Preliminary Group Classification of nonlinear wave equation $\mathbf{u}_{t t}+\mathbf{u}_{\mathrm{t}}=\mathbf{f}\left(\mathbf{x}, \mathbf{u}_{\mathbf{x}}\right) \mathbf{u}_{\mathbf{x x}}+\mathbf{g}\left(\mathbf{x}, \mathbf{u}_{\mathbf{x}}\right)$

TSHIDISO MASEBE
Tshwane University of Technology, Pretoria, 0001, SOUTH AFRICA

Abstract

The paper discusses the non-linear wave equations whose coefficients are dependent on first order spatial derivatives. We construct the principal Lie algebra, the equivalence Lie al- gebra, and the extensions by one of the princi- pal Lie algebra. We further construct the op- timal system of one-dimensional subalgebras for rst three extended five-dimensional Lie alge- bras. These are finally used to determine invari- ant solutions of some examples.

Keywords: Principal Lie Algebra, Equivalence Lie algebra, Invariant solution, One-dimensional optimal systems.

Received: June 19, 2021. Revised: August 9, 2022. Accepted: September 5, 2022. Published: October 10, 2022.

1. Introduction

THE Lie group analysis of differential equations is the area of mathematics pioneered by Sophus Lie in the 19th century (1849-1899). The first general solution of the problem of classification was given by Sophus Lie for an extensive class of partial differential equations 4]. Since then many researchers have done work on various families of differential equations. The results of their work have been captured in several outstanding literary works [1, 4].The preliminary group classification by Ibragimov, Torrisi and Valenti [4], gave us up to thirty three equivalence classes of submodels of the wave model of the form

$$
\begin{equation*}
u_{t t}=f\left(x, u_{x}\right) u_{x x}+g\left(x, u_{x}\right) \tag{1}
\end{equation*}
$$

The present work examines a model which represents families of the nonlinear wave with dissipation, namely

$$
\begin{equation*}
u_{t t}+u_{t}=f\left(u_{x}\right) u_{x x}+g\left(u_{x}\right) \tag{2}
\end{equation*}
$$

In this work we use the results of one-dimensional optimal systems
(i) of the equivalence Lie algebra to obtain X_{5} and hence the classification of the family of equations (2) above,
(ii) of the extended principal Lie algebra of equation (2) to calculate the invariant solutions of some examples.
The method followed in the construction of the onedimensional optimal systems is found in the paper by Ibragimov, Torrisi and Valenti [2]. In this paper while constructing the principal Lie algebra, we also show how
to determine the Lie point symmetries of (22). We proceed to construct the equivalence Lie algebra, and give the extensions by o ne of the principal algebra of equation (22). We also show the method of determining invariant solutions. The paper also illustrates the construction of one-dimensional optimal systems of extended principal Lie algebras L_{5}. We conclude by calculating invariant solutions of some one-dimensional subalgebras of each extended algebra L_{5}.

1.1. Principal Lie Algebra

The principal Lie algebra L_{p} of the non-linear wave equation with dissipation namely

$$
u_{t t}+u_{t}=f\left(u_{x}\right) u_{x x}+g\left(u_{x}\right)
$$

is determined as follows:
Let the generator of equation(2) be given by

$$
\begin{equation*}
X=\xi^{1}(t, x, u) \frac{\partial}{\partial t}+\xi^{2}(t, x, u) \frac{\partial}{\partial x}+\eta(t, x, u) \frac{\partial}{\partial u} \tag{3}
\end{equation*}
$$

The second prolongation of (3) is given by

$$
\begin{equation*}
\widetilde{X}^{2}=X+\zeta^{t} \frac{\partial}{\partial u_{t}}+\zeta^{x} \frac{\partial}{\partial u_{x}}+\zeta^{t t} \frac{\partial}{\partial u_{t t}}+\zeta^{x x} \frac{\partial}{\partial u_{x x}} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \zeta^{t}=D_{t}(\eta)-u_{t} D_{t}\left(\xi^{1}\right)-u_{x} D_{t}\left(\xi^{2}\right) \\
& \zeta^{x}=D_{x}(\eta)-u_{t} D_{x}\left(\xi^{1}\right)-u_{x} D_{x}\left(\xi^{2}\right) \\
& \zeta^{t t}=D_{t}\left(\zeta^{t}\right)-u_{t t} D_{t}\left(\xi^{1}\right)-u_{t x} D_{t}\left(\xi^{2}\right) \tag{5}\\
& \zeta^{x x}=D_{x}\left(\zeta^{x}\right)-u_{t x} D_{x}\left(\xi^{1}\right)-u_{x x} D_{x}\left(\xi^{2}\right)
\end{align*}
$$

