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Spaces

Abstract: We introduce topological hypervector spaces on a topological field, in the sense of Tallini, and study
some basic properties of this hyperspaces. In this regards we study the relationship between the topology on
a hypervector spaces and its complete part. In particular we show that if every open subset of a topological
hypervector space is a complete part then its fundamental vector space induced is a topological vector space.
Finally, we study the quotient space of topological hypervector spaces and the derived topological space of a
topological hypervector space with respect its fundamental relegation.
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1 Introduction
The concept of hypergroups as a generalization
of groups was firstly introduced in 1934 at the
8thCongress of Scandinavian Mathematicians by F.
Marty [25]. In the following, it has been studied
and extended by many researchers. Indeed the no-
tion of hyperstructures is a generalization of classi-
cal algebraic structures. M.S. Tallini introduced the
notion of hypervector spaces over a field, and stud-
ied the basic properties of this hyperspaces( for more
details see [31, 32]. Also, some important proper-
ties of (fuzzy) hypervector spaces were studied in
[3, 4, 5, 6, 7, 8, 9, 15].

On of the main topic in theory of hyperstruc-
tures is the study of regular and strongly regular re-
lations. In particular, the fundamental relations on a
hyperstructure, as the smallest strongly relation on the
hyperstructure such that its derived quotient spaces
with respect this relation become an algebraic struc-
ture, for example for special hyperstructures such as
semihypergroups, hypergroups, hyperrings, hypervec-
tor spaces and etc., their corresponding derived al-
gebraic structures with the fundamental relations is
semigroup, group, ring, module, vectors space and
etc. The fundamental relations play important role in
the study algebraic hyperstructures. In fact, these re-
lation construct a connection between the categories
of hyperstructures and categories of algebraic struc-
tures(for more details see [2]). The fundamental re-
lation β∗ on hypergroups introduced by Koskas[24],

and was studied mainly by Corsini [11] and Vougiouk-
lis [33].

Later on, Freni [16] introduced the γ∗-relation on
a hypergroup, as a generalization of the β∗-relation.
Then B. Davvaz et al. [1], R. Ameri et al. [9] and
M. Hamidi et al. [18] introduced the ν∗-relation,
ξ∗-relation and τ∗-relation, respectively. In [33] T.
Vougiouklis introduced the fundamental relation ε∗

of Hv-vector space (a general class of hypervector
spaces) and in [4], R. Ameri et al. defined the fun-
damental relation ε∗ for a given hypervector space V ,
over a classical field K (in the sense of Tallini) as the
smallest equivalence relation on V such that V/ε∗ is a
classical vector space over K.

The notion of topological(transposition) hyper-
groups introduced and studied by R. Ameri([3]), in
this paper notions of a (pseudo, strong pseudo) topo-
logical (transposition) hypergroups and introduced
and the relationships between pseudo topological
polygroups and topological polygroups investigated.
Also, Heidari et al.( [19]) studied the concept of topo-
logical hypergroups as a generalization of topological
groups. Since then, many researchers have worked
on topological hyperstructures ( for more details see
[10],[12],[14],[17],[19],[20],[21], [22],[26],[27],[28],
[29],[30]).

One of classes of topological hyperstructures is
hypervector spaces. The notion of a topological hy-
pervector space introduced in [34]. In this paper, we
follow [34] and study more properties of topological
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hyperstructures. In this regards, we consider various
kinds of topologies on power set of a topological hy-
pervector space and use them to introduce the various
kinds of topological hypervector spaces. In particu-
lar, we consider the upper topology over P ∗(V ), the
family of all nonempty subsets of V , and prove that
if (V,+, ◦,K, T ) is a topological hypervector space
such that every its open subset is a complete part, then
the quotient space V/ε∗, the set of all equivalence
classes by ε∗, is a topological vector space. Finally,
we consider a topological vector space (V,+, ·,K, T )
and its subhyperspace W , to form the topological hy-
pervector space (V ,+, ◦,K, T ) and prove that two
hyperspaces V /ε∗ and V/W are homeomorphic.

2 Preliminaries
In this section, we review some definitions and results
which we need to development our paper.

A topological group is a group (G, .) which is
also a topological space such that the multiplication
map (g, h) → gh from G × G to G, and the inverse
map g → g−1 from G to G, are both continuous.
Similarly, a topological ring or a topological field
are defined. A topological vector space is a vector
space X over a topological field K (most often
the real or complex numbers with their standard
topologies) that is endowed with a topology such
that vector addition + : X × X → X and scalar
multiplication. : K × X → X are both continuous
functions with respect to product topologies on
X × X , and on K × X and X , respectively, such
that the mapping x 7→ −x = (−1)x, is continuous
and the topology on X is compatible with its additive
group structure.

