
The notion of Li-Yorke chaos in a topological dynamical

system was first used by T. Y. Li and J. A. Yorke in their

paper [3]. There are several other types of chaos available in

the literature. Devaney chaos, Distributional chaos, Bruckner-

Ceder chaos, Wiggins chaos etc. are some of them (See [19,

5, 16, 10]). Relationship between these chaos are analysed by

several researchers. See for example; Huang and Ye [11] has

shown that Devaney’s chaos implies Li-Yorke chaos. Research

work has been carried out in the areas of Li-Yorke chaos and

Devaney chaos in linear dynamics also. The introduction of

Irregular vectors make it possible to bring Li-Yorke chaos

in linear dynamics setting whereas hypercyclic vectors and

denseness of periodic points brings chaos in the sense of

Devaney.

The Li-Yorke chaotic eigen set of a bounded linear operator

has recently been intoduced in [4] and found that the Li-Yorke

chaotic eigen set of a positive integer multiple of the backward

shift operator on `2(N) is a disk in the complex plane C. In this

paper, we will be concerned with the Li-Yorke chaotic eigen

set of the direct sum of linear operators, compact, normal and

self adjoint operators.

Let X be an infinite-dimensional separable complex Banach

space, H be a separable complex Hilbert space. B(X) and

B(H) denote the space of all bounded linear operators on X

and H respectively.

Lemma II. 1 ([1]): Let K be a compact subset of C and let C

be a connected component of K. Assume that C is contained

in some open set Ω ⊂ C. Then one can find a clopen (i.e,

closed and open) subset σ ⊂ K such that C ⊂ σ ⊂ K.

Theorem II. 2 ([1]) (RIESZ DECOMPOSITION THEOREM):

Let T ∈ B(X), and assume that the spectrum of T can be

decomposed as σ(T ) = σ1 ∪ σ2 · · · ∪ σN , where the sets σi

are closed and pairwise disjoint. Then one can write X =
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X1 ⊕ X2 · · · ⊕ XN , where each Xi is a closed T -invariant

subspace and σ(T|Xi
) = σi for each i ∈ {1, 2, · · · , N}

Definition II.3 ([19]) (Devaney Chaos) Let f : X −→ X be

a continuous map acting on some metric space (X, d). The

map f is said to be Devaney chaotic if

(1) f is topologically transitive : for any pair U, V of non-

empty open subsets of X , there exists some n ≥ 0 such

that fn(U) ∩ V 6= ∅

(2) f has a dense set of periodic points (x ∈ X is a periodic

point of f if fk(x) = x for some k ≥ 1);

(3) f has a sensitive dependence on initial conditions : there

exists δ > 0 such that, for any x ∈ X and every

neighbourhood U of x, one can find y ∈ U and an integer

n ≥ 0 such that d(fn(x), fn(y)) ≥ δ.

Definition II. 4 ([7]) (Li - Yorke chaotic pair) Let f : X −→

X be a continuous map acting on some metric space (X, d).

The set {x, y} ⊂ X is said to be a Li-Yorke chaotic pair, if

lim sup
n→∞

d(fn(x), fn(y)) > 0 and lim inf
n→∞

d(fn(x), fn(y)) =

0.

Definition II. 5 ([7]) (scrambled set) A subset Γ ⊆ X is

called a scrambled set if each pair of two distinct points in Γ

is a Li - Yorke chaotic pair.

Definition II. 6 ([7]) (Li - Yorke chaos ) Let f : X −→ X be a

continuous map acting on some metric space (X, d). The map

f is said to be Li-Yorke chaotic, if there exists an uncountable

scrambled set.

Theorem II.7 ([12]) f Devaney chaotic⇒ f Li-Yorke chaotic

Definition II. 8 ([9]) (Irregular vector) Let T ∈ B(X). An

irregular vector for an operator T is an x ∈ X such that

lim supn ‖ Tnx ‖ =∞ and lim infn ‖ Tnx ‖ = 0.

