
Directly indecomposible multialgebras

Abstract: The aim of this paper is the study directly indecomposible multialgebras. In this regards, first the
isomorphism theorems and correspondence theorem for multialgebras. Then by applying congruences relation
on multialgebras factor multialgebras are constructed and some important properties of them are obtained. In
particular, it is shown that every finite multialgebra is isomorphic to a direct products of directly indecomposable of
multialgebras. Finally, subdirect products and subdirect irreducible of multialgebras are investigated and Birkoff’s
theorem is extended to multialgebras.
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1 Introduction
A multialgebra can be considered as a relational sys-
tems which generalize the universal algebras. In [17]
Schweigert studied the congruence of multialgebras.
R. Ameri et al. introduced and studied hyperalgebraic
system in [2]; some more properties of multialge-
bras such as identities, fundamental relation and direct
limit and etc. has been studied by C. Pelea (for more
details see [12], [13], [14]). In this paper we follow
[16] to study isomorphism theorems, directly inde-
composible and subdirect products of multialgebras.
This paper is organized in 5 sections. In Section 2, we
gather the definition and basic properties of multial-
gebras which we need to development our paper. In
Section 3 the isomorphism theorems and correspon-
dence theorem for multialgebras has been proved. In
Section 4, by using the notions of congruence, factor
congruence and direct product of multialgebras it is
shown that every finite multialgebra is isomorphic to
a direct product of directly indecomposable multial-
gebras. Finally, in Section 5 subdirectly irreducible
of multialgebras are introduced and a necessary and
sufficient condition that a multialgebra is subdirectly
irreducible is obtained. Finally, the Birkoff’s theorem
has been extended to multialgebras.

2 Preliminaries
In this section we gather all definitions and results of
multialgebras, which we need to development our pa-
per. In the sequel H is a fixed nonvoid set, P ∗(H)

is the family of all nonvoid subsets of H , and for a
positive integer n Hn denotes the set of all n−tuples
elements of H .

For a positive integer n a n−ary hyperoperation β on
H is a function β : Hn → P ∗(H). We say that
n the arity of β. A subset S of H is closed under the
n-ary hyperoperation β if (x1, . . . , xn) ∈ Sn implies
that β(x1, . . . , xn) ⊆ S. A nullary hyperoperation on
H is just an element of P ∗(H); i.e. a nonvoid subset
of H .

An n-ary relation ρ on H is a subset of Hn. We
also say that the arity of ρ is n. Orders and equivalence
relations on H are the best examples of binary (i.e. 2-
array) relations on H . Henceforth sometimes we use
hyperoperation instead of the n-ary hyperoperation. A
hyperalgebraic system or a multialgebra ⟨H, (βi, | i ∈
I)⟩ is the set H with together a collection (βi, | i ∈ I)
of hyperoperations on H .

A subset S of a multialgebra H = ⟨H, (βi, |
i ∈ I)⟩ is a submultialgebra of H if S is closed
under each hyperoperation βi, for all i ∈ I , that is
βi(a1, ..., an) ⊆ S, whenever (a1, ..., an) ∈ Sn. The
type of H is the map from I into the set N∗ of non-
negative integers assigning to each i ∈ I the arity of
βi.

A binary relation ρ on a set M is called compati-
ble (resp. strong compatible ) with an n-ary hyperop-
eration β if x1ρy1, ..., xnρyn implies that

β(x1, ..., xn)ρβ(y1, ..., yn),
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(β(x1, ..., xn)ρSβ(y1, ..., yn)),

where for nonempty subsets A and B of M ,

AρB ⇐⇒ (∀a ∈ A ∃b ∈ B : aρb

and ∀b ∈ B , ∃a ∈ A : bρa),

and

AρSB ⇐⇒ ∀a ∈ A,∀b ∈ B aρb.

Let ⟨H, (βi, | i ∈ I)⟩ be a multialgebra. A binary
relation ρ on M is called (resp. strong) congruence
if ρ is an equivalence relation and (resp. strongly)
compatible with every βi, i ∈ I .