The operators D_{t} and D_{x} denote the total derivatives with respect to t and x respectively as follows:

$$
\begin{align*}
& D_{t}=\frac{\partial}{\partial t}+u_{t} \frac{\partial}{\partial u^{2}}+u_{t x} \frac{\partial}{\partial u_{x}}+u_{t t} \frac{\partial}{\partial u_{t}}+\ldots . \tag{6}\\
& D_{x}=\frac{\partial}{\partial x}+u_{x} \frac{\partial}{\partial u}+u_{t x} \frac{\partial}{\partial u_{t}}+u_{x x} \frac{\partial}{\partial u_{x}}+\ldots .
\end{align*}
$$

The determining equation of (2) is given by

$$
\begin{align*}
& \left.\widetilde{X}^{2}\left(u_{t t}+u_{t}-f\left(u_{x}\right) u_{x x}-g\left(u_{x}\right)\right)\right|_{(2)}= \\
& \left.\quad\left(\zeta^{t t}+\zeta^{t}-f \zeta^{x x}-f^{u_{x}} \zeta^{x} u_{x x}-g \zeta^{x}\right)\right|_{(2)}=0 \tag{7}
\end{align*}
$$

In cases of arbitrary f and g it follows that

$$
\begin{equation*}
\zeta^{x x}=\zeta^{x}=0, \text { and } \zeta^{t t}+\zeta^{t}=0 \tag{8}
\end{equation*}
$$

From the equation (8) we have that

$$
\begin{align*}
& \zeta^{t t}+\zeta^{t}=\eta_{t t}+u_{t}\left(2 \eta_{t u}-\xi_{t t}^{1}-2 u_{x} \xi_{t u}^{2}\right) \\
& +u_{t}^{2}\left(\eta_{u u}-2 \xi_{t u}^{1}-u_{x} \xi_{u u}^{2}\right)-u_{t}^{3} \xi_{u u}^{1} \\
& -u_{t x}\left(2 \xi_{t}^{1}+2 u_{x} \xi_{u}^{2}+u_{t} \xi_{u}^{2}\right) \tag{9}\\
& +\left(-u_{t}-f\left(u_{x}\right) u_{x x}-g\left(u_{x}\right)\right) \\
& \left(\eta_{u}-2 \xi_{t}^{1}-3 u_{t} \xi_{u}^{1}\right)+\eta_{t}+u_{t}\left(\eta_{u}-\xi_{t}^{1}\right) \\
& -u_{t}^{2} \xi_{u}^{1}-u_{x} \xi_{t}^{2}-u_{t} u_{x} \xi_{u}^{2}=0 .
\end{align*}
$$

From equation (9) we obtain

$$
\begin{align*}
& \xi_{u}^{2}=\xi_{t}^{1}=0 \\
& \xi_{u}^{1}=\eta_{u}=0 \tag{10}\\
& \xi_{t}^{2}=0 \\
& \eta_{t t}+\eta_{t}=0 \quad \Rightarrow \quad \eta=c_{1}+c_{2} e^{-t}
\end{align*}
$$

Thus we have that

$$
\xi^{1}=c, \quad \xi^{2}=c, \quad \eta=c_{1}+c_{2} e^{-t} .
$$

Thus the principal Lie algebra L_{p} of the non-linear wave equation with dissipation namely

$$
u_{t t}+u_{t}=f\left(u_{x}\right) u_{x x}+g\left(u_{x}\right),
$$

is spanned by the following generators

$$
\begin{equation*}
X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=\frac{\partial}{\partial t}, \quad X_{3}=\frac{\partial}{\partial u}, \quad X_{4}=e^{-t} \frac{\partial}{\partial u} . \tag{11}
\end{equation*}
$$