Let G be a nonempty set and P ∗(G) be the fam-
ily of all nonempty subsets of G. A mapping · :
G × G −→ P ∗(G), where is called a hyperopera-
tions, or a hypercomposition on G, that is for all x,
y of G, ·(x, y), denoted by x ◦ y, or simply by xy is
a nonempty subset of G, and it called hyperproduct
of x and y. An algebraic system (G, ·1, ·2, . . . , ·n) is
called a hyperstructure, the pair (G, ·) endowed with
only hyperoperation is called a hypergroupoid. For
every two nonempty subsets A and B of G by A · B
we means

⋃
a∈A,b∈B a · b.

Definition 1 ([31]) Let K be a field and (V,+) be
an abelian group. A hypervector space over K is a
quadruple (V,+, ◦,K), where ◦ is a mapping ◦ : K×
V → P ∗(V ), such that for all a, b ∈ K and x, y ∈ V
the following conditions hold:

(H1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y;

(H2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x;

(H3) a ◦ (b ◦ x) = (ab) ◦ x;

(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x);

(H5) x ∈ 1 ◦ x,

where for all A,B ∈ P ∗(V ), A + B = {a + b | a ∈
A, b ∈ B}.

Remark 2 If in (H1) the equality holds, then the hy-
pervector space is called strongly right distributive. If
in (H2) the equality holds, the hypervector space is
called strongly left distributive. A hypervector space
is called strongly distributive hypervector space, if it
is both strongly left and strongly right distributive.

Clearly, every classical vector space over a field
K is also an strongly distributive hypervector space
over K, with the operations on V and K, which is
called a trivial hypervector space. A nonempty subset
W of V is called a subhyperspace, if W is itself a hy-
pervector space with the external hyperoperation on
V , i.e. for all a ∈ K and x, y ∈ W,x − y ∈ Wand
a ◦ x ⊆ W . Let Ω = 0 × 0V , where 0V is the zero
of (V,+). If V is either strongly right distributive,
or left distributive, then Ω is a subgroup of (V,+).
An strongly right distributive hypervector space is
strongly left distributive.

Lemma 3 Let X and Y be topological spaces and
let f : X → Y . Then the following statements are
equivalent:

(1) f is continuous;

(2) for all open subset U of Y, f−1(U) is open in X;

(3) for all x ∈ X and all open subset V of X con-
taining f(x), there exists an open subset U of X
containing x such that f(U) ⊆ V .

Lemma 4 [3] Let (X, T ) be a topological space,
then the family B consisting of all

SU = {W ∈ P ∗(X) : W ⊆ U, U ∈ T },

is a base for a topology on P ∗(X). This topology is
denoted by T ∗.

Lemma 5 [3, 13] Let (X, ◦) be a hypergroupoid and
T be a topology on X . Then the following assertions
are equivalent:

(1) for any U ∈ T , the set {(x, y) ∈ X×X : x◦y ⊆
U} is open in X ×X;

PROOF 
DOI: 10.37394/232020.2023.3.7 Reza Ameri, M. Hamidi, A. Samadifam

E-ISSN: 2732-9941 51 Volume 3, 2023



(2) for every x, y ∈ X and U ∈ T such that x ◦
y ⊆ U , there exist Ux, Uy ∈ T containing x, y
respectively, such that Ux ◦ Uy ⊆ U ;

(3) for every x, y ∈ X and U ∈ T such that x ◦
y ⊆ U , there exist Ux, Uy ∈ T containing x, y
respectively,such that a ◦ b ⊆ U for any a ∈ Ux

and b ∈ Uy.

Let (V,+, ◦,K) be hypervector space over a topolog-
ical field K and T be a topology on V . In the follow-
ing we use the topology T ∗ on P ∗(V ) and the product
topology on V × V .

3 Topological Hypervector Spaces
In this section we introduce the concept of topological
hypervector spaces and study some their properties.

Definition 6 Let (V,+, ◦,K) be a hypervector space
over a topological filedK and (V, T ) be a topological
space. Then (V,+, ◦,K, T ) is said to be a topological
hypervector space (thvs)
if the operations + : V × V → V, (x, y) 7→ x + y,
i : V → V, x 7→ −x and the hyperoperation
◦ : K × V → P ∗(V ), (a, x) 7→ a ◦ x are continuous.