For n > 0 we extend an n−ary hyperoperation β
on H to an n−ary operation β on P ∗(H) by setting
for all A1, ..., An ∈ P ∗(H)

β(A1, ..., An) =
∪

{β(a1, ..., an)| (1)

ai ∈ Ai(i = 1, ..., n)}

It is easy to see that ⟨P ∗(H), (βi, | i ∈ I)⟩ is an
algebra. whenever possible we write a instead of the
the singleton {a}; e.g. for a binary hyperoperation ◦
and a, b, c ∈ H we write a ◦ (b ◦ c) for

{a} ◦ ({b} ◦ {c}) =
∪

{a ◦ u|u ∈ b ◦ c}.

An equivalence relation on A compatible (resp.
strongly compatible) with a multialgebra H on A is
congruence (resp. strong congruence) of H . Denote
by Con(H)(resp.Cons(H)) the set of all congru-
ences (resp. strong congruences ) of H .

Let H = ⟨A, (βi, | i ∈ I)⟩ be a multialgebra and
let θ ∈ Con(H). Let A/θ = {Bj |j ∈ J} be the set
of blocks of θ. For every i ∈ I define βi on A/θ as
follows:

Let j1, ..., jmi ∈ J be arbitrary and let al ∈ Bjl
for l = 1, ...,mi. Define

βi(Bj1 , ..., Bjmi
) = {Bj |j ∈ J, (2)

Bj meets βi(a1, ..., ami)}

Since θ ∈ Con(H), it can be verified that βi is
well defined mi-ary hyperoperation on A/θ. Call
H/θ = ⟨A/θ, (β|j ∈ J)⟩ a factor multialgebra of
H . If, moreover, θ ∈ Con(H), then every βi is sin-
gleton valued, i.e. an operation on A/θ, and H/θ is
an algebra. For semihypergroups this fact are in [1]
the general case is in [11].

We view binary relation on A as subsets of A2

and so for a multialgebra H on A the sets Con(H)

and Cons(H) are naturally ordered by set inclusion.
First we characterize the poset (Con(H,⊆). Recall
that for a binary relations ρ and σ on A the relation
product (also called de Morgan product) is

ρ ◦ σ = {(x, y) ∈ A2|(x, u) ∈ ρ, (u, y) ∈ σ

for some u ∈ A}.

It is well known and easy to show that the re-
lation product is associative with the unital element
ω = {(a, a)|a ∈ A}.

Example 1. (i) A hypergroupoid is a multialgebra of
type (2), that is a set H together with a (binary) hy-
peroperation ◦. A hypergroupoid (H, ◦), which is as-
sociative, that is x ◦ (y ◦ z) = (x ◦ y) ◦ z for all
x, y, z ∈ H is called a semihypergroup.

(ii) A hypergroup is a semihypergroup such that
for all x ∈ H we have x ◦ H = H = H ◦ x (called
the reproduction axiom).

An element e in a hypergroup H = (H, ◦) is
called an identity of H if for all x ∈ H , on has

x ∈ (e ◦ x) ∩ (x ◦ e).

(iii) A polygroup (or multigroup) is a semihy-
pergroup H = (H, ◦) with e ∈ H such that for all
x, y ∈ H

(i) e ◦ x = x = x ◦ e;
(ii) there exists a unique element, x−1 ∈ H such

that

e ∈ (x ◦ x−1) ∩ (x−1 ◦ x), x ∈
∩

z∈x◦y
(z ◦ y−1),

y ∈
∩

z∈x◦y
(x−1 ◦ z).

In fact, a polygroup is a multialgebra of type
(2, 1, 0).

Definition 2. Let H = ⟨H, (βi, | i ∈ I)⟩ and H =
⟨H, (βi, | i ∈ I)⟩ be two similar multialgebras. A
map h from H into H is called a

(i) A homomorphism if for every i ∈ I and all
(a1, ..., ani) ∈ Hni we have that

h(βi((a1, ..., ani)) ⊆ βi(h(a1), ..., h(ani));
(ii) a good homomorphism if for every i ∈ I and

all (a1, ..., ani) ∈ Hni we have
h(βi((a1, ..., ani)) = βi(h(a1), ..., h(ani)).