1.2 Equivalence Lie Algebra and Extensions of the Principal Lie Algebra

The equivalence Lie Algebra, is the non-degerate changes in the variables, x, t and u which carries equation (2) into an equation of the same form. The family of non-linear waves $u_{t t}+u_{t}=f\left(u_{x}\right) u_{x x}+g\left(u_{x}\right)$, can be written as a system of differential equations

$$
\begin{align*}
& u_{t t}+u_{t}=f^{1} u_{x x}+f^{2} \\
& f_{x}^{k}=f_{t}^{k}=f_{u}^{k}=f_{u_{t}}^{k}=0 \tag{12}
\end{align*}
$$

$\mathrm{k}=1,2$. The equivalence Lie algebra element for the system (4) is given by the generators

$$
E=\xi \frac{\partial}{\partial x}+\tau \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial u}+\mu^{k} \frac{\partial}{\partial f^{k}}
$$

where $\xi=\xi(x, t, u), \tau=\tau(x, t, u), \eta=\eta(x, t, u)$, $\mu^{k}=\mu^{k}\left(x, t, u, u_{x}, u_{t}, f^{1}, f^{2}\right)$.

We now introduce the following total derivatives

$$
\begin{aligned}
& \widetilde{D_{\alpha}}=\frac{\partial}{\partial \alpha}+f_{\alpha}^{k} \frac{\partial}{\partial f^{k}}+f_{\alpha t}^{k} \frac{\partial}{\partial f_{b}^{k}}+ \\
& f_{\alpha x}^{k} \frac{\partial}{\partial f_{x}^{k}}+f_{\alpha u}^{k} \frac{\partial}{\partial f_{u}^{k}}+f_{\alpha u_{t}}^{k} \frac{\partial}{\partial f_{u_{t}}^{k}}+\ldots
\end{aligned}
$$

for $\alpha \in\left\{x, t, u, u_{t}\right\}$.
The extension of the equivalence algebra element E, takes the form

$$
\begin{aligned}
& \widetilde{E}=E+\zeta^{t} \frac{\partial}{\partial u_{t}}+\zeta^{x} \frac{\partial}{\partial u_{x}}+\zeta^{x x} \frac{\partial}{\partial u_{x x}} \\
& +\varpi_{t}^{k} \frac{\partial}{\partial f_{t}^{k}}+\varpi_{x}^{k} \frac{\partial}{\partial f_{x}^{k}}+\varpi_{u}^{k} \frac{\partial}{\partial f_{u}^{k}}+\varpi_{u_{t}}^{k} \frac{\partial}{\partial f_{u_{t}}^{k}},
\end{aligned}
$$

where

$$
\begin{aligned}
& \zeta^{i}=D_{i}(\eta)-u_{t} D_{i}(\tau)-u_{x} D_{i}(\xi) \\
& \zeta^{i j}=D_{i}\left(\zeta^{i}\right)-u_{j t} D_{i}(\tau)-u_{j x} D_{i}(\xi)
\end{aligned}
$$

for $i, j \in\{x, t\}$ and

$$
\begin{aligned}
& \varpi_{\alpha}^{k}=\widetilde{D_{\alpha}}\left(\mu^{k}\right)-f_{t}^{k} \widetilde{D_{\alpha}}(\tau)-f_{x}^{k} \widetilde{D_{\alpha}}(\xi) \\
& -f_{u}^{k} \widetilde{D_{\alpha}}(\eta)-f_{u_{t}}^{k} \widetilde{D_{\alpha}}\left(\zeta^{t}\right)-f_{u_{x}}^{k} \widetilde{D_{\alpha}}\left(\zeta^{x}\right)
\end{aligned}
$$

where $\alpha \in\left\{x, t, u, u_{t}\right\}, \mathrm{k}=1,2$.
The invariance condition for the system of equations (12)
is given by

$$
\begin{equation*}
\left.\widetilde{E}\left(u_{t t}+u_{t}-f^{1} u_{x x}-f^{2}\right)\right|_{(12)}=0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{E}\left(f_{\alpha}^{k}\right)=0 \text { for } \alpha \in\left\{x, t, u, u_{t}\right\} . \tag{14}
\end{equation*}
$$

