
[9] W. Flugge, Viscoelasticity, Springer, Berlin,
Heidelberg, 2nd edition, 1975.
[10] J. Freundlich, Vibrations of a simply supported
beam with a fractional viscoelastic material model-
supports movement excitation, Shock and
Vibrations, 20 (2013) 1103 – 1112.
[11] J. Freundlich, M.Pietrzakowski, FEM
simulation of the vibration girder measurement
using piezoelerctric sensors, Machine Dynamics
Research 34 (2010), 28 – 36.
[12] D.W. Van Krevelen. Properties of Polymers,
Elsevier, Amsterdam, 1990.
[13] J.N. Reddy, An Introduction to Continuum
Mechanics with Applications, Cambridge
University Press, 2008.
[14] T. C. Kennedy, Nonlinear viscoelastic analysis
of composite plates and shells. Composite
Structures, 41 (1998), 265–272.
[15] F. Mainardi, G. Spada, Creep, relaxation and
viscosity properties for basic fractional models in
rheology, The European Physical Journal, 193
(2011) 133 – 160.
[16] O. Martin, Propagation of elastic-plastic
waves in bars, Proceedings of the European
Computing Conference, Springer Science, Lecture
Notes in Electrical Engineering, 28 (2009), Part II,
cap.10, 1011-1024.
[17] O. Martin, Quasi-static and dynamic analysis
for viscoelastic beams with the constitutive
equation in a hereditary integral form, Annals of the
University of Bucharest), 5 (2014), 1–13. in a
[18] S.W. Park, Y.R. Kim, Interconversion between
relaxation modulus and creep compliance for
viscoelastic solids, J. mater. Civil Eng., 11 (1999),
76 – 82
[19] G. S. Payette, J. N. Reddy, Nonlinear quasi-
static finite element formulations for viscoelastic
Euler–Bernoulli and Timoshenko beams,
International Journal for Numerical Methods in
Biomedical Engineering, 26 (2010),1736–1755.
[20] G. Pissarenko, A. Yakovlev, V. Matveev,
Aide-mémoire de résistance des matériaux,
Editions de Moscou, 1979.
[21] B.S. Sarma and T.K. Varadan, Lagrange-type
formulation for finite element analysis of nonlinear
beam vibrations, J. Sound Vibrations., 86 (1983),
61–70.
[22] S. Shaw, M. K. Warby, J. R. Whiteman, A
comparison of hereditary integral and internal
variable approaches to numerical linear solid
viscoelasticity, In Proc. XIII Polish Conf. on
Computer Methods in Mechanics, Poznan, (1997).
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
PROOF
DOI: 10.37394/232020.2022.2.2