
THE Lie group analysis of differential equations is the
area of mathematics pioneered by Sophus Lie in the

19th century (1849-1899). The first general solution of
the problem of classification was given by Sophus Lie
for an extensive class of partial differential equations [4].
Since then many researchers have done work on various
families of differential equations. The results of their
work have been captured in several outstanding liter-
ary works [1, 4].The preliminary group classification by
Ibragimov, Torrisi and Valenti [4], gave us up to thirty
three equivalence classes of submodels of the wave model
of the form

utt = f(x, ux)uxx + g(x, ux). (1)

The present work examines a model which represents
families of the nonlinear wave with dissipation, namely

utt + ut = f(ux)uxx + g(ux). (2)

In this work we use the results of one-dimensional
optimal systems

(i) of the equivalence Lie algebra to obtain X5 and
hence the classification of the family of equations
(2) above ,

(ii) of the extended principal Lie algebra of equation
(2) to calculate the invariant solutions of some ex-
amples.

The method followed in the construction of the one-
dimensional optimal systems is found in the paper by
Ibragimov, Torrisi and Valenti [2]. In this paper while
constructing the principal Lie algebra, we also show how

to determine the Lie point symmetries of (2). We pro-
ceed to construct the equivalence Lie algebra, and give
the extensions by o ne of the principal algebra of equation
(2). We also show the method of determining invariant
solutions. The paper also illustrates the construction of
one-dimensional optimal systems of extended principal
Lie algebras L5. We conclude by calculating invariant
solutions of some one-dimensional subalgebras of each
extended algebra L5.

The principal Lie algebra Lp of the non-linear wave
equation with dissipation namely

utt + ut = f(ux)uxx + g(ux),

is determined as follows:
Let the generator of equation(2) be given by

X = ξ1 (t, x, u)
∂

∂t
+ ξ2 (t, x, u)

∂

∂x
+ η (t, x, u)

∂

∂u
(3)

The second prolongation of (3) is given by

X̃2 = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζtt

∂

∂utt
+ ζxx

∂

∂uxx
, (4)

where

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),
ζx = Dx(η)− utDx(ξ1)− uxDx(ξ2),
ζtt = Dt(ζ

t)− uttDt(ξ
1)− utxDt(ξ

2),
ζxx = Dx(ζx)− utxDx(ξ1)− uxxDx(ξ2).

(5)

The operators Dt and Dx denote the total derivatives
with respect to t and x respectively as follows:

Dt = ∂
∂t + ut

∂
∂u + utx

∂
∂ux

+ utt
∂
∂ut

+ .....

Dx = ∂
∂x + ux

∂
∂u + utx

∂
∂ut

+ uxx
∂
∂ux

+ .....
(6)
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The determining equation of (2) is given by

X̃2 (utt + ut − f(ux)uxx − g(ux)) |(2) =

(ζtt + ζt − fζxx − fuxζxuxx − gζx)|(2) = 0.
(7)

In cases of arbitrary f and g it follows that

ζxx = ζx = 0, and ζtt + ζt = 0. (8)

From the equation (8) we have that

ζtt + ζt = ηtt + ut
(
2ηtu − ξ1tt − 2uxξ

2
tu

)
+u2t

(
ηuu − 2ξ1tu − uxξ2uu

)
− u3t ξ1uu

−utx
(
2ξ1t + 2uxξ

2
u + utξ

2
u

)
+ (−ut − f(ux)uxx − g(ux))(
ηu − 2ξ1t − 3utξ

1
u

)
+ ηt + ut

(
ηu − ξ1t

)
−u2t ξ1u − uxξ2t − utuxξ2u = 0.

(9)

From equation (9) we obtain

ξ2u = ξ1t = 0.
ξ1u = ηu = 0.
ξ2t = 0.
ηtt + ηt = 0 ⇒ η = c1 + c2e

−t.

(10)

Thus we have that

ξ1 = c, ξ2 = c, η = c1 + c2e
−t.

Thus the principal Lie algebra Lp of the non-linear
wave equation with dissipation namely

utt + ut = f(ux)uxx + g(ux),

is spanned by the following generators

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 =

∂

∂u
, X4 = e−t

∂

∂u
.