Theorem II. 9 ([5]) Let T : X −→ X be an operator. The

following assertions are equivalent:

(i) T is Li-Yorke chaotic.

(ii) T admits a Li-Yorke pair.

(iii) T admits an irregular vector.

Corollary II. 10([5]) Let T : X −→ X be a Li-Yorke chaotic

operator. The following assertions hold

(i) σ(T ) ∩ ∂D 6= ∅

(ii) Tn is Li-Yorke chaotic for every n ∈ N

(iii) T is not compact

(iv) T is not normal

Definition II. 11 ([4]) (Li-Yorke Chaotic Eigen Set)

Let T ∈ B(X). The Li-Yorke chaotic eigen set

of T , denoted by LY (T ), is defined by LY (T ) ={
λ ∈ C

∣∣∣ T − λI is Li-Yorke chaotic
}

.

Theorem 11. 12 ([4]): The Li - Yorke chaotic eigen set of the

positive integer multiple of backward shift operator on `2(N):

T (x1, x2, · · · ) = (x2, x3, · · · )

is LY (nT ) = (n+ 1)D for any n > 1, n ∈ N

Definition III. 1 ([2]) Let Xn, n ≥ 1 be a countable collection

of separable Banach spaces. The direct sum of the spaces Xn

is defined as ⊕∞n=1Xn = {(xn)n≥1 : xn ∈ Xn}

Definition III. 2 ([2]) Let Tn, n ≥ 1 be operators on separable

Banach spaces Xn, n ≥ 1. Then the direct sum of the operators

Tn, defined by (⊕∞n=1Tn) (xn)n = (Tnxn)n, is an operator on

⊕∞n=1Xn.

Remark III. 3

(T1 ⊕ T2) (x1, x2) = (T1(x1), T2(x2))

(T1 ⊕ T2)
2

(x1, x2) =
(
T 2
1 (x1), T 2

2 (x2)
)

In general, (T1 ⊕ T2)
n

(x1, x2) = (Tn
1 (x1), Tn

2 (x2))

In this section, we prove that the Li-Yorke chaotic eigen set

of T1 ⊕ T2 is exactly same as the Li-Yorke chaotic eigen sets

of T1 and T2 taken together.

Theorem IV. 1 : If T1, T2 ∈ B(X), then LY (T1 ⊕ T2) =

LY (T1)
⋃

LY (T2)

Proof. By definition, we have

LY (T1 ⊕ T2) =
{
λ ∈ C

∣∣∣ T1 ⊕ T2 − λI is Li-Yorke chaotic
}

Assume that T1⊕T2−λI is Li-Yorke chaotic and (x, y) is an

irregular vector for T1⊕T2−λI . Then there exist a sequence
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an such that (T1 ⊕ T2 − λI)an(x, y) −→ 0 (see properties 2

in [9]). This implies that (T1 − λI)an(x) −→ 0 and (T2 −

λI)an(y) −→ 0. On the otherhand, there is a sequence bn

such that
∥∥(T1 ⊕ T2 − λI)bn(x, y)

∥∥ −→∞ which means that

∥∥(T1 − λI)bn(x)⊕ (T2 − λI)bn(y)
∥∥2 −→∞

⇔
∥∥(T1 − λI)bn(x)

∥∥2 +
∥∥(T2 − λI)bn(y)

∥∥2 −→∞
(see Lemma 2. 1 in [9]) which implies that atleast one of them

has a subsequence converging to ∞. Thus we see that there

exist sequences an and bn such that either

lim ‖(T1 − λI)an(x)‖ = 0 and lim
∥∥(T1 − λI)bn(x)

∥∥ =∞

(1)

or

lim ‖(T2 − λI)an(y)‖ = 0 and lim
∥∥(T2 − λI)bn(y)

∥∥ =∞

(2)

Equations (1) and (2) says that x is an irregular vector for

T1 − λI and y is an irregular vector for T2 − λI . Thus we

have shown that (x, y) is an irregular vector for T1⊕T2−λI

if and only if x is an irregular vector for T1 − λI or y is an

irregular vector for T2−λI . Therefore, those λ’s which makes

T1 ⊕ T2 − λI as Li-Yorke chaotic will makes either T1 − λI

or T2 − λI as Li-Yorke chaotic and hence LY (T1 ⊕ T2) =

LY (T1)
⋃

LY (T2).