We thus obtain

$$
\zeta^{t t}+\zeta^{t}-\mu^{1} u_{x x}-f^{\prime} \zeta^{x x}-\mu^{2}=0
$$

and

$$
\varpi_{\alpha}^{k}=0 \text { for } \alpha \in\left\{x, t, u, u_{t}\right\} .
$$

From the equations (13) we have

$$
\left(\mu^{k}\right)_{\alpha}=\left(\zeta^{x}\right)_{\alpha}=0, \alpha \in\left\{x, t, u, u_{t}\right\}
$$

and $k=1,2$, which implies that the μ^{k} are independent of x, t, u, u_{t} and hence

$$
\mu^{k}=\mu^{k}\left(u_{x}, f^{1}, f^{2}\right), \quad k=1,2
$$

Furthermore $\left(\zeta^{x}\right)_{\alpha}=0$ yields

$$
\begin{align*}
& \xi=a_{1} x+a_{2} u+p(t) \\
& \tau=\tau(t) \tag{15}\\
& \eta=b_{1} u+b_{2} x+q(t)
\end{align*}
$$

where $a_{1}, a_{2} ; b_{1}, b_{2}$ are constants. The equations (15), together with the invariance condition yield

$$
\begin{align*}
& \xi=a_{1} x+a_{2} \\
& \tau=a_{3} \\
& \eta=a_{4} u+a_{5} t+a_{6} x+a_{7} \tag{16}\\
& \mu^{1}=2 a_{1} f^{1} \\
& \mu^{2}=a_{5}+a_{4} f^{2} .
\end{align*}
$$

For the model $u_{t t}+u_{t}=f\left(u_{x}\right) u_{x x}+g\left(u_{x}\right)$, we have

$$
\begin{aligned}
& \mu^{1}=2 a_{1} f \\
& \mu^{2}=a_{5}+a_{4} g .
\end{aligned}
$$

Therefore we obtain a 7 -dimensional equivalence algebra for the non-linear wave equation (2), which is spanned by the following operators

$$
\begin{align*}
& E_{1}=\frac{\partial}{\partial x}, \quad E_{2}=\frac{\partial}{\partial t}, \quad E_{3}=\frac{\partial}{\partial u}, \quad E_{4}=x \frac{\partial}{\partial u} \\
& E_{5}=u \frac{\partial}{\partial u}+g \frac{\partial}{\partial g}, \quad E_{6}=t \frac{\partial}{\partial u}+\frac{\partial}{\partial g}, \quad E_{7}=x \frac{\partial}{\partial x}+2 f \frac{\partial}{\partial f} . \tag{17}
\end{align*}
$$

The classification of the equation (2) is obtained by extending the principal Lie algebra $\quad X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=$ $\frac{\partial}{\partial t}, \quad X_{3}=\frac{\partial}{\partial u}, \quad X_{4}=e^{-t} \frac{\partial}{\partial u}$ by X_{5} as follows:

1.3 One-dimensional Optimal System

In order to determine X_{5} and hence the classification of equation (2) we will give details of the determination of the one-dimensional optimal systems L_{4} below. Since f and g depend on u_{x}, we prolong the equivalence operators $E_{i}(17)$, to the following operators

$$
\widetilde{E}_{i}=E_{i}+\zeta^{x} \frac{\partial}{\partial u_{x}}, \text { for } i=1,2, \ldots \ldots, 7
$$

Therefore we have

$$
\widetilde{E}_{i}=E_{i}, \text { for } i=1,2,3
$$

$$
\begin{gather*}
\widetilde{E}_{4}=x \frac{\partial}{\partial u}+\frac{\partial}{\partial u_{x}}, \quad \widetilde{E}_{5}=u \frac{\partial}{\partial u}+g \frac{\partial}{\partial g}+u_{x} \frac{\partial}{\partial u_{x}} \tag{18}\\
\widetilde{E}_{6}=E_{6}, \quad E_{7}=x \frac{\partial}{\partial x}+2 f \frac{\partial}{\partial f}-u_{x} \frac{\partial}{\partial u_{x}}
\end{gather*}
$$

