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1. Introduction
THE Lie group analysis of differential equations is the
area of mathematics pioneered by Sophus Lie in the
19th century (1849-1899). The first general solution of
the problem of classification was given by Sophus Lie
for an extensive class of partial differential equations [4].
Since then many researchers have done work on various
families of differential equations. The results of their
work have been captured in several outstanding liter-
ary works [Il 4].The preliminary group classification by
Ibragimov, Torrisi and Valenti [4], gave us up to thirty
three equivalence classes of submodels of the wave model
of the form

upy = f(2, Uz )Uze + (T, Uz ). (1)

The present work examines a model which represents
families of the nonlinear wave with dissipation, namely

gy +up = f(Uz)Uze + g(u). (2)

In this work we use the results of one-dimensional
optimal systems

(i) of the equivalence Lie algebra to obtain X5 and
hence the classification of the family of equations
above ,

(ii) of the extended principal Lie algebra of equation
) to calculate the invariant solutions of some ex-
amples.

The method followed in the construction of the one-
dimensional optimal systems is found in the paper by
Ibragimov, Torrisi and Valenti [2]. In this paper while
constructing the principal Lie algebra, we also show how

E-ISSN: 2732-9941 169

to determine the Lie point symmetries of (2)). We pro-
ceed to construct the equivalence Lie algebra, and give
the extensions by o ne of the principal algebra of equation
. We also show the method of determining invariant
solutions. The paper also illustrates the construction of
one-dimensional optimal systems of extended principal
Lie algebras Ls. We conclude by calculating invariant
solutions of some one-dimensional subalgebras of each
extended algebra Ls.

1.1. Principal Lie Algebra
The principal Lie algebra L, of the non-linear wave
equation with dissipation namely
Ut + Ut = f(uz>ua:m + g(ul’)’
is determined as follows:
Let the generator of equation be given by

X =¢! (t,ac,u)aat—i-ﬁz (t,z,u) 8833

The second prolongation of (3) is given by

Fultew) o (3)

t x tt_ T
X? X+C—+C—+C +¢ 8um (4)
where
¢" = Di(n) — s Dy(E") — uy Dy(€2),

C" = Dy(¢") — upDi(€Y) — uee Di(€2),
¢ = DT(CI) - UtmDm(gl) - UTTDT(fz)

The operators D; and D, denote the total derivatives
with respect to t and x  respectively as follows:
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The determining equation of (2) is given by

552 (Utt + uy — f(ua:)uzw - g(ul)) ‘(2) =
(" 4 ¢" = fC™ = [ (P tpe — 9C7)|(2) = 0.

In cases of arbitrary f and g it follows that

szzgrzo, and(tt—I—Ct:O

From the equation (8) we have that

C 4 ¢t = e + e (2000 — & — Quzftzu)
—‘r’U/% (77uu - 2€t1u - szg ) — Uy guu
—uee (26) + 2u€5 + wiEy)

+ (_ut - f(um)uzz - g(uz))

(77u —-2¢ — 3Ut£1) + e+ (
_utfl - uzgt utumgu =0.

From equation (9) we obtain

- &)

& =¢&=0.
T —0.
e 10

e +ne =0 = -t

Thus we have that

n =c1 + cae

1 2 —
g = 5 =, t'

Thus the principal Lie algebra L, of the non-linear
wave equation with dissipation namely

N =c1 + cae

= f(ug)uzz + g(us),

is spanned by the following generators

Ut + Uy

1.2 Equivalence Lie Algebra and

Extensions of the Principal Lie Algebra

The equivalence Lie Algebra, is the non-degerate
changes in the variables, x,¢ and u which carries equa-
tion (2) into an equation of the same form. The family
of non-linear waves uy + ur = f(Ug )z + g(uz), can be
written as a system of differential equations

g+ up = flugy + f3
A

k =1, 2. The equivalence Lie algebra element for the
system (4) is given by the generators

(12)

