 
third by the theorem we prove the stability of the 
functional equation (1). 
 
Lemma 1. 
Let G be a semigroup, f,g: G → C tow functions 
with g a nonzero function and T the linear space of 
C valued functions tow sided invariant on G.  
We suppose that f and g are linearly independent 
modulo T if the functions  
 

x → f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y) 
 
and  
 

x →f(xy)-f(yx) 
 
belongs to T for all y in G, then 
f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y), for all  x,y in G  
 
 
Proof. 

We use a similar calculation to that of the proof of 
[28], Lemma 3.1 
Let F(x,y)=f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y) for all x, 
y in G 
 
As g ≠ 0, then there exist 𝑦0 in G such as 𝑔(𝑦0) ≠ 0 
 

Therefore   
F(x, 𝑦0)= f(x𝑦0)-f(x)f(y) - g(x) 𝑔(𝑦0)-f(x)g(𝑦0) 
So, 
g(x)= 1

g(y0)
 f(x𝑦0) - ( f(y0)

g(y0)
 +1)f(x)- 1

g(y0)
 F(x, 𝑦0) 

 
Let α0 =

1

g(y0)
 and α1 =

f(y0)

g(y0)
 

We get, 
g(x)= 𝛼0f(x𝑦0)-( 𝛼1+1) f(x)- 𝛼0F(x, 𝑦0) 
We have,  
f[(xy)z]=f(xy)f(z)+g(xy)g(z)+f(xy)g(z)+F(x y, z) 

=[f(x)f(y)+g(x)g(y)+f(x)g(y)+F(x,y)]f(z) 
+[𝛼0f(xy𝑦0)-( 𝛼1+1) f(xy𝑦0) 
-𝛼0F(xy, 𝑦0)] g(z) 
+[f(x)f(y)+g(x)g(y)+f(x)g(y) 
+F(x,y)]g(z) +F(xy, z) 
=f(x)f(y)f(z)+g(x)g(y)f(z)+f(x)g(y)f(z) 
+ F(x, y)f(z)+𝛼0f(x y)g(z)+𝛼1f(xy𝑦0)g(z) 
-𝛼1F(xy,𝑦0)g(z)+f(x)f(y)g(z) 
+g(x)g(y)g(z) 
+f(x)g(y)g(z)+F(x,y)g(z)+F(xy,z) 

and, 
f[(xy)z]=f(x)f(y)f(z)+g(x)g(y)f(z)+f(x)g(y)f(z) 

+F(x, y)f(z)+ 𝛼0f(x) f(y𝑦0) g(z) 
+ 𝛼0g(x)g(y𝑦0)g(z)+ 𝛼0f(x) g(y𝑦0)g(z) 
+ 𝛼0F(x,y𝑦0)g(z)-( 𝛼1+1)f(x)f(y)g(z) 
-(𝛼1+1)g(x)g(y)g(z)-( 𝛼1+1)f(x)g(y)g(z) 
-(𝛼1+1)F(x, y)g(z)- 𝛼0F(x y, 𝑦0)g(z) 
+f(x)f(y)g(z)+g(x)g(y)g(z)+f(x)g(y)g(z) 
+F(x, y)g(z)+F(xy, z)  
 

on the other hand, 
f[(xy)z]=f[x(yz)] 

          =f(x)f(yz)+g(x)g(yz)+f(x)g(yz)+F(x,yz) 
=f(x)[f(yz)+g(yz)]+g(x)g(yz)+F(x,yz) 

 
By using the fact that f and g are linearly 

independent modulo T and also T is a tow sided 
invariant linear space, we get: 
 
g(yz)=g(y)f(z)+g(y)g(z)+𝛼0g(y)g(z)+𝛼1g(y𝑦0)g(z) 
 
and 
 
f(yz)+g(yz) =f(y)f(z)+g(y)f(z)+f(y)g(z)+g(y)g(z)  

+𝛼0f(y)g(z)+𝛼0g(y)g(z) 
+𝛼1f(y𝑦0)g(z)+𝛼1g(y𝑦𝛼0) g(z) 

 
then  
F(xy,z)-F(x,yz)=[ 𝛼0F(xy, 𝑦0)+ 𝛼1F(x,y) 

- 𝛼0F(x,y𝑦0)]g(z) - F(x,y)f(z) 
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Again, using f and g are linearly independent 
modulo T and the fact that T is a tow sided invariant 
linear space, we obtain: F=0 
The lemma is proved. 
 
Lemma 2. 

Let G be a semi-group, f,g:G → C tow functions 
with g a nonzero function and T be a tow-sided 
invariant linear space of C valued functions on G. 
If the functions  
 

x →f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y) 
and  

x → f(xy)-f(yx) 
 

Belongs to T for all y in G, then we have one of 
the following possibilities: 
 

1)  f, g in T  
2)  f+g multiplicative, g in T 
3) f= 𝜆2

𝜆2+𝜆+1
m+ 𝜆+1

𝜆2+𝜆+1
b,  

g= 𝜆

𝜆2+𝜆+1
m - 𝜆

𝜆2+𝜆+1
b,  

where b:G→ C is a function belonging to T 
and m:G → C is a multiplicative function 
and 𝜆 in C*-{𝑒𝑖

2𝜋

3 , 𝑒−𝑖
2𝜋

3 } is a constant.  
4)  f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y) 

 

Proof. 