Our goal in this section is to investigate the Li-Yorke chaotic

eigen set of self adjoint operators, which plays a vital role,

especially in the field of quantum mechanics. Also we dis-

cuss the Li-Yorke Chaotic Eigen Set of compact and normal

operators.

Lemma V. 1 ([5]): Let T ∈ B(H) be a compact operator. Then

T is not Li-Yorke chaotic.

Lemma V. 2 ([5]): Let T ∈ B(H). If T is Li-Yorke chaotic,

then σ(T ) ∩ T 6= ∅, where T is the unit circle in C.

Theorem V. 3 : Let T be a compact operator. Then LY (T ) ⊆

T.

Proof. Let σ(T ) be the spectrum of T . Since T is compact,

then σ(T ) is countable and σ(T ) ⊃ {0}. We have any

countable subset of C is totally disconnected, so that {0} is

a connected component of σ(T ). If we let B1 = {0}, then

B1 ∩ T = ∅ so that B1 ⊂ D or B1 ⊂ C \ D. By lemma

II. 1, we can find a clopen set σ1 ⊂ σ(T ) such that B1 =

{0} ⊂ σ1 ⊂ D or B1 = {0} ⊂ σ1 ⊂ C \ D. Thus we have

σ(T ) = σ1∪σ2 where σ1 = σ(T1) and σ2 = σ(T )\σ1. Now,

for any λ /∈ T, by the application of Riesz’s decomposition

theorem, we have T −λI = T1⊕T2 : X1⊕X2 −→ X1⊕X2,

where X = X1 ⊕ X2, σ(T1) ∩ T = ∅ and X2 is finite

dimensional. By applying lemma V. 2, T1 is not Li-Yorke

chaotic. Since T2 is a finite - dimensional operator, then it is

compact. By applying Lemma V. 1, T2 is not Li-Yorke chaotic.

Thus we have T1 as well as T2 is not Li-Yorke chaotic and

therefore T−λI is not Li-Yorke chaotic. Thus, we have shown

that for λ /∈ T, T − λI is not Li-Yorke chaotic which implies

that λ /∈ LY (T ). Hence, LY (T ) ⊆ T.

Example V. 4:- Let T be the unilateral forward weighted shift

operator on `2(N)

T (x1, x2, · · · , ) = (0, w1x1, w2x2, · · · , wnxn, · · · , )

with weight sequence (wn)n>1 −→ 0. Then LY (T ) ⊆ T.

Proof. Since the weight sequence (wn) is converging to 0 as

n −→ ∞, we can easily approximate T by compact operator

Tn(x) = (0, w1x1, w2x2, · · · , wnxn, 0, 0, · · · ) and therefore

T becomes compact. Then by Theorem V. 3, LY (T ) ⊆ T.

Remark V. 5:-

If T is a normal operator, then T−λI is also a normal operator.

Proof. If T is normal, then we have TT ? = T ?T .

Now, Consider

(T − λI)?(T − λI) = T ?T − λT − λT ? + |λ|2I

= TT ? − λT ? − λT + |λ|2I

= (T − λI)(T − λI)?

which shows that T − λI is normal.
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Theorem V. 6: Let T ∈ B(H) be a normal operator. Then

LY (T ) = ∅

Proof. By Corollary II. 10 and using Remark V. 5, T −λI is

not Li-Yorke chaotic. Hence by definition II. 11, LY (T ) = ∅.

Theorem V. 7: Let T ∈ B(H) be a self adjoint operator. Then

LY (T ) = ∅

Proof. Since every self adjoint operators are normal and hence

by Theorem V. 6 , LY (T ) = ∅.
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