Example 7 Every topological vector space
(V,+, ·,K, T ) with hyperoperation a ◦ x = {a · x} is
a topological hypervector space over K.

Example 8 Every hypervector space (V,+, ◦,K)
with trivial topology T is a topological hypervector
space. Since, if we have T = {∅, V } then
T ∗ = {∅, SV } = {∅, P ∗(V )}.

Example 9 Let K = V = Z2 = {0, 1}. Then
(V,+, ◦,K) is a hypervector space, where a ◦ x =
{0, 1} for any a ∈ K and x ∈ V . Let T =
{∅, {0}, {1}, V } be a topology on V = K. We have
T ∗ = {∅, {{0}}, {{1}}, {{0}, {1}}, P ∗(V )}. It is
clear that V is a topological hypervector space.

Example 10 By considering the external hyperoper-
ation ◦ : R×R2 → P ∗(R2), a◦(x, y) = a·x×R then
(R2,+, ◦, R) is a strongly distributive hypervector
space. The family B = {(x, y) : a < x < b, y ∈ R}
is a base for a topology on R. Then (R2,+, ◦, R, T )
is a topological hypervector space.

Example 11 Let:

◦ : R×R→ P ∗(R), a ◦ x = {a · x,−a · x}

be a external hyperoperation on R.Then (R,+, ◦, R)
is a hypervector space, but it is neither the right dis-
tributive nor the left distributive. With standard topol-
ogy on R, (R,+, ◦, R, T ) is a topological hypervec-
tor space.

Example 12 Let:

◦ : R×R→ P ∗(R), a ◦ x = {a · x,−a · x, 0}

be a external hyperoperation on R. Then (R,+, ◦, R)
is a hypervector space, but it is neither the right dis-
tributive nor the left distributive. With standard topol-
ogy on V = R and discrete topology on K = R, V is
a topological hypervector space.

Topological hypervector spaces are a generalization of
topological vector spaces but some characteristics of
topological vector spaces are not valid in topological
hypervector spaces. If V is a thvs, (V,+) is a topo-
logical group.

Lemma 13 Let V be a thvs. Then

(1) for fixed x ∈ V , the map y 7→ x+ y is a homeo-
morphism of V onto V ;

(2) if U is open and x ∈ V , then x+U is open; if U
is open and A is any subset of V , then A + U is
open;

(3) for fixed a ∈ K, the map x 7→ a◦x is continuous,
but not necessarily open. In Example 11, U =
(2, 3) is open and 2 ◦ (2, 3) = (−6,−4) ∪ (4, 6)
is also open, but in the Example 12, U = (2, 3)
is open and 2 ◦ (2, 3) = (−6,−4) ∪ {0} ∪ (4, 6)
is not open in R.

The complete parts were introduced for the first time
by Koskas [24]. Then, this concept was studied by
many authors. Let (V,+, ◦,K) be a hypervector
space over K and A be a nonempty subset of V. We
say that A is a complete part of V, if for nonzero nat-
ural number n, for all a1, . . . , an of K, and for all
x1, . . . , xn of V , the following implication holds:

A ∩
n∑

i=1

ai ◦ xi 6= ∅ =⇒
n∑

i=1

ai ◦ xi ⊆ A.

Theorem 14 Let V be a thvs,A ⊆ V and U be an
open subset of V , such that U is a complete part of V .
Then A ⊆ a−1 ◦ U if and only if a ◦ A ⊆ U for all
a ∈ K.

Suppose thatA ⊆ a−1◦U and x ∈ A. So x ∈ a−1◦U ,
and there exists u ∈ U , such that x ∈ a−1 ◦ u thus,
a◦x ⊆ a◦(a−1◦u) = 1◦u. We have u ∈ 1◦u, u ∈ U ,
which implies that 1◦u ⊆ U since U is complete part.
Therefore a ◦ x ⊆ U .

Conversely, suppose that a ◦ A ⊆ U and a ∈ K.
Then, we have A ⊆ a−1 ◦ (a ◦A) ⊆ a−1 ◦ U .

Theorem 15 Let U be an open subset of a thvs, such
that U is a complete part. Then
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(1) a ◦ U is an open subset of V for any a ∈ K, a 6=
0;

(2) for any subset A of K and for 0 6= a ∈ A, A ◦U
is open.