We use a similar calculation to that of the proof of, 
[28], Lemma 3.2. 
 
If  g in T 
 

By using a similar demonstration of the theorem 
in, [3], we suppose that f is not in T and f+g is not 
multiplicative. 
 
Then there exists 𝑦1, 𝑧1 in G that 
f(𝑦1𝑧1)+g(𝑦1𝑧1)≠(f(𝑦1)+g(𝑦1))(f(𝑧1)+g(𝑧1)) 
 
We have,  
f(xyz)-f(xy)(f(z)+g(z))=f(xyz)-f(x)(f(yz)+g(yz)) 

- [f(xy)-f(x)(f(y)+g(y))](f(z) 
+g(z))+f(x)[f(yz)+g(yz) 
-(f(y)+g(y))(f(z)+g(z))]  

For y=𝑦1 and z=𝑧1 we get, 
f(x) =[ f(x𝑦1𝑧1)-f(x𝑦1)(f(𝑧1)+g(𝑧1)) 

- (f(x𝑦1𝑧1) - f(x)(f(𝑦1𝑧1)+g(𝑦1𝑧1))) 
+(f(x𝑦1)-f(x)(f(𝑦1)+g(𝑦1)))(f(𝑧1)+g(𝑧1))] 
×[𝑓(y1z1) + 𝑔(y1z1) 
-(f(y1) + g(y1))(f(z1) + g(z1))]−1 

 

Since the function x → f(x𝑦1)-f(x)(f(𝑦1)+g(𝑦1)) 
belong to T, 
 
Then f in T that contradicts the supposition. 
So f in T or f+g is multiplicative, then 1 and 2 of 
Lemma 2 is proved 
 
If f, g in T and f, g are linearly dependent. 
There exist 𝜆 in C* and b in T such that 
 f = 𝜆g +b 
 
Substituting f by 𝜆g +b in (1) we get, 
 
f(x y)-f(x)f(y)-g(x)g(y)-f(x)g(y) 
=𝜆g(x y)+b(xy)-( 𝜆g(x)+b(x))( 𝜆g(y)+b(y)) 
-g(x)g(y)-( 𝜆g(x)+b(x))g(y) 
= 𝜆g(xy)-[ 𝜆2g(y)+ 𝜆b(y)+ 𝜆g(y) 
+g(y)]g(x)+b(xy)-b(x)b(y)- 𝜆g(y)b(x)-b(x)g(y) 
= 𝜆[g(x y)- 1

𝜆
((𝜆2 + 𝜆 +1)g(y)+ 𝜆b(y))g(x)] 

+ b(xy)-b(x)b(y) - (𝜆 +1)g(y)b(x) 
 
And by the hypothesis, the function x →f(xy)-
f(x)f(y)-g(x)g(y)-f(x)g(y) belongs to T. 
 
We deduce that the function x → g(xy)- 1

𝜆
((𝜆2 + 𝜆 

+1) g(y)+ 𝜆b(y))g(x) belongs to T, 
and by using the theorem in, [29], we obtain, 
 

𝜆2 + 𝜆 +1

𝜆
g + b=m 

 
Where m is a multiplicative function. 
 
For 𝜆 ≠ 𝑒𝑖

2𝜋

3  and  𝜆 ≠ 𝑒−𝑖
2𝜋

3  we obtain  
 
f= 𝜆2

𝜆2+𝜆+1
m+ 𝜆+1

𝜆2+𝜆+1
b and g= 𝜆

𝜆2+𝜆+1
m - 𝜆

𝜆2+𝜆+1
b  

then 3 of Lemma 2 is proved. 
 
If f and g are linearly independent modulo T, 
applying lemma 1 we get 4 of Lemma 2. 
So lemma 2 is proved. 
 
Theorem 
Let G be a semigroup and f,g: G → C tow functions 
with g a nonzero function. 
The function 
 

(x,y) → f(xy)-f(x)f(y)-g(x)g(y)-f(x)g(y) 
 
is bounded if only and if one of the following 
assertions hold on: 

1)  f and g are bounded functions 
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2)  f+g is a bounded multiplicative function, g 
is a bounded function 

3) f= 𝜆2

𝜆2+𝜆+1
m+  𝜆+1 

𝜆2+𝜆+1
b, and 

g = 
𝜆

𝜆2+𝜆+1
 m- 𝜆

𝜆2+𝜆+1
b, where b:G → C is a 

bounded function and m:G → C is a bounded 
multiplicative function, 𝜆 in C*-{𝑒𝑖

2𝜋

3 , 𝑒−𝑖
2𝜋

3 } is a 
constant. 

4)  f(xy)=f(x)f(y)+g(x)g(y)+f(x)g(y) 
 

Proof. 

Let T the space of  C valued bounded functions on 
G. Applying the Lemma 2 we prove the necessity. 
 If g is a bounded function then we get the assertions 
1 and 2.  
And the assertions 3 and 4 are followed directly by 
Lemma 2 
 

 

3  Conclusion 
The results of this paper show that equation (1) has 
notable stability property, that the difference 
between the right-hand side and the left-hand side of 
the equation is bounded if and only if we add a 
bounded function to the exact solutions.  
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