We form new operators Z_{i} by projecting each \widetilde{E}_{i} (18), onto the $\left(u_{x}, f, g\right)$-subspace of the $\left(x, t, u, u_{t}, u_{x}, f, g\right)$-space. We have

$$
\begin{aligned}
& \operatorname{pr}\left(\widetilde{E}_{i}\right)=0, \text { for } i=1,2,3 \\
& Z_{i}=\operatorname{pr}\left(\widetilde{E}_{i+3}\right), \text { for } i=1,2,3,4 . \\
& Z_{1}=\operatorname{pr}\left(\widetilde{E}_{5}\right)=\frac{\partial}{\partial u_{x}} \\
& \quad Z_{2}=g \frac{\partial}{\partial g}+u_{x} \frac{\partial}{\partial u_{x}}, Z_{3}=\frac{\partial}{\partial g}, \\
& \quad Z_{4}=2 f \frac{\partial}{\partial f}-u_{x} \frac{\partial}{\partial u_{x}},
\end{aligned}
$$

We now consider the algebra L_{4}, which is spanned by $Z_{1}, Z_{2}, Z_{3}, Z_{4}$. We wish to determine the optimal system of one-dimensional subalgebras of the algebra L_{4}. The non-zero structure constants of L_{4} are as follows:

$$
\left[Z_{1}, Z_{2}\right]=Z_{1} \quad,\left[Z_{1}, Z_{4}\right]=-Z_{1}, \quad\left[Z_{2}, Z_{3}\right]=-Z_{3},
$$

The generators of the adjoint algebra L_{4}^{A} are given by

$$
A_{1}=Z_{1} \frac{\partial}{\partial Z_{2}}-Z_{1} \frac{\partial}{\partial Z_{4}}
$$

$$
\begin{gather*}
A_{2}=-Z_{1} \frac{\partial}{\partial Z_{1}}-Z_{3} \frac{\partial}{\partial Z_{3}} \\
A_{3}=Z_{3} \frac{\partial}{\partial Z_{3}} \tag{19}\\
A_{4}=Z_{1} \frac{\partial}{\partial Z_{1}}
\end{gather*}
$$

In order to obtain the elements of the adjoint group G^{A} or the group of inner automorphisms of the algebra L_{4}, we integrate the equations (19) to obtain a four parameter Lie group:

$$
\begin{aligned}
& A_{1}: \bar{Z}_{2}=Z_{2}+a_{1} Z_{1}, \quad \bar{Z}_{4}=Z_{4}-a_{1} Z_{1} \\
& \quad A_{2}: \bar{Z}_{1}=a_{2}^{-1} Z_{1}, \quad \bar{Z}_{3}=a_{2}^{-1} Z_{3} \\
& \quad A_{3}: \bar{Z}_{2}=Z_{2}+a_{3} Z_{3}, \\
& A_{4}: \bar{Z}_{1}=a_{4} Z_{1}
\end{aligned}
$$

A matrix representation of an arbitrary element of the adjoint group G^{A} is of the form

$$
M=\left[\begin{array}{llll}
a_{2}^{-1} a_{4} & a_{1} & 0 & -a_{1} \\
0 & 1 & 0 & 0 \\
0 & a_{2}^{-1} a_{3} & a_{2}^{-1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If we let $Z \in \mathrm{~L}_{4}$ be given by

$$
\begin{gathered}
Z=e^{1} Z_{1}+e^{2} Z_{2}+e^{3} Z_{3}+e^{4} Z_{4} \\
Z \equiv e=\left(e^{1}, e^{2}, e^{3}, e^{4}\right),
\end{gathered}
$$

then $\bar{e}=M e$ defines an equivalence relation in L_{4} and hence subdivides this algebra into equivalence classes. The components of Z map as follows under M :

$$
\begin{aligned}
\bar{e}^{1} & =a_{2}^{-1} a_{4} e^{1}+a_{1}\left(e^{2}-e^{4}\right) \\
\bar{e}^{2} & =e^{2} \\
\bar{e}^{3} & =a_{2}^{-1} a_{3} e^{2}+a_{2}^{-1} e^{3} \\
\bar{e}^{4} & =e^{4}
\end{aligned}
$$

Therefore the optimal system of one-dimensional subspaces of L_{4}, obtained through the adjoint group G^{A}, are as follows:

\mathbf{Z}	Generator	Restri
$Z^{(1)}$	$\alpha Z_{2}+Z_{4}$	$\alpha \neq 1$
$Z^{(2)}$	$\alpha Z_{2}+\beta Z_{3}+Z_{4}$	$\alpha \neq \beta$
$Z^{(3)}$	$Z_{1}+Z_{2}+Z_{4}$	
$Z^{(4)}$	$Z_{1}+Z_{2}+\alpha Z_{3}+Z_{4}$	
$Z^{(5)}$	Z_{3}	
$Z^{(6)}$	$Z_{3}+Z_{4}$	
$Z^{(7)}$	$Z_{1}+Z_{3}$	

Consider

$$
Z^{(1)}=\alpha Z_{2}+Z_{4},
$$

with $\alpha \neq 1$.

$$
Z^{(1)}=\alpha\left(g \frac{\partial}{\partial g}+u_{x} \frac{\partial}{\partial u_{x}}\right)+2 f \frac{\partial}{\partial f}-u_{x} \frac{\partial}{\partial u_{x}}
$$

$$
=\alpha g \frac{\partial}{\partial g}+2 f \frac{\partial}{\partial f}+(\alpha-1) u_{x} \frac{\partial}{\partial u_{x}} .
$$

From the characteristic equation

$$
\frac{d g}{\alpha g}=\frac{d f}{2 f}=\frac{d u_{x}}{(\alpha-1) u_{x}}
$$

we obtain

$$
f=u_{x}^{\frac{2}{\alpha-1}} \quad \text { and } \quad g=u_{x}^{\frac{\alpha}{\alpha-1}}
$$

To obtain the extending vector X_{5}, we let

$$
\begin{aligned}
\widetilde{Z}=\alpha E_{5}+ & E_{7} \\
& =\alpha\left(u \frac{\partial}{\partial u}+g \frac{\partial}{\partial g}\right)+x \frac{\partial}{\partial x}+2 f \frac{\partial}{\partial f} .
\end{aligned}
$$

Let X_{5} be the projection of \widetilde{Z} onto the $(x, t, u)-$ space, i.e

$$
X_{5}=x \frac{\partial}{\partial x}+\alpha u \frac{\partial}{\partial u}
$$

For the vectors $Z^{(i)}, i=2,3, \cdots, 7$, we proceed in a similar manner in order to determine the functions f, g and the extension vector X_{5}. The classification for equation (2) is given in the following table:

$$
\begin{gather*}
u_{t t}+u_{t}=e^{2 u_{x}} u_{x x}+\alpha u_{x} \tag{22}\\
u_{t t}+u_{t}=c u_{x x}+u_{x} \tag{23}\\
u_{t t}+u_{t}=u_{x}^{-2} u_{x x}+\ln u_{x} \tag{24}
\end{gather*}
$$

From the latter we have five-dimensional Lie algebras for each of the equations (21) to (24). We will only construct optimal systems of one-dimensional Lie subalgebras for the first three equations. We will then calculate the invariant solutions using some of these onedimensional subalgebras.

1.4 Invariant Solutions

Consider the equation

$$
\begin{equation*}
u_{t t}+u_{t}=e^{2 u_{x}} u_{x x}+c \tag{25}
\end{equation*}
$$

whose set of generators is given by $X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=$ $\frac{\partial}{\partial t}, \quad X_{3}=\frac{\partial}{\partial u}, \quad X_{4}=e^{-t} \frac{\partial}{\partial u}, \quad X_{5}=x \frac{\partial}{\partial x}+(u+x) \frac{\partial}{\partial u}$.