For a map h : H −→ H set

kerh = {(a, a′) | a, a′ ∈ H, and h(a) = h(a′)}.
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It is well known and it can be easily seen that
kerh is an equivalence relation on H . If h is a good
homomorphism, then it can be easily seen that θ is
a strong congruence on H . Setting for all a ∈ H ,
ϕ(a) = a/θ.

Definition 3. A universal algebra is a pair < A, (fi :
i ∈ I) > where A is a nonempty set and (fi : i ∈ I)
is a family of finitary operations on A indexed by I . A
finitary operation is an n−ary operation for some n,
and n−ary operation on A is any function f from An

to A, n is the rank of f . In above we assume for every
i ∈ I ,ni is the rank of fi, and < ni, i ∈ I > is called
tape of A.

Definition 4. Let τ =< ni : i ∈ I > be a sequence
over N={1,2,...}. By a multialgebra of tape τ , we un-
derstand a pair < H, (fi : i ∈ I) >, where H is a
nonempty set and fi is an ni-ary hyper operation on
H ,i.e, a map fi : Hni → P ∗(H), for each i ∈ I .

Remark 5. Let < A, (fi : i ∈ I) > be a universal
multialgebra . A induces an algebra < P ∗(A), (fi :
i ∈ I) > with the operations:
fi(A0, ..., Ani) =

∪
{fi(a0, ..., ani−1)|ai ∈ Ai, ∀i ∈

{0, ..., ni − 1}
for A0, ..., Ani−1 ∈ P ∗(A). We denote this algebra
by P ∗(A).

Definition 6. Let A be a multialgebra. The funda-
mental relation α∗ on A is the smallest equivalence
relation on A such that A/α∗ is a universal algebra.

Lemma 7 [1]. If ρ and σ are binary relations on A
compatible with H , then τ = ρ ◦ σ is compatible with
H .

Lemma 8 [1]. (i) The relation ω = {(a, a) | a ∈ A}
is compatible with H and

(ii) the relation A2 is strongly compatible with
H .

Lemma 9 [1]. Let H be a multialgebra on H . Let
h > 0 and let {σj |j ∈ J} be a set of h-ary relations
on H strongly compatible with H . Then σ =

∩
j∈J

σj

is strongly compatible with H .

3 Isomorphism theorems of multial-
gebras

Theorem 10 [1]. Let H = ⟨H, (βi, | i ∈ I)⟩ and
H ′ = ⟨H ′, (β′i, | i ∈ I)⟩ be similar multialgebras, let
h be a good homomorphism from H onto H ′, and let
ϕ be the quotient map corresponding θ = kerh. Then

(i) θ is a congruence relation on H;
(ii) ϕ is a good homomorphism from H onto

H/θ;
(iii) the unique function f from H/θ onto H ′

satisfying ϕ◦f = h is a good isomorphism fromH/θ
onto H ′.

Proposition 11. Let H be a multialgebra and let θ be
the least element of Cons(H). Then (Cons(H),⊆)
is lattice isomorphic to the congruence lattice of the
algebra H/θ.

Definition 12. Suppose H is an multialgebra and
ϕ, θ ∈ Con(H) with θ ⊆ ϕ. Then let

ϕ/θ =
{
⟨a/θ, b/θ⟩ ∈ (H/θ)2 : ⟨a, b⟩ ∈ ϕ

}
.

Lemma 13. If ϕ, θ ∈ Con(H) and θ ⊆ ϕ, then ϕ/θ is
congruence on H/θ [6].

Theorem 14 (Second Isomorphism Theorem). If
ϕ, θ ∈ Con(H) and θ ⊆ ϕ, then the map

α : (H/θ)
/
(ϕ/θ) → H/ϕ

α
(
(a/θ)

/
(ϕ/θ)

)
= a/ϕ

is an isomorphism from
(
H/θ

)/
(ϕ/θ

)
to H/ϕ.

