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Abstract: - Part II of this paper presents a set of comprehensive algebraic operators on the extended mathematical 

structures of the general probability theory. It is recognized that the classic probability theory is cyclically defined among a 
small set of highly coupled operations. In order to solve this fundamental problem, a reductive framework of the general 
probability theory is introduced. It is found that conditional probability operation on consecutive events is the key to 
independently manipulate other probability operations. This leads to a revisited framework of rigorous manipulations on 
general probabilities. It also provides a proof for a revisited Bayes’ law fitting in more general contexts of variant sample 
spaces and complex event relations in fundamental probability theories. The revisited probability theory enables a rigorous 
treatment of uncertainty events and causations in formal inference, qualification, quantification, and semantic analysis in 
contemporary fields such as cognitive informatics, computational intelligence, cognitive robots, complex systems, soft 
computing, and brain informatics. 
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1. Introduction 

Probability theory is a branch of mathematics that 
deals with uncertainty and probabilistic norms of 
random events and potential causations as well as 
their algebraic manipulations. The development of 
classic theories of probability can be traced back to 
the work of Blaise Pascal (1623-1662) and Pierre de 
Fermat (1601-1665) [Todhunter, 1865; Venn, 1888; 
Hacking, 1975]. Many others such as Jacob 
Bernoulli, Reverend T. Bayes, and Joseph Lagrange 
had significantly contributed to probability theory. 
Theories of probability in its modern form was 
unified by Pierre Simon and Marquis de Laplace in 
the 19th century [Kolmogorov, 1933; Whitworth, 
1959; Hacking, 1975; Mosteller, 1987; Bender, 
1996]. Set theories [Cantor, 1874; Zadeh, 1965, 
1968, 1996, 2002; Artin, 1991; Ross, 1995; Pedrycz 
& Gomide, 1998; Novak et al., 1999; Potter, 2004; 
Gowers, 2008; BISC, 2013; Wang, 2007] provide an 
expressive power for modeling the discourse and 
axioms of probability theories. A theory of fuzzy 
probability and its algebraic framework has been 
presented in [Wang, 2015e]. 
 
     The philosophy of probability theory is analogy-
based where large-enough experiments are required 

for establishing prior probability estimations and 
norms in a certain sample space. The main 
methodology of classic probability theory is an 
external or black box predication for a set of 
uncertain phenomena of a complex system without 
probing into its internal mechanisms. Although the 
range of prior probability for any predicated event is 
[0, 1], the range of posterior probability is merely 
reduced to {0, 1} immediately after the given event 
has realized in a certain probability space.  
 
     It is recognized that the classic probability theory 
is cyclically defined among a set of highly coupled 
operations where only logically conjunctive, 
disjunctive, and conditional events are considered. 
This paper presents a revisited theory of probability, 
which extends classic probability theory to a 
comprehensive set of probability operations. An 
extended set of algebraic operators on the revisited 
mathematical model of probability is rigorously 
defined in Section 2, which extends the traditional 
probability operations of addition, multiplication, 
and condition to subtraction and division. The 
conventional mutual-coupled probability operations 
are independently separated in a deductive structure 
on the basis of the refined model of conditional 
probability. Formal properties of probability and 
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rules of algebraic operations on general probabilities 
are summarized in Section 3. Proven theorems and 
practical examples are provided throughout the 
paper for elaborating each of the fundamental 
definitions and operations in the general theory of 
probability. The revisited theory of probability may 
be used to solve a number of challenging problems 
in classic probability theory such as complex 
sequential, concurrent, and causal probabilities as 
well as real-time probabilities under highly 
restrictive timing constraints. 
 

Due to its excessive length, this paper is 
presented in two parts on: i) The mathematical 
models of general probability; and ii) The algebraic 
operations of the extended probability theory. This 
paper is the second part of the general probability 
theory on formal algebraic operators on the 
extended mathematical structures of the general 
probability theory. 

 
 

2. Algebraic Operations on the 
    General Probability Models 
 
The theoretical framework of general probability is 
formally represented by the mathematical model and 
the set of algebraic operators of probability as 
outlined in Sections 3 and 4 of Part I. A set of six 
probability operators are identified as those of 
conditional, multiplication, division, addition, 
subtraction, and complement operations, which stem 
from a unified mathematical model of the 
conditional probability. Each probability operator is 
formally defined and elaborated in the following 
subsections towards an algebraic framework of the 
theory of general probability. 
 
 
2.1 The Conditional Operator on 
Consecutive Probabilities 
 

The conditional operation of consecutive 
probabilities deals with coupled influences between 
related events in both invariant and variant sample 
spaces. Because conditional probability forms the 
foundation for all other operators in the algebraic 
system of the general probability theory, it must be 
rigorously analyzed in order to avoid the dilemma of 
the cyclic definition as in classic probability theory. 
  
     The nature of conditional probability is 
constrained by different contexts determined by 
three control factors of the Cartesian product, 

S R D  , as defined in Table 1 where S demotes 
the sample space (variant/invariant), R  relation of 
events (joint/disjoint), and D  dependency of events 
(dependent/ independent/mutually-exclusive (ME)). 
Therefore, the contexts of the general probability are 
classified into four categories according to the 
probability characteristics in the Cartesian product, 
i.e.: a) invariant sample space and disjoint/ME-
dependent events, b) invariant sample space and 
joint/independent events, c) variant sample space 
and disjoint/independent events, and d) invariant 
sample space and joint/dependent events.  
 