0
=2 ~ i
5 e Tor T au T g
where £ = {(x,t,u) , 7 = T(x,t,u) , n = nlx,t,u) ,
:u’k = ﬂk(I,t7U,Ux,Ut,f17f2)-
We now introduce the following total derivatives

N o_ o ) )

Do = ~ e + faop + fapp T

b o + framE + e +
Ol.Lafk auafjf autafﬁt
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for v € {z,t,u,us}.
The extension of the equivalence algebra element E,
takes the form

E E + gt + Cz Ouy + gxa: Bu”
) lé)

erf afk +w7-8fk +wu6fk erut gfk ,

where
¢" = Di(n) — uDi(7) — uz Di(€)
(7= Di(¢") — ujeDi(1) — uje Di(§)
for ¢,5 € {x,t} and
@k = Da(i*) = fFDa(7) = fEDa(€)
—fiDa(n) = f1,Da(C") = f1, Da(C?)

where a € {z,t,u,uz} , k =1, 2.

The invariance condition for the system of equations
(12)
is given by

E(utt + ug — fluxz - f2)|(12) =0 (13)

E(fF) =0 for a € {z,t,u,u}. (14)

We thus obtain

— MUy — FCT =0

Ctt _|_<t
and
wh =0 for a € {x,t,u,u;}.
From the equations (13) we have

(Mk)oé = (Cr)a =0,a € {x’t7uvut}

and k = 1,2, which implies that the u* are indepen-
dent of z,t,u,u; and hence

ub = 1 (ug, £ ),
Furthermore (¢%), = 0 yields

k=1,2.

& =a1z + agu + p(t)
T=1(t)
n = biu+ box + q(t)

(15)

where ay, as; by, by are constants. The equations (15),
together with the invariance condition yield

§=mx+as

T = as

n = asu + ast + agx + ar (16)
Ml — 2a1f1

p? = as + ag f?.

For the model wy + up = f(ug)Uze + g(us), we have

pt=2a,f
p? = as + aayg.
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Therefore we obtain a 7-dimensional equivalence al-
gebra for the non-linear wave equation (2), which is
spanned by the following operators

_ 0 _ 9 _ lé)
Ey = O EQB— 2, By=£2, Ei=zZ 5 )
E5:u%+gafg, E6:t8u+ag, E7:m%+2f87f

(17)

The classification of the equation (2) is obtained by
extending the principal Lie algebra X; = %, Xy =
%, X35 = 3%, X, = e*ta% by X5 as follows:

1.3 One-dimensional Optimal System

In order to determine X5 and hence the classification
of equation (2) we will give details of the determination
of the one-dimensional optimal systems L4 below. Since
f and g depend on u,, we prolong the equivalence oper-
ators E; (17), to the following operators

~ 0
E,=E+("—,
+¢ 3
Therefore we have

E;=FE;, fori=1,2,3

0 ~ 0 0

0
E4—.1‘f+

0
Bs=us 492 4u,—2 (18
ou  Ouy’ u6u+gag+u Ouy (18)
~ 8 0
Es=E E 2f & 2
6 6 7= + f of U ou,
We form new operators Z; by projecting each
E; (18), onto the (ug,f,g)-subspace of the

(z,t,u, ug, Uy, f, g)—space. We have
pr(E;) =0, fori=1,2,3

Z; = pr( Z+3) fori=1,2,3,4.