Proof. Let a, b ∈ A.
Then if (a/θ)

/
(ϕ/θ) = (b/θ)

/
(ϕ/θ) then it is equal

to
(
a/θ, b/θ

)
∈ (ϕ/θ

)
i.e (a, b) ∈ ϕ then a/ϕ = b/ϕ

i.e α is well-defined.
Now for β an n-ary function symbol and

a1, . . . , an ∈ H we have

αβ(H/θ)
/
(ϕ/θ)

(
(a1/θ)

/
(ϕ/θ), . . . , (an/θ)

/
(ϕ/θ)

)
= α

(
βH/θ

(
a1/θ, . . . , an/θ)

/
(ϕ/θ)

)
(by definition of factor multialgebra.)

then

= α
((
βH(a1, . . . , an)

/
θ
)/

(ϕ/θ)
)

=
∪
βH(a1, . . . , an)

/
ϕ = βH/ϕ

(
a1/ϕ, . . . , an/ϕ

)
= βH/ϕ

(
α(a1/θ)

/
(ϕ/θ)

)
, . . . , α

(
(an/θ)

/
(ϕ/θ)

)
.

□

Definition 15. Suppose H ′ is subset of H and θ is a
congruence on H . Let H ′θ = {a ∈ H : H ′ ∩ a/θ ̸=
∅}. LetH ′θ be the submultialgebra ofH generated by
H ′θ. Also, define θ|H′ be θ ∩H ′2, the restriction of θ
on H ′.
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Lemma 16. If H ′ is a submultialgebra of H and θ ∈
Con(H) (resp. cons(H)), then

(i) The universe of H ′θ is H ′θ.

(ii) θ|H′ is a congruence (resp. strong congruence)
on H ′.

Proof.

(i) Let β be any n−ary hyperoperation and
a1, . . . , an ∈ H ′θ. By definition, there ex-
ist b1, . . . , bn ∈ H ′ such that ⟨ai, bi⟩ ∈ θ,
i = 1, . . . , n. Because of congruency of θ on
H and H ′ is submultialgebra of H , we have
β(a1, . . . , an)θ̄β(b1, . . . , bn).

Let a ∈ β(a1, . . . , an).

So there exist b ∈ β(b1, . . . , bn) s.t a/θ = b/θ.
Then H ′ ∩ (a/θ) ̸= ∅ or a ∈ H ′θ. Therefore
β(a1, . . . , an) ⊆ H ′θ.

(ii) Proof is straightforward.

□

Theorem 17 (Third Isomorphism Theorem). If H ′ is
a submultialgebra of H and θ ∈ Con(H), then

H ′
/
θ|′H ∼= H ′θ

/
θ|H′θ .

Proof. We prove that the mapping α : H ′
/
θ|H′ →

H ′θ
/
θ|H′θ is defined by α

(
b/θ|H′

)
= b/θ|H′θ is Iso-

morphism. First we prove α is one-to-one:
Let b1

/
θ|H′θ = b2

/
θ|H′θ . Then ⟨b1, b2⟩ ∈

θ|H′θ = θ ∩ (H ′θ)2.
So ⟨b1, b2⟩ ∈ θ and ⟨b1, b2⟩ ∈ (H ′θ)2. Therefore,

b1/θ ∩ H ′ ̸= ∅ and b2/θ ∩ H ′ ̸= ∅. Consequently
there exist b′1, b

′
2 ∈ H ′, such that b1/θ = b′1/θ and

b2/θ = b′2/θ. Thus

⟨b′1, b′2⟩ ∈ θ

⟨b′1, b′2⟩ ∈ (H ′)2,

Consequently ⟨b′1, b′2⟩ ∈ θ∩H ′2 = θ|H′ , consequently
⟨b1, b2⟩ ∈ θ ∩H ′2 = θ|H′ . then b1

/
θ|H′ = b2

/
θ|H′ .

α is onto because, if b
/
θ|H′θ ∈ H ′θ/θ|H′θ , such that

b ∈ H ′θ \H ′ thenH ′∩b/θ ̸= ∅ i.e there exist b1 ∈ H ′

such that

α
(
b1
/
θ|H′

)
= b

/
θ|H′θ .

At last we prove α is a homomorphism.

αβ
(
b1
/
θ|H′ , . . . , bn

/
θ|H′

)
= α

(β(b1, . . . , bn)
θ|H′

)
= β(b1, . . . , bn)/θ|H′θ

= β(
b1
θ|H′θ

, . . . ,
bn
θ|H′θ

)

= β
(
α(

b1
θ|H′

), . . . , α(
bn
θ|H′

)
)

= β
(
α
( b1
θ|H′

)
, . . . , α

( bn
θ|H′

))
.