(11)

The equivalence Lie Algebra, is the non-degerate
changes in the variables, x, t and u which carries equa-
tion (2) into an equation of the same form. The family
of non-linear waves utt + ut = f(ux)uxx + g(ux), can be
written as a system of differential equations

utt + ut = f1uxx + f2

fkx = fkt = fku = fkut = 0
(12)

k = 1, 2. The equivalence Lie algebra element for the
system (4) is given by the generators

E = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ µk

∂

∂fk

where ξ = ξ(x, t, u) , τ = τ(x, t, u) , η = η(x, t, u) ,
µk = µk(x, t, u, ux, ut, f

1, f2).
We now introduce the following total derivatives

D̃α = ∂
∂α + fkα

∂
∂fk

+ fkαt
∂
∂fkt

+

fkαx
∂
∂fkx

+ fkαu
∂
∂fku

+ fkαut
∂

∂fkut
+ ...

for α ∈ {x, t, u, ut}.
The extension of the equivalence algebra element E,

takes the form

Ẽ = E + ζt ∂
∂ut

+ ζx ∂
∂ux

+ ζxx ∂
∂uxx

+$k
t

∂
∂fkt

+$k
x

∂
∂fkx

+$k
u

∂
∂fku

+$k
ut

∂
∂fkut

,

where

ζi = Di(η)− utDi(τ)− uxDi(ξ)
ζij = Di(ζ

i)− ujtDi(τ)− ujxDi(ξ)

for i, j ∈ {x, t} and

$k
α = D̃α(µk)− fkt D̃α(τ)− fkx D̃α(ξ)

−fku D̃α(η)− fkutD̃α(ζt)− fkuxD̃α(ζx)

where α ∈ {x, t, u, ut} , k = 1, 2.
The invariance condition for the system of equations

(12)
is given by

Ẽ(utt + ut − f1uxx − f2)|(12) = 0 (13)

Ẽ(fkα) = 0 for α ∈ {x, t, u, ut}. (14)

We thus obtain

ζtt + ζt − µ1uxx − f
′
ζxx − µ2 = 0

and

$k
α = 0 for α ∈ {x, t, u, ut}.

From the equations (13) we have

(µk)α = (ζx)α = 0, α ∈ {x, t, u, ut}

and k = 1, 2, which implies that the µk are indepen-
dent of x, t, u, ut and hence

µk = µk(ux, f
1, f2), k = 1, 2.

Furthermore (ζx)α = 0 yields

ξ = a1x+ a2u+ p(t)
τ = τ(t)
η = b1u+ b2x+ q(t)

(15)

where a1, a2; b1, b2 are constants. The equations (15),
together with the invariance condition yield

ξ = a1x+ a2
τ = a3
η = a4u+ a5t+ a6x+ a7
µ1 = 2a1f

1

µ2 = a5 + a4f
2.

(16)

For the model utt + ut = f(ux)uxx + g(ux), we have

µ1 = 2a1f
µ2 = a5 + a4g.

1.2 Equivalence Lie Algebra and  

Extensions of the Principal Lie Algebra 
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Therefore we obtain a 7-dimensional equivalence al-
gebra for the non-linear wave equation (2), which is
spanned by the following operators

E1 = ∂
∂x , E2 = ∂

∂t , E3 = ∂
∂u , E4 = x ∂

∂u

E5 = u ∂
∂u + g ∂

∂g , E6 = t ∂∂u + ∂
∂g , E7 = x ∂

∂x + 2f ∂
∂f .

(17)

The classification of the equation (2) is obtained by
extending the principal Lie algebra X1 = ∂

∂x , X2 =
∂
∂t , X3 = ∂

∂u , X4 = e−t ∂∂u by X5 as follows:

In order to determine X5 and hence the classification
of equation (2) we will give details of the determination
of the one-dimensional optimal systems L4 below. Since
f and g depend on ux, we prolong the equivalence oper-
ators Ei (17), to the following operators

Ẽi = Ei + ζx
∂

∂ux
, for i = 1, 2, ......, 7.

Therefore we have

Ẽi = Ei, for i = 1, 2, 3

Ẽ4 = x
∂

∂u
+

∂

∂ux
, Ẽ5 = u

∂

∂u
+ g

∂

∂g
+ ux

∂

∂ux
(18)

Ẽ6 = E6, E7 = x
∂

∂x
+ 2f

∂

∂f
− ux

∂

∂ux
,

We form new operators Zi by projecting each
Ẽi (18), onto the (ux, f, g)-subspace of the
(x, t, u, ut, ux, f, g)−space. We have

pr(Ẽi) = 0, for i = 1, 2, 3

Zi = pr(Ẽi+3), for i = 1, 2, 3, 4.

Z1 = pr(Ẽ5) =
∂

∂ux

Z2 = g
∂

∂g
+ ux

∂

∂ux
, Z3 =

∂

∂g
,

Z4 = 2f
∂

∂f
− ux

∂

∂ux
,

We now consider the algebra L4, which is spanned by
Z1, Z2, Z3, Z4. We wish to determine the optimal system
of one-dimensional subalgebras of the algebra L4. The
non-zero structure constants of L4 are as follows:

[Z1, Z2] = Z1 , [Z1,Z4] = −Z1, [Z2, Z3] = −Z3,

The generators of the adjoint algebra LA4 are given by

A1 = Z1
∂

∂Z2
− Z1

∂

∂Z4

A2 = −Z1
∂

∂Z1
− Z3

∂

∂Z3

A3 = Z3
∂

∂Z3
(19)