(1) The map Pa : V → P ∗(V ), PA : x 7→ a ◦ x is
continuous. For a 6= 0 we have

P−1a−1(SU ) = {x ∈ V : a−1 ◦ x ⊆ U} = a ◦ U,

thus a◦U is open. (2) Since the union of open subsets
is open, therefore A ◦ U =

⋃
a∈A a ◦ U is open.

4 Topological Fundamental Vector
Spaces

In this section, the concept of a topological fundamen-
tal vector space derived of a topological hypervector
space is introduced. Let (V,+, ◦,K) be a hypervec-
tor space over K. The fundamental relation ε∗ of V
was introduced by T. Vougiouklis in [33] as the small-
est equivalence relation on Hv−vector space, a gen-
eral class of hypervector spaces, such that the quo-
tient V/ε∗ is a vector space over K. In the following,
we introduce the fundamental relation on hypervector
spaces in the sense of Tallini, and study the relation-
ship between V and V/ε∗ in the way of [4].

let U be the set of all finite linear combinations of
elements of V with coefficient in K, that follows

U =

{
n∑

i=1

ai ◦ xi : ai ∈ K,xi ∈ V, n ∈ N
}
.

Now, consider the ε-relation over V by

xεy ⇐⇒ ∃u ∈ U : {x, y} ⊆ u, ∀x, y ∈ V.

Let ε∗ be the transitive closure of ε. We define addi-
tion operation and scalar multiplication on V/ε∗ by

{⊕ : V/ε∗×V/ε∗ → V/ε∗ε∗(x)⊕ε∗(y) = {ε∗(t) : t ∈ ε∗(x)+ε∗(y) },

and

{� : K×V/ε∗ → V/ε∗a�ε∗(x) = {ε∗(z) : z ∈ a◦ε∗(x)}.

Theorem 16 (see [33]) Let (V,+, ◦,K) be a hyper-
vector space over K. Then,

(1) ε∗(a◦x) = ε∗(y) for all y ∈ a◦x,∀a ∈ K,∀x ∈
V , where ε∗(a ◦ x) =

⋃
b∈a◦x ε

∗(b).

(2) ε∗(x)⊕ ε∗(y) = ε∗(x+ y).

(3) ε∗(0) is the identity element of (V/ε∗,⊕).

(4) (V/ε∗,⊕,�,K) is a vector space over K.

The vector space (V/ε∗,⊕,�,K) is called funda-
mental vector space of V.

Theorem 17 Let (V,+, ◦,K) be a hypervector space
over K and (V/ε∗,⊕,�,K) be the fundamental vec-
tor space of V . Then the canonical map π : V →
V/ε∗, such that π(x) = ε∗(x), is an epimorphism.

Let x, y ∈ V and a ∈ K, we see that π(x + y) =
π(x)⊕π(y). Now we show that π(a◦x) = a�π(x).
We have π(a◦x) = ε∗(a◦x) = ε∗(y) for all y ∈ a◦x.
On the other hand, we have y ∈ a ◦ x, x ∈ ε∗(x) that
implies y ∈ a ◦ ε∗(x) thus, a � π(x) = a � ε∗(x) =
{ε∗(z) : z ∈ a ◦ ε∗(x)} = ε∗(y).

Let X be a topological space and∼ be any equiv-
alence relation on X . The quotient set of all equiva-
lence classes is given by the X/ ∼= {[x] : x ∈ X}.
We have the canonical map or quotient map π : X →
X/ ∼, x 7→ [x], and we define a topology on X/ ∼
by setting that: U ⊆ X/ ∼ is open if and only if
π−1(U) is open in X . Then it is easy to verify that:

(1) the canonical map π is continuous.

(2) the quotient topology onX/ ∼ is the finest topol-
ogy on X/ ∼ s.t. π is continuous.

(3) the canonical map π is not necessarily open or
closed.

Theorem 18 Let (V,+, ◦,K) be a topological hy-
pervector space over K, such that every open sub-
set of V is a complete part. Then the canonical map
π : V → V/ε∗ is open.

Let W be an open subset of V and x ∈ π−1(π(W )),
we have π(x) ∈ π(W ) thus there exists v ∈ W such
that π(x) = π(v) and x ∈ ε∗(v).Hence, there ex-
ist a1, . . . , an ∈ K and x1, . . . , xn ∈ V , such that
{x, v} ⊆

∑n
i=1 ai ◦ xi. Since W is open so there ex-

ists an open subset U of V , such that v ∈ U ⊆ W .
Hence we have v ∈ U ∩

∑n
i=1 ai ◦ xi and U is com-

plete part, so x ∈
∑n

i=1 ai ◦ xi ⊆ U ⊆ W . Thus,
x ∈ U ⊆ π−1(π(W )). Therefore, π(W ) is open in
V/ε∗.