□
Note that if L is a lattice and a, b ∈ L with a ≤ b, then
the interval [a, b] is subuniverse interval of a lattice
L, where a ≤ b, by [a, b], we mean the corresponding
sublattice of L.

Theorem 18 (Correspondence Theorem). Let H
be an multialgebra and let θ ∈ con(H) (res.
cons(H)). Then the mapping ψ on [θ,∇H ] defined
by ψ(ϕ) = ϕ/θ is a lattice isomorphism from [θ,∇H ]
to con(H/θ) (resp. cons(H/θ)), where [θ,∇H ] is a
sublattice of con(H) (resp cons(H))

Proof. ψ is one to one. Because: for ϕ, ϕ′ ∈ [θ,∇H ]
with ϕ ̸= ϕ′. Then without loss of generality, we can
assume that there are a, b ∈ H with (a, b) ∈ ϕ − ϕ′.
Then (a/θ, b/θ) ∈ (ϕ/θ) \ (ϕ′/θ) so ψ(ϕ) ̸= ψ(ϕ′).

To show that ψ is onto, suppose ρ ∈ con(H/θ)
(resp. cons(H/θ)) and define φ to be ker(πρπθ),
where πρ, πθ are canonical projections. Then for
a, b ∈ H , ⟨a/θ, b/θ⟩ ∈ φ/θ
if and only if ⟨a, b⟩ ∈ φ = ker(πρπθ) if and only
if πρπθ(a) = πρπθ(b) if and only if and only if
(a/θ)/ρ = (b/a)/ρ) if and only if ⟨a/θ, b/θ⟩ ∈ ρ.
So φ/θ = ρ. let f is n-ary hyperoperation on H and
a1, . . . , an ∈ H .

we have

ψfH(a1, . . . , an) = fH(a1, . . . , an)/θ

= fH/θ(a1/θ, . . . , an/θ)

= fH/θ(ψa1, . . . , ψan).

so ψ is strong homomorphism. □

4 Directly indecomposible multialge-
bras

Definition 19. Let H1 and H2 be two mulialgebras of
the same type F .
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Define the (direct) product of multialgebraH1×H2 to
be the multialgebra whose universe is the setH1×H2

and for f ∈ Fn and ai ∈ H1 and a′i ∈ H2; 1 ≤ i ≤ n:

fH1×H2
(
(a1, b1), . . . , (an, bn)

)
=

(
fH1(a1, . . . , an), f

H2(b1, . . . , bn)
)

{(a, b)|a ∈ fH1(a1, . . . , an), b ∈ fH2(b1, . . . , bn)}.

Note that in general neither H1 nor H2 is embedable
inH1×H2, although in special case like hypergroups,
it is possible because there is always a trivial subhy-
peralgebra.
However, bothH1 andH2 are homomorphic image of
H1 ×H2.

Definition 20. The mapping πi :H1×H2 →Hi, i ∈
{1, 2};
defined by

πi
(
(a1, a2)

)
= ai,

is called the projection map on the i′th coordinate of
H1 ×H2.

Theorem 21. For i = 1, 2 the mapping πi : H1 ×
H2 → Hi is a surjective strong homomorphism from
H = H1 ×H2 to Hi. Furthermore, in con(H1 ×H2)
we have

kerπ1 ∩ kerπ2 = ∆,

kerπ1 and kerπ2 premute,

and

kerπ1 ∨ kerπ2 = ∇.

Proof. It is easy to check that πi is a strong surjective
homomorphism (epimorphism). Now(

(a1, a2), (b1, b2)
)
∈ kerπi

iff πi
(
(a1, a2)

)
= πi

(
b1, b2)

)
iff ai = bi

Thus
kerπ1 ∩ kerπ2 = ∆.

Now, consider (a1, b1), (b1, b2) are any two element of
H1 ×H2, then

(a1, a2) ∈ kerπ1(a1, b2) kerπ2(b1, b2),

and

(a1, a2) ∈ kerπ2(b1, a2) kerπ1(b1, b2),

hence

∇ = kerπ1 ◦ kerπ2.