A4 = Z1
∂

∂Z1

In order to obtain the elements of the adjoint group GA

or the group of inner automorphisms of the algebra L4,
we integrate the equations (19) to obtain a four param-
eter Lie group:

A1 : Z2 = Z2 + a1Z1, Z4 = Z4 − a1Z1

A2 : Z1 = a−1
2 Z1, Z3 = a−1

2 Z3

A3 : Z2 = Z2 + a3Z3,

A4 : Z1 = a4Z1

A matrix representation of an arbitrary element of
the adjoint group GA is of the form

M =


a−1
2 a4 a1 0 −a1

0 1 0 0
0 a−1

2 a3 a−1
2 0

0 0 0 1

 .
If we let Z ∈L4 be given by

Z = e1Z1 + e2Z2 + e3Z3 + e4Z4

Z = e = (e1, e2, e3, e4),

then e = Me defines an equivalence relation in L4 and
hence subdivides this algebra into equivalence classes.
The components of Z map as follows under M :

e1 = a−1
2 a4e

1 + a1(e2 − e4)
e2 = e2

e3 = a−1
2 a3e

2 + a−1
2 e3

e4 = e4

Therefore the optimal system of one-dimensional sub-
spaces of L4, obtained through the adjoint group GA,
are as follows:

Z Generator Restrictions
Z(1) αZ2 + Z4 α 6= 1
Z(2) αZ2 + βZ3 + Z4 α 6= β
Z(3) Z1 + Z2 + Z4

Z(4) Z1 + Z2 + αZ3 + Z4

Z(5) Z3

Z(6) Z3 + Z4

Z(7) Z1 + Z3

Consider
Z(1) = αZ2 + Z4,

with α 6= 1 .

Z(1) = α(g
∂

∂g
+ ux

∂

∂ux
) + 2f

∂

∂f
− ux

∂

∂ux

1.3 One-dimensional Optimal System 
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= αg
∂

∂g
+ 2f

∂

∂f
+ (α− 1)ux

∂

∂ux
.

From the characteristic equation

dg

αg
=
df

2f
=

dux
(α− 1)ux

,

we obtain

f = u
2

α−1
x and g = u

α
α−1
x .

To obtain the extending vector X5, we let

Z̃ = αE5+E7

= α(u
∂

∂u
+ g

∂

∂g
) + x

∂

∂x
+ 2f

∂

∂f
.

Let X5 be the projection of Z̃ onto the (x, t, u)− space,
i.e

X5 = x
∂

∂x
+ αu

∂

∂u
.

For the vectors Z(i), i = 2, 3, · · · , 7, we proceed in a sim-
ilar manner in order to determine the functions f, g and
the extension vector X5. The classification for equation
(2) is given in the following table:

Z(i) f(ux) g(ux) X5 Restriction

Z(1) u
2

α−1
x u

2
α−1
x x ∂

∂x + αu ∂
∂u α 6=1

Z(2) u
2

α−1
x α−1u

2
α−1−β
x x ∂

∂x + (αu+ βt) ∂
∂u α 6=β

Z(3) e2ux C x ∂
∂x + (u+ x) ∂

∂u

Z(4) e2ux αux x ∂
∂x + (u+ x+ αt) ∂

∂u

Z(5)

Z(6) u−2
x − lnx x ∂

∂x + ut ∂∂u α 6= 1
Z(7) C ux (t+ x) ∂

∂u
(20)

In what follows we will give the classification for equa-
tion (2) for the listed generators X5.

1. If X5 = x ∂
∂x + (x+ u) ∂

∂u then
f = e2ux , and g = c
2. If X5 = x ∂

∂x + (x+ u+ αt) ∂
∂u then

f = e2ux , and g = αux
3. If X5 = (x+ t) ∂

∂u then
f = c, and g = ux
4. If X5 = x ∂

∂x + t ∂∂u then
f = u−2

x , and g = − lnux
5. If X5 = x ∂

∂x + αu ∂
∂u then

f = u
2

α−1
x , and g = u

2
α−1
x for α 6= 1

6. If X5 = x ∂
∂x + (αu+ βt) ∂

∂u then

f = u
2

α−1
x , and g = α−1(u

2
α−1
x − β) for α 6= β

Each extension will give us a five-dimensional Lie al-
gebra L5. From the above we will concentrate on the
first four whose equations are given by the following

utt + ut = e2uxuxx + c. (21)

utt + ut = e2uxuxx + αux (22)

utt + ut = cuxx + ux. (23)

utt + ut = u−2
x uxx + lnux. (24)

From the latter we have five-dimensional Lie alge-
bras for each of the equations (21) to (24). We will
only construct optimal systems of one-dimensional Lie
subalgebras for the first three equations. We will then
calculate the invariant solutions using some of these one-
dimensional subalgebras.