We will use the one dimensional subalgebra $X=X_{1}+$ $(1+\rho) X_{3}$ i.e.

$$
\begin{equation*}
X=\frac{\partial}{\partial x}+(1+\rho) \frac{\partial}{\partial u} . \tag{26}
\end{equation*}
$$

The characteristic equation of the above generator (26) is given by

$$
\begin{equation*}
\frac{d t}{0}=\frac{d u}{k}=\frac{d x}{1} \quad \text { where } k=1+\rho . \tag{27}
\end{equation*}
$$

From equation (27) the invariants are given by

$$
\begin{equation*}
I_{1}=u-k x \quad ; \quad I_{2}=t \tag{28}
\end{equation*}
$$

If we define $I_{1}=\phi\left(I_{2}\right)$ for some function ϕ, then

$$
\begin{equation*}
u(t, x)=k x+\phi(t) . \tag{29}
\end{equation*}
$$

The substitution of 29) into equation (25) asserts that

$$
\begin{aligned}
& u_{t}=\phi^{\prime}(t) \\
& u_{t t}=\phi^{\prime \prime}(t) \\
& u_{x}=k \\
& u_{x x}=0
\end{aligned}
$$

hence

$$
\begin{equation*}
u_{t t}+u_{t}-e^{2 u_{x}} u_{x x}-c=\phi^{\prime \prime}(t)+\phi^{\prime}(t)-c=0 . \tag{30}
\end{equation*}
$$

The equation (30) simplifies to

$$
\begin{equation*}
\phi^{\prime \prime}(t)+\phi^{\prime}(t)=c \tag{31}
\end{equation*}
$$

which is a second order ODE whose solution is given by

$$
\begin{equation*}
\phi(t)=c_{1}+c_{2} e^{-t}+c t-c \tag{32}
\end{equation*}
$$

Thus the invariant solution of 25 is given by

$$
\begin{equation*}
u(t, x)=k x+c_{1}+c_{2} e^{-t}+c t-c \tag{33}
\end{equation*}
$$

where $k=1+\rho$.
Consider the equation

$$
\begin{equation*}
u_{t t}+u_{t}=e^{2 u_{x}} u_{x x}+\alpha u_{x} \tag{34}
\end{equation*}
$$

which has the following set of generators $X_{1}=$ $\frac{\partial}{\partial x}, \quad X_{2}=\frac{\partial}{\partial t}, \quad X_{3}=\frac{\partial}{\partial u}, \quad X_{4}=e^{-t} \frac{\partial}{\partial u}, \quad X_{5}=$ $x \frac{\partial}{\partial x}+(u+x+\alpha t) \frac{\partial}{\partial u}$.

We will use the one dimensional subalgebra $X=X_{1}+$ X_{4} i.e.

$$
\begin{equation*}
X=\frac{\partial}{\partial x}+e^{-t} \frac{\partial}{\partial u} \tag{35}
\end{equation*}
$$

The characteristic equation of the above generator (35) is given by

$$
\begin{equation*}
\frac{d t}{0}=\frac{d u}{e^{-t}}=\frac{d x}{1} \tag{36}
\end{equation*}
$$

From equation (36) the invariants are given by

$$
\begin{equation*}
I_{1}=u-x e^{-t} \quad ; \quad I_{2}=t \tag{37}
\end{equation*}
$$

If we define $I_{1}=\phi\left(I_{2}\right)$ for some function ϕ, then

$$
\begin{equation*}
u(t, x)=x e^{-t}+\phi(t) \tag{38}
\end{equation*}
$$

The substitution of (38) into equation (34) asserts that

$$
\begin{aligned}
u_{t} & =-x e^{-t}+\phi^{\prime}(t) \\
u_{t t} & =x e^{-t}+\phi^{\prime \prime}(t) \\
u_{x} & =e^{-t} \\
u_{x x} & =0
\end{aligned}
$$

hence

$$
\begin{equation*}
u_{t t}+u_{t}-e^{2 u_{x}} u_{x x}-\alpha u_{x}=\phi^{\prime \prime}(t)+\phi^{\prime}(t)-\alpha e^{-t}=0 \tag{39}
\end{equation*}
$$

The equation (39) simplifies to

$$
\begin{equation*}
\phi^{\prime \prime}(t)+\phi^{\prime}(t)=\alpha e^{-t} \tag{40}
\end{equation*}
$$

which is a non-linear second order ODE whose solution is given by

$$
\phi(t)=c_{1}+c_{2} e^{-t}+\alpha e^{-t}-\alpha t e^{-t} .
$$

The invariant solution of $u_{t t}+u_{t}=e^{2 u_{x}} u_{x x}+\alpha u_{x}$ is given by

$$
\begin{equation*}
u(t, x)=x e^{-t}+c_{1}+c_{2} e^{-t}+\alpha e^{-t}-\alpha t e^{-t} \tag{41}
\end{equation*}
$$