But then kerπ1 and kerπ2 permute, and their join is
∇. □

Definition 22. A congruence ρ on H is a factor con-
gruence if there is a congruence σ on H such that

ρ ∧ σ = ∆,

and

ρ ∨ σ = ∇.

and ρ permute with σ.
The pair ρ and σ is called a pair of factor congru-

ence on H .

Theorem 23. If ρ and σ is a pair of factor congruence
on H , then

H ≃ H/ρ×H/σ

under the map

α(a) = (a/ρ, a/σ).

Proof. It is straight forward to see α is injective.
For every (a/ρ, b/σ) ∈ H1/ρ × H2/σ, ⟨a, b⟩ ∈ H .
So, there exist c ∈ H1 such that aρcσb. Then

α(c) = ⟨c/ρ, c/σ⟩ ∈ ⟨a/ρ, b/σ⟩.

Thus α is onto. Finally for β ∈ Fn and a1, . . . , an ∈
H ,

αβH(a1, . . . , an)

=
(
βH(a1, . . . , an)/ρ, β

H(a1, . . . , an)/σ
)

= βH/ρ(a1/ρ, . . . , an/ρ), β
H/σ(a1/σ, . . . , an/σ)

= βH/ρ×H/σ
(
(a1/ρ, a1/σ), . . . , (an/ρ, an/σ)

)
= βH/ρ×H/σ

(
αa1, . . . , αan

)
;

hence α is indeed an isomorphism. □

Definition 24. A multialgebra H is (directly) inde-
composable if H is not isomorphic to a direct product
of two nontrivial multialgebras.

Example 25. Any finite multialgebra H with |H| a
prime number must be directly indecomposable.
By theorem 4.3 and 4.5 we have:

Corollary 26. H is directly indecomposable if and
only if the only factor congruences on H are ∆ and
∇.

Proof. Suppose ∆ and ∇ be the only factor congru-
ences on H . Then

H/∆ = {a/∆|a ∈ H} = {a}
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and

H/∇ = {a/∇|a ∈ H} = H.

So |a/∆| = 1 i.e H/∆ is trivial. So by 4.5

H ≃ H/∆×H/∇,

i.e H is directly indecomposible.
Now suppose H be directly indecomposible. So H is
not isomorphic to a direct product of two nontrivial
multialgebras. If H have any factor congruence ex-
cept ∆,∇, then by 4.5

H ∼= H/ρ×H/σ

that is conflict.
We can easily generalized the binary productH1×H2

as follows. □

Definition 27. Let (Hi)i∈I be a family of multialge-
bras of type F . The (direct) product H =

∏
Hi is

a multialgebra with universe
∏
i∈I

Hi and such that for

β ∈ Fn and a1, . . . , an ∈
∏

i∈I Hi,

βH(a1, . . . , an)(i) = βHi
(
a1(i), . . . , an(i)

)
for i ∈ I , i.e βH is defined coordinate-wise.
The empty product

∏
ϕ is the trivial multialgebra with

universe {ϕ}. As before we have projection maps

πj :
∏
i∈I

Hi → Hj

for j ∈ I defined by

πj(a) = a(j).

which give surjective strong homomorphisms

πj :
∏
i∈I

Hi → Hj .

If i = {1, 2, . . . , n}, we also writeH1×· · ·×Hn. If I
is arbitrary but Hi = H for all i ∈ I , then we usually
write HI for the direct product, and call it a (direct)
power of H . Hϕ is a trivial multialgebra.

Theorem 28. If H1, H2 and H3 are of type F , then

(a) H1 × H2 ≃ H2 × H1 under α
(
(a1, a2)

)
=

(a2, a1).

(b) H1 × (H2 ×H3) ≃ H1 ×H2 ×H3 under

α
(
(a1, (a2, a3)

)
= (a1, a2, a3).

Proof. (a) For any β ∈ F and a1 ∈ H1, a2 ∈ H2

define

α : H1 ×H2 → H2 ×H1

α(a1, b1) = (b1, a1)

α is well-defined and one-to-one because:

α(a1, b1) = α(a′1, b
′
1)

iff (b1, a1) = (b′1, a
′
1)

So b1 = b′1, a1 = a′1. Thus (a1, b1) = (a′1, a
′
2).