Consider the equation

utt + ut = e2uxuxx + c, (25)

whose set of generators is given by X1 = ∂
∂x , X2 =

∂
∂t , X3 = ∂

∂u , X4 = e−t ∂∂u , X5 = x ∂
∂x + (u+ x) ∂

∂u .
We will use the one dimensional subalgebra X = X1+

(1 + ρ)X3 i.e.

X =
∂

∂x
+ (1 + ρ)

∂

∂u
. (26)

The characteristic equation of the above generator
(26) is given by

dt

0
=
du

k
=
dx

1
where k = 1 + ρ. (27)

From equation (27) the invariants are given by

I1 = u− kx ; I2 = t. (28)

If we define I1 = φ (I2) for some function φ, then

u (t, x) = kx+ φ (t) . (29)

The substitution of (29) into equation (25) asserts
that

ut = φ
′
(t)

utt = φ
′′

(t)
ux = k
uxx = 0

hence

utt + ut − e2uxuxx − c = φ
′′

(t) + φ
′
(t)− c = 0. (30)

The equation (30) simplifies to

φ
′′

(t) + φ
′
(t) = c, (31)

which is a second order ODE whose solution is given by

φ (t) = c1 + c2e
−t + ct− c. (32)

Thus the invariant solution of (25) is given by

u (t, x) = kx+ c1 + c2e
−t + ct− c, (33)

1.4 Invariant Solutions 
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where k = 1 + ρ.
Consider the equation

utt + ut = e2uxuxx + αux (34)

which has the following set of generators X1 =
∂
∂x , X2 = ∂

∂t , X3 = ∂
∂u , X4 = e−t ∂∂u , X5 =

x ∂
∂x + (u+ x+ αt) ∂

∂u .
We will use the one dimensional subalgebra X = X1+

X4 i.e.

X =
∂

∂x
+ e−t

∂

∂u
. (35)

The characteristic equation of the above generator
(35) is given by

dt

0
=

du

e−t
=
dx

1
(36)

From equation (36) the invariants are given by

I1 = u− xe−t ; I2 = t. (37)

If we define I1 = φ (I2) for some function φ, then

u (t, x) = xe−t + φ (t) . (38)

The substitution of (38) into equation (34) asserts
that

ut = −xe−t + φ
′
(t)

utt = xe−t + φ
′′

(t)
ux = e−t

uxx = 0,

hence

utt+ut−e2uxuxx−αux = φ
′′

(t)+φ
′
(t)−αe−t = 0. (39)

The equation (39) simplifies to

φ
′′

(t) + φ
′
(t) = αe−t, (40)

which is a non-linear second order ODE whose solu-
tion is given by

φ (t) = c1 + c2e
−t + αe−t − αte−t.

The invariant solution of utt + ut = e2uxuxx + αux is
given by

u (t, x) = xe−t + c1 + c2e
−t + αe−t − αte−t. (41)

Consider the equation

utt + ut = cuxx + ux (42)

whose set of generators is given by X1 = ∂
∂x , X2 =

∂
∂t , X3 = ∂

∂u , X4 = e−t ∂∂u , X5 = (x+ t) ∂
∂u .

We will use the one dimensional subalgebras X =
αX1 +X5 and X = βX2 +X5 i.e. X = α ∂

∂x + (x+ t) ∂
∂u ,

and X = β ∂
∂t + (x + t) ∂

∂u respectively to calculate the
invariant solutions of (42).

Consider the one dimensional subalgebra

X = α
∂

∂x
+ (x+ t)

∂

∂u
. (43)

The characteristic equation of () is given by

dx

α
=

du

x+ t
=
dt

0
. (44)

From equation () the invariants are given by I1 =

αu− 1
2 (x+ t)

2
, I2 = t.

If we let I1 be a function of I2,

u(t, x) =
1

α

{
(x+ t)

2

2
+ φ (t)

}
where φ (t) = I1 i.e I1 = φ (I2) .

(45)
The substitution of (45) into (42) asserts that

ut = 1
α

{
(x+ t)− φ′ (t)

}
utt = 1

α (1− φ′′ (t))
ux = 1

α (x+ t)
uxx = 1

α .

(46)

Hence utt + ut − cuxx − ux =
1
α

{
1− φ′′ (t) + (x+ t)− (x+ t)− c− φ′ (t)

}
= 0,

simplifies to

φ
′′

(t) + φ
′
(t) = 1− c. (47)

Solving the equation (47) we obtain that

φ (t) = c1 − c2e−t + (1− t) (1− c) . (48)

Therefore the invariant solution of (42) is given by

u(t, x) =
1

α

{
(x+ t)

2

2
+ c1 − c2e−t + (1− t) (1− c)

}
.

(49)
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