Consider the equation

$$
\begin{equation*}
u_{t t}+u_{t}=c u_{x x}+u_{x} \tag{42}
\end{equation*}
$$

whose set of generators is given by $X_{1}=\frac{\partial}{\partial x}, \quad X_{2}=$ $\frac{\partial}{\partial t}, \quad X_{3}=\frac{\partial}{\partial u}, \quad X_{4}=e^{-t} \frac{\partial}{\partial u}, X_{5}=(x+t) \frac{\partial}{\partial u}$.

We will use the one dimensional subalgebras $X=$ $\alpha X_{1}+X_{5}$ and $X=\beta X_{2}+X_{5}$ i.e. $X=\alpha \frac{\partial}{\partial x}+(x+t) \frac{\partial}{\partial u}$, and $X=\beta \frac{\partial}{\partial t}+(x+t) \frac{\partial}{\partial u}$ respectively to calculate the invariant solutions of 42).

Consider the one dimensional subalgebra

$$
\begin{equation*}
X=\alpha \frac{\partial}{\partial x}+(x+t) \frac{\partial}{\partial u} \tag{43}
\end{equation*}
$$

The characteristic equation of () is given by

$$
\begin{equation*}
\frac{d x}{\alpha}=\frac{d u}{x+t}=\frac{d t}{0} . \tag{44}
\end{equation*}
$$

From equation () the invariants are given by $I_{1}=$ $\alpha u-\frac{1}{2}(x+t)^{2}, I_{2}=t$.

If we let I_{1} be a function of I_{2},
$u(t, x)=\frac{1}{\alpha}\left\{\frac{(x+t)^{2}}{2}+\phi(t)\right\}$ where $\phi(t)=I_{1}$ i.e $I_{1}=\phi\left(I_{2}\right)$.
The substitution of (45) into 42) asserts that

$$
\begin{align*}
& u_{t}=\frac{1}{\alpha}\left\{(x+t)-\phi^{\prime}(t)\right\} \\
& u_{t t}=\frac{1}{\alpha}\left(1-\phi^{\prime \prime}(t)\right) \tag{46}\\
& u_{x}=\frac{1}{\alpha}(x+t) \\
& u_{x x}=\frac{1}{\alpha} . \\
& \text { Hence } u_{t t}+u_{t}-c u_{x x}-u_{x} \\
& \frac{1}{\alpha}\left\{1-\phi^{\prime \prime}(t)+(x+t)-(x+t)-c-\phi^{\prime}(t)\right\}=0,
\end{align*}
$$

$$
\begin{equation*}
\phi^{\prime \prime}(t)+\phi^{\prime}(t)=1-c \tag{47}
\end{equation*}
$$

Solving the equation (47) we obtain that

$$
\begin{equation*}
\phi(t)=c_{1}-c_{2} e^{-t}+(1-t)(1-c) \tag{48}
\end{equation*}
$$

Therefore the invariant solution of 42 is given by
$u(t, x)=\frac{1}{\alpha}\left\{\frac{(x+t)^{2}}{2}+c_{1}-c_{2} e^{-t}+(1-t)(1-c)\right\}$.

Acknowledgment

The author would like to acknowledge the assistance of fellow colleagues in going through the manuscript and for their invaluable inputs.

References

[1] Blumen,G.W. Kumei,S. 1989. Symmetries and Differential Equations. New York, Springer-Verlag.
[2] Blumen,G.W. Anco,S.C. 2002. Symmetries and Integration methods for Differential Equations. New York. Springer-Verlag.
[3] Hydon, P.E 2000. Symmetry methods for Differential Equations. New York. Cambridge University Press .
[4] Ibragimov,N.H. \& Torrisi,M. and A. Valenti,.(1991). Preliminary Group Classification of the equations $u_{t t}=f\left(x, u_{x}\right) u_{x x}+g\left(x, u_{x}\right)$. J. Math. Phys.32, 2988-2995. June
[5] Ibragimov, N.H.1999. Elementary Lie Group Analysis and Ordinary Differential Equations. London. J. Wiley \& Sons Ltd.