Now, we prove α is homomorphism. For any a1, b1 ∈
H1 and a2, b2 ∈ H2,

α
(
βH1×H2(a1, a2), (b1, b2)

)
= α

(
βH1(a1, b1), β

H2(a2, b2)
)

= βH2(a2, b2), β
H1(a1, b1)

= βH2×H1
(
(a2, a1), (b2, b1)

)
= βH2×H1

(
α(a1, a2), α(b1, b2)

)
.

(b) For H1,H2,H3 of type F , defined

α : H1 × (H2 ×H3) → H1 ×H2 ×H3

α
(
a1, (a2, a3)

)
= (a1, a2, a3)

α is homomorphism because:

βH1×H2×H3
(
α(a1, (a2, a3), α(a

′
1, (a

′
2, a

′
3))

)
= βH1×H2×H3

(
(a1, a2, a3), (a

′
1, a

′
2, a

′
3)
)

=
(
β(a1, a

′
1), β(a2, a

′
2), β(a3, a

′
3)
)

= α
(
β(a1, a

′
1), (β(a2, a

′
2), β(a3, a

′
3))

)
= α

(
β(a1, a

′
1), β

(
(a2, a3), (a

′
2, a

′
3))

)
= α

(
β((a1, (a2, a3)), (a

′
1, (a

′
2, a

′
3))

)
.

□

Definition 29. (i) If αi : H → Hi, i ∈ I are maps,
then the natural map α : H →

∏
i∈I

Hi is defined by

(αa)(i) = αia.

(ii) If we are given maps αi : Hi → H ′
i, i ∈ I , then

the natural map

α :
∏
i∈I

Hi →
∏
i∈I

H ′
i

is defined by

(αa)(i) = αi(a(i)).
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Theorem 30. (i) If αi : H → Hi, i ∈ I is a family
of homomorphism, then the natural map α is a homo-
morphism from H to H∗ =

∏
i∈I

Hi.

(ii) If αi : Hi → Hi, i ∈ I , is an indexed family of
(resp. strong) homomorphism, then the natural map α
is a (resp. strong) homomorphism from H∗ =

∏
i∈I

Hi

to H ′∗ =
∏
i∈I

H ′
i.

Proof. Suppose αi : H → Hi is a homomorphism
for i ∈ I . Then for a1, . . . , an ∈ H and β ∈ Fn we
have (

αβH(a1, . . . , an)
)
(i)

= αiβ
H(a1, . . . , an)

= βHi(αia1, . . . , αian)

= βHi
(
(αa1)(i), . . . , (αan)(i)

)
= β

∏
Hi
(
αa1, . . . , αan

)
(i);

Hence,

αβH(a1, . . . , an) = β
∏

Hi(αa1, . . . , αan),

so α is a homomorphism in (a).
Now (b) is consequence of (a) because the maps∏

Hi
π−→ Hi

αi−→ H ′
i

βi−→
∏

H ′
i

indeed that βi ◦ (αi ◦ πi) is homomorphism. □
Definition 31. If a1, a2 ∈ H and α : H → H ′ is a
map we say α separate a1 and a2 if

αa1 ̸= αa2.

The maps αi : H → Hi, i ∈ I , separate points if for
each a1, a2 ∈ H with a1 ̸= a2 there is an αi such that

αi(a1) ̸= αi(a2).

Lemma 32. For an indexed family of maps αi : H →
Hi, the following are equivalent:

(i) The map αi sperate points.

(ii) α is injective.

(iii)
∩
i∈I

kerαi = ∆.

Proof. Routine. □
Theorem 33. Let αi : H → Hi, i ∈ I , be a family
of (resp. strong) homomorphisms, i ∈ I , then natural
(resp.strong) homomorphism α : H →

∏
i∈I

Hi is an

(resp. strong) embedding if and only if
∩
i∈I

kerαi = ∆

if and only if the maps αi separate points.