Theorem 19 Let (V,+, ◦,K, T ) be a topological hy-
pervector space over K such that every open subset
of V is a complete part . Then, (V/ε∗,⊕,�, T ∗) is
a topological vector space over K, where T ∗ is the
quotient topology on V/ε∗.

By Theorem16, (V/ε∗,⊕,�) is a vector space. We
show that the mappings

⊕ : (π(x), π(y)(7→ π(x)⊕ π(y)
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and
� : (a, π(x)) 7→ a� π(x)

are continuous, where ⊕ = ⊕ε∗ and � = �ε∗ .

(1) Let U be an open subset of V/ε∗ and x, y ∈ U ,
such that π(x) ⊕ π(y) ∈ U . So, we have
π(x + y) ∈ U or x + y ∈ π−1(U). Since
π−1(U) is open in V and V is thvs, it follows
that there exist open subsets U1, U2 of V such
that x ∈ U1, y ∈ U2 and U1 + U2 ⊆ π−1(U) or
π(U+U2) ⊆ U , thus π(U1)⊕ π(U2) ⊆ U .

(2) Let U be an open subset in V/ε∗ and a ∈ K,x ∈
V such that a � π(x) ∈ U . There exists z ∈
a ◦ π(x) and we have π(z) ∈ U so z ∈ π−1(U).
Since a◦x ⊆ a◦π(x), so a◦x ⊆ π−1(U). Thus
there exists open subsets U1 and U2 containing
a and x from K and V , respectively such that
U1 ◦ U2 ⊆ π−1(U) hence U1 � π(U2) ⊆ U .
Since we have π(U1 ◦U2) = π(

⋃
a∈U1

a◦U2) =⋃
a∈U1

π(a ◦ U2)
=

⋃
a∈U1

(a� π(U2)) = U1 � π(U2).

A topological vector space (tvs) is a vector space
V over a topological fieldK equipped with a topology
such that the maps (x, y) 7→ x+ y and (a, x) 7→ a · x
are continuous from X ×X → X and K ×X → X ,
respectively.

Let X,Y be two vector space over K. A mapping
f : X → Y is called homomorphism if for any x, y ∈
X and for any λ ∈ K,

f(x+ y) = f(x) + f(y), f(λx) = λf(x).

A bijective homomorphism between two vector
spaces X and Y over K is called algebraic isomor-
phism and we say that X and Y are algebraically iso-
morphic X ∼= Y. Let X and Y be two tvs on K. A
topological isomorphism (homeomorphism) from X
to Y is a algebraic isomorphism which is also contin-
uous and open.

Let V be a tvs and W ⊆ V be a linear subspace
of V . The quotient space V/W consists of cosets x+
W = [x] and the quotient map π : V → V/W is
defined by π(x) = x+W .

We construct a topological hypervector space
such as V using a classical topological vector space
V and its linear subspace W and prove that V /ε∗ and
V/W are homeomorphic.

Theorem 20 For a linear subspace W of a tvs V ,
the quotient map π : V → V/W is a continuous and
open map, when V/W is equipped with the quotient
topology.

The mapping π is continuous by the definition of the
quotient topology. Let U be open in V . Then we have

π−1(π(U)) = U +W =
⋃

v∈W
(U + v),

since U + v is open for any v ∈ W , hence
π−1(π(U)) is open in V as a union of open sets.
Therefore, π(U) is open in V/W .

Theorem 21 [23] Let W be a linear subspace of a
tvs V . Then the quotient space V/W equipped with
the quotient topology is a tvs.

Let (V,+, ·,K) be a classical vector space and
W be a linear subspace of V and let V = V. Then
(V ,+, ◦,K) is a strongly distributive hypervector
space where

◦ : K × V → P ∗(V ), a ◦ x = a · x+W,

V is said to be the associated hypervector space con-
cerning the vector space V.

Theorem 22 Let (V,+, ·,K) be a classical vector
space and W be a linear subspace of V.
Then V /ε∗ ∼= V/W.

We define a mapping f : V /ε∗ → V/W by
f(ε∗(x)) = x+W.