7y = pr(Es) =

Ouy,
0 0 0
Loy = g(?ig +“137z’23 =2
15} 0
Zy = 2fa*f —Ux%a

We now consider the algebra Ly, which is spanned by
Z1,24a, Zs, Z4. We wish to determine the optimal system
of one-dimensional subalgebras of the algebra Ls. The
non-zero structure constants of L, are as follows:

(21,22l = Z1 | [Z1,24) = — 71,

[ZQ; ZS] = _237

The generators of the adjoint algebra L' are given by

B B
A =7 7
YUz, oz,
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B B
Ay =—7 —7Z
2 Yoz, oz,
)
B
Ay =7
4 18Z1

In order to obtain the elements of the adjoint group G4
or the group of inner automorphisms of the algebra Ly,
we integrate the equations (19) to obtain a four param-
eter Lie group:

A Zy =2y + a1 2, Zy=2Z4—a1 74
Ay 74 = a;lZl, Zq = a2_1Z3
A Zy = Zy + azZs,
Ay 7y = a4y

A matrix representation of an arbitrary element of
the adjoint group G is of the form

a51a4 ai 0 —ay

0 1 0 0
M=1y aytaz ay' 0

0 0 0 1

If we let Z €L4 be given by
Z=e"Z1+e*Zy+ 375+ e*Zy
Z=e=(e',e? e3 e,

then € = Me defines an equivalence relation in Ly and
hence subdivides this algebra into equivalence classes.
The components of Z map as follows under M :

= —1
el = ay'ager +ai(e? —et)
2 = o2

=3 _ =12 -1.3

e’ = ay aze”t+aq €
o

Therefore the optimal system of one-dimensional sub-
spaces of Ly, obtained through the adjoint group G4,
are as follows:

Z Generator
A aZy+ Z, a#l
Z(z) OLZQ+BZ?,+Z4 a#ﬂ
AR Zi+ Zy+ 24
AS) 1+ Zy+alZs+ Z4
7(5) Zs
AQ) Zs+ Zy
A Zi+ Zs
Consider
ZW = aZy + Zy,
with a # 1.
0 0 0
JAQ - il . —
a(ga ez - )+ f o o
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0 0
=ag— +2 — Dug—o-.
=g, + faf (@ —=T1u o
From the characteristic equation
dg _df _ _ du
ag  2f  (a—1u,’
we obtain
2 o
f=ug™" and g=u; "
To obtain the extending vector X5, we let
Z = OAE5+E7
0 0
— . . . 2 .
a(u8u+ga)+ 3 + faf

Let X5 be the projection of Z onto the (z,t,u)—
i.e

space,

0 0

Xs=2—+au—.

ox ou’
For the vectors Z(), i =2,3,---,7, we proceed in a sim-
ilar manner in order to determine the functions f, g and
the extension vector X5. The classification for equation

Tshidiso Masebe

Ut + Up = eQulum + auy, (22)
Up + Up = Clgy + Ug. (23)
Uy + Up = u;Qum +Inu,. (24)

From the latter we have five-dimensional Lie alge-
bras for each of the equations (21) to (24). We will
only construct optimal systems of one-dimensional Lie
subalgebras for the first three equations. We will then
calculate the invariant solutions using some of these one-
dimensional subalgebras.

1.4 Invariant Solutions
Consider the equation

Utt + Ut = €2umuw$ + & (25>
whose set of generators is given by X; = %, Xy =
1%} 1%} 2]
Ere ngm, X4:€ Su’XS_xax—i_(u—’—x)ﬁ'

We will use the one dimensional subalgebra X = X7+
(1 + p) X3 ie.

(2) is given in the following table: X = 9 + (14 p) 2 (26)
ox ou
ACE (ug) g(ug) X5 Restriction The characteristic equation of the above generator
2 2 3 M
= 21 ) ) (26) is given by
AD) us us ! T4 4 aug- a #1 .
a—1 —1,, a—1 9 0
7z u " Lug 55t (ozu—l—ﬁt)a% a #pB bt _du_dv ek =1+ p. (27)
ZB) g2 C ri+ (u+ )5 0 k 1
ZE:; g2t QU xa% +(ut+z+ at)a% From equation the invariants are given by
Z
Z©) g2 —Inx v 2 +utl a#1 L =u—kx ; I =t. (28)
(7) 9
Z C Uz (t +2)5, (20) If we define I} = ¢ (I2) for some function ¢, then

In what follows we will give the classification for equa-
tion (2) for the listed generators Xs.