Proof. Immediate from 4.15. □

5 Subdirect products of multialge-
bras

Definition 34. A multialgebra H is a subdirect prod-
uct of an indexed family (Hi)i∈I of multialgebras if

(i) H ≤
∏
i∈I

Hi, and

(ii) πi(H) = Hi for each i ∈ I .

An (resp.strong) embedding α : H →
∏
i∈I

Hi is

(resp.strong) subdirect if α(H) is a (resp.strong) sub-
direct product of the Hi.
Note that if I = ϕ, the H is a subdirect of ϕ if and
only if H =

∏
ϕ, is trivial multialgebra.

Lemma 35 [16]. If θi ∈ con(H) for i ∈ I and∩
i∈I

θi = ∆, then the natural homomorphism

φ : H →
∏
i∈I

H/θi

defined by

φ(a)(i) = a/θi

is a subdirect (strong) embedding.

Proof. Proof is similar to the proof for algebras and
omitted. □

Definition 36. A multialgebra H is subdirectly irre-
ducible if for every subdirect embedding

α : H →
∏
i∈I

Hi

there is an i ∈ I such that

πi ◦ α : H → Hi

is an isomorphism.
The following result give a characterization of subdi-
rectly irreducible multialgebras is most useful in prac-
tice.

Theorem 37. A multialgebra H is subdirectly irre-
ducible if and only if H is trivial or there is a mini-
mum congruence in conH − {∆}.

Proof. (=⇒) If H is not trivial and conH −{∆} has
no minimum element then ∩(con(H − {∆}) = ∆.
Let I = conH − {∆}. Then the natural map
ν : H →

∏
θ∈I

H/θ is a subdirect embedding by

Lemma 5.2, and as the natural map H → H/θ is not
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injective for θ ∈ I , it follows that H is not subdirectly
irreducible.
(⇐=) If H is trivial and ν : H →

∏
i∈I

Hi is a

subdirect embedding then each Hi is trivial; hence
each πi ◦ ν is an isomorphism. So suppose H is not
trivial, and let θ = ∩

(
conH − {∆}

)
̸= ∆. Choose

⟨a, b⟩ ∈ θ, a ̸= b. If ν : H →
∏
i∈I

Hi is a subdirect

embedding then for some i, (νa)(i) ̸= (νb)(i), hence
(πi ◦ ν)(a) ̸= (πi ◦ ν)(b).
Thus, ⟨a, b⟩ /∈ ker(πi ◦ ν) so θ ⊈ ker(πi ◦ ν). But this
implies ker(πi ◦ ν) = ∆. So πi ◦ ν : H → Hi is an
isomorphism. □

In the latter case the minimum element in
∩(con(H) − {∆}), a principal congruence and the
congruence lattice of H looks like the following dia-
gram

Theorem 38 (Birkhoff). Every multialbera H is iso-
morphism to a subdirect product of subdirectly irre-
ducible.

Proof. By previous theorem we know trivial multi-
algebras are subdirectly irreducible. Then we only
need to consider the case of nontrivial H , that proof
is easily by Zorn’s Lemma. □

Some important question about multialgebras:

1. Let A be a multialgebra and A∗ be its funda-
mental algebra. Under what conditions the cor-
responding fundamental algebra and A are sat-
isfying the same identities?.

2. Let V be a variety of multialgebras, what
identities hold in the variety generated by
({V (A∗)|A ∈ V }?.

It is convenient to introduce the following notation:
If V is variety of multialgebras, by V ∗ we denote the
variety generated by {V ∗(A)|A ∈ V }, where V ∗ is
denoted the corresponding elements of variety V in
V ∗.(See theorem 2 in Ivica Bosnjak et. all, 2003)
There is another subject that has attracted attention
of algebraists; If K is a class of multialgebras, and
A and B are isomorphic multialgebras from K, then
A∗ ∼= B∗. It is natural to ask whether the converse it
is true, i.e. is it true that for any A, B fromK it holds:

A∗ ∼= B∗ ⇒ A ∼= B?

Clearly the implication is not true always (for example
let A and B be two total hypergroups)
(x ◦ y = A ∀x, y ∈ A). Clearly, A∗ ∼= B∗ = (e).
Now if we choose sets A and B such that |A| ̸= |B|,
then A ≇ B
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