(1) the mapping f is well-defined. Let ε∗(x) =
ε∗(y), it follows that xε∗y and we have x ∈
1 ◦ x = x + W, y ∈ 1 ◦ y = y + W , since
the two sets x+W and y +W are equal or dis-
joint subset of V/W , thus x+W = y +W and
so f(ε∗(x)) = f(ε∗(y)).

(2) f is linear. Since, f(ε∗(x) + ε∗(y)) = f(ε∗(x+
y)) = x+ y +W
= x+W + y +W
= f(ε∗(x)) + f(ε∗(y)). and f(a � ε∗(x)) =
f(ε∗(z)), z ∈ a ◦ ε∗(x), on the other hand,
a · x ∈ 1 ◦ (a · x) = a ◦ x ⊆ a ◦ ε∗(x) which
implies that f(ε∗(z)) = f(ε∗(a ·x)) = a ·x+W
= a ◦ (x+W ) = a ◦ f(ε∗(x)).

(3) The mapping f is surjective. For one-to-one
property of f , let ε∗(x) ∈ Ker(f). Then
f(ε∗(x)) = x + W = W thus x ∈ W . There-
fore, ε∗(W ) = ε∗(0) = 0V /ε∗ , which implies
that f is one-to-one. Consequently, f is an alge-
braic isomorphism.

Theorem 23 Let (V,+, ·,K, T ) be a tvs. Then
(V ,+, ◦,K, T ) is a topological hypervector space.
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It is enough to show that the mapping ◦ : K × V →
P ∗(V ), a ◦ x = a · x + W is continuous. Let U be
an open subset of V . the mapping “◦” is continuous if
and only if {(a, x) ∈ K × V : a ◦ x ⊆ U} is an open
subset ofK×V for all U ∈ T . We have a◦x ⊆ U ⇒
a · x + W ⊆ U . Since a · x ∈ a · x + W ⊆ U and
the mapping “·” is continuous, there exist U1 and U2

containing a and x respectively, such that U1 ·U2 ⊆ U.

Theorem 24 Let (V,+, ·,K, T ) be a tvs and W be
a linear subspace of V . Then V /ε∗ and V/W are
topologically isomorphic.

By Theorem 22, the map

f : V /ε∗ → V/W, f(ε∗(x)) = x+W

is algebraic isomorphism. It is enough to show that
f is continuous and open. Suppose that A is open in
V/W . We show that π−1(f−1(A)) is open in V/W .
Let x ∈ π−1(f−1(A)), then π(x) ∈ f−1(A), and so
f(π(x)) ∈ A, thus x + W ∈ A. Since the canon-
ical map q : V → V/W is continuous, there ex-
ists an open subset Ux containing x of V such that
Ux ⊆ q−1(A). We show that Ux ⊆ π−1(f−1(A)). If
t ∈ Ux, then t + W ∈ A, and so t ∈ π−1(f−1(A)).
Therefore, π−1(f−1(A)) is open in V , and f is con-
tinuous.
Now suppose that A is an open subset of V /ε∗. We
show that f(A) is an open subset of V/W . Let
x+W ∈ f(A), then ε∗(x) ∈ A. Since the canonical
mapping π : V → V /ε∗ is continuous, there exists
an open subset Ux containing x of V such that Ux ⊆
π−1(A). We show that {z+W : z ∈ Ux} ⊆ f(A). If
z ∈ Ux, then z + W = f(ε∗(x)) ∈ f(A), thus f(A)
is open in V/W . Therefore f is open.

5 Conclusion
In this paper the notion of upper topology for topolog-
ical hypergroups in [3] has been generalized to topo-
logical hypervector spaces, for short THVS( in the
sense of Tallini) and the topological properties of them
was investigated. Also, by considering the fundamen-
tal relation ε∗, as the smallest equivalence relation on
a THVS space V , the topological behavior of the fun-
damental vector space V/ε∗ was investigated. In par-
ticular, it was proved that if in a topological hyper-
vector space V every open sets is a complete part,
then the canonical map π : V → V/ε∗ is a open
mapping and the fundamental vector space V/ε∗ is
a topological vector space, too. Finally, for a topo-
logical vector space (V,+, ·,K, T ) and its subhyper-
space W of V , it was shown that the quotient space
(V/W,+, ◦,K, T ) is also a topological hypervector
space and V/W/ε∗ is homeomorphic to ∼= V/W.

We hope that is paper encourage intrusted re-
searchers to work in this topic and develop more
results of topological hypervector spaces, in partic-
ular extend this results to other classes of hyper-
vector spaces, such as Krasner hypervector spaces,
HV−vector spaces and etc.
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