1.If X5= x% + (w—i—u)a% then
f=e*, and g=c
2. If X5:xa%c+(:c+u+at)% then

f=e2* and g = au,

3.If Xs=(z+1t)2 then
f=c and g =u,

4. I Xr—xaz—i—ta then
f=u;? ,andg——lnuaj

5. If X5—aca +au8 then

f:ur andg_ux 1f0roz#1
6. If Xr—gc8 +(au+5t) then

f=ug"" zaundg—ozl(u;‘1 B) for a # 3

Each extension will give us a five-dimensional Lie al-
gebra Ls. From the above we will concentrate on the
first four whose equations are given by the following

22U,

U + Up = €“T Uy, + C. (21)
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u(t,z) =kx+ ¢(t). (29)

The substitution of (29) into equation (25) asserts
that

Ut

Utt
Uy
uCECE

hence

Uy + Uy — €24 Uy —C = ¢ (t) + ¢ (t)—c=0. (30)
The equation simplifies to
¢ () +¢ (1) =c, (31)

which is a second order ODE whose solution is given by

¢(t)=c1+coe et —c. (32)
Thus the invariant solution of is given by
u(t,r) =kr+cy +coe” et —c, (33)
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where k =1+ p.
Consider the equation

2u (34)

Ut + Up = €7 Ugpy + QUL

which has the following set of generators X; =

lé] _ _ —t 0 _
500 X2 = Xe = e "5, X5 =

o _
ot X3 =
2 +(utz+at)l.
We will use the one dimensional subalgebra X = X+

X4 i.e.
0 _; 0
e t—.
oz ou
The characteristic equation of the above generator

is given by

(35)

dt du dx
0 et 1 (36)
From equation the invariants are given by
I =u—xe* ; I, =t. (37)

If we define I} = ¢ (I3) for some function ¢, then

u(t,r) =ze "+ o (t). (38)

The substitution of into equation asserts
that

w = —aettd ()
uy = we 4 (t)
Uy = et

Ugr = 0,

hence

"

Ut F 1ty — € Ugy —vtiy = ¢ (£)+¢ () —ae™ = 0. (39)

The equation simplifies to

"

¢ (1) +¢ (1) =ae™, (40)

which is a non-linear second order ODE whose solu-
tion is given by

é(t)=c1+caet +aet —ate™ "

The invariant solution of wsy + u; = €% uy, + auy is
given by

w(t,x) =ze "+t et —ate”h. (41)

Consider the equation

Ugt + Ut = Cly + Uy (42)
whose set of generators is given by X; = a%, Xy =
) d —td d
I X3:37u7 X4:e tafu,X5:(x+t)$

We will use the one dimensional subalgebras X =
aXi+Xs and X = BXo+ X5 ie. X =aZ +(z+1)2,
and X = B2 + (z + t),2 respectively to calculate the
invariant solutions of .
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Consider the one dimensional subalgebra

0 0
X =a— t)—. 4
a8x+(x+)8u (43)
The characteristic equation of () is given by
dr_ du_di, (44)

a x4+t 0
From equation () the invariants are given by I; =
au—%(w—i—t)? , Io =t.
If we let I; be a function of I,

1 z+1)
u(t,x)a{( 5 )
(45)
The substitution of into asserts that
w = Ha@+r -6 0}
Uy = %(1 -¢ (1) (46)
Uy, = =(x+1)
o
Hence Usp  + U — ClUgy Uy =
¢ 0+ @+ —@+-c—¢ @)} =0,
simplifies to
¢ )+ (H)=1-c (47)
Solving the equation we obtain that
dp(t)=cr—coe "+ (1—t)(1—c). (48)

Therefore the invariant solution of is given by

u(t,z) = ;{(x—;t) +ep—ce (1 —t)(l—c)}.
(49)
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+ qb(t)} where ¢ (t) =11 i.e I; = ¢ (I2).
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