 

Table 1. Contexts of Relations and Dependencies of 
Events in the General Probability Theory 

 
No,

 

 

Category Definition 
( )S R D   

Sample 
space 

(S) 

Events

Relation (R) Dependency (D)

i Disjoint/mutually-exclusive 
(ME) events in invariant 
sample space  

S R D       'S S  X Y   ( ),MEX Y 
 

ii Joint/independent events in 
invariant sample space 

S R D   X Y   XY

iii Disjoint/independent events 
in variant sample space 

'S R D    'S S  X Y   XY

iv Joint/dependent events in 
variant sample space 

'S R D  X Y   ( ')X Y Y 

 
    Theorem 1. The conditional operator on 
consecutive probabilities of an event b influenced 
by that of a preceding event a in the sample space S 
in U, ( | )P b a , is determined by a ratio between the 

changed sizes of sets of succeeding  events B’ and of 
the sample space S’ given , and 'a A S b B S    , 
i.e.: 

 
 
 
 
  

 

( | ) ( )

)   Invariant , unrelated , and ME-dependent :  

     0

)  Invariant , related ,  and independent :  

     ( )

) Variant ', unrelated , and independent :  '

     

P b a P A B

i S R D S R D

ii S R D S R D

P b

ii S R D S R D



 

 

 



 

( ) ( )
'( ) ,  ( )

1 ( ) | |

) Variant ', related  and dependent :  '

( ) ( ) ( )
     "( ) ,  ( )

1 ( ) | |

i
i

i
i

i

P b P a
P b P a

P a A

iv S R D S R D

P b P b P b
P b P b

P b B









   

 
   


                                          (1) 

 
 
 
 
 

     Proof. Theorem 1 can be proven in each of the 
four contexts as defined in Table 1 according to 
Definition 10 in Part I as follows:     
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, , , and b ',

| ' |
  ( | ) ( ) ,

| \ |

)   ' ( , ME),

| |
     0

| |

)  '

a b a A S B S

B
P b a P A B a A b B

S a

i S S A B A B

S

ii S S A B A

    

     

         




       



,

| |
     ( )

| |

) '

B

B
P b

S

iii S S A B A



        ,

| | ( ) ( )
     = '( ),  ( )

| | 1 1 ( ) | |

) ',

( ) ( )| | 1 ( )
     ''( ),  ( )

| | 1 1 ( ) | |

i
i

i
i

i

B

B P b P a
P b P a

S P a A

iv S S A B A B

P b P bB P b
P b P b

S P b B














 
 

        


     

   (2) 

 
  

     It is noteworthy in Theorem 1 that S is variant in 
general as constrained by Theorem 1 in Part I 
because of the coupling of the conditional events a 
and b. In other words, the general probability in an 
invariant sample space is only a special case of that 
of the general variant context.   
     Example 1. In an invariant sample space 

 1 { 0.68, 0.32}S H T= = =  as modeled in Example 2 in 

Part I, the events head (H) and tail (T) are mutually 
exclusive in a single toss of the coin. That is, both 
events cannot happen simultaneously. Once a head 
is observed, tail will certainly not appear in the same 
trail, and vice versa. This is a typical context of 
mutually exclusive ( H T    or disjoint), and 
dependent ( |  or |T H H T    ) events of 

conditional probability according to Theorem 1(i) 
where  ( | ) 0,   and ( )P T H if H T H T     . 
     It is noteworthy that a pair of mutually exclusive 
events  and X Y  are dependent because

( ) ( | ) 0X Y X Y P Y X     , due to the 
interactive influence between the non-independent 
events.       
     Example 2. Given a bag containing five black 
balls (B) and five white balls (W) in 

  

5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
= =

= Î = Î =  as 

modeled in Example 3 in Part I. Assume the ball 
drawn from the bag will be returned to the bag 
before the next trial, i.e., '

2 2S S , it is a case of 

invariant sample space, related and independent 
events of conditional probability according to 
Theorem 1(i) as follows: 
 

( | ) ( ) 0.45

( | ) ( ) 0.55

( | ) ( ) 0.45

( | ) ( ) 0.55

P W B P W

P B W P B

P W W P W

P B B P B

 
 
 
 

 

     Example 3. Reconsider Example 2 in 

  

5 10
'
2

1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
= =

= Î = Î = where 

the ball drawn from the bag will not be returned, i.e., 
'
2 2S S , it becomes a case of variant sample space, 

disjoint /independent or joint/dependent events of 
conditional probability according to Theorem 1(iii) 
or 1(iv), respectively, as follows:  
 

( ) ( )
( | ) '( ) ,  ( ) 0.55 / 5 0.11

1 ( ) | |

0.45 0.45
            0.51

1 0.11 0.89
( ) ( )

( | ) '( ) ,  ( ) 0.45 / 5 0.09
1 ( ) | |

0.55 0.55
           0.60

1 0.09 0.91
( ) ( )

( | ) ''( )
1

PW P B
PW B P W P b

iP b B
i

P B PW
P B W P B P w

iP w W
i

P B P b
iP B B P B

= = = = =
-

= = =
-

= = = = =
-

= = =
-

-
= = ,  ( ) 0.11

( )

0.55 0.11 0.44
           0.49

1 0.11 0.89
( ) ( )

( | ) ''( ) ,  ( ) 0.09
1 ( )

0.45 0.09 0.36
            0.40

1 0.09 0.91

P b
iP b

i

P W P w
iP W W P W P w

iP w
i

=
-

-
= = =

-
-

= = =
-

-
= = =

-
 
 

     Contrasting the results obtained in Examples 2 
and 3, it is noteworthy that the conditional 
probabilities in Contexts (iii) and (iv) of Theorem 1 
have increased or decreased, respectively, due to the 
size shrinkages of sample spaces and/or the number 
of events as a result of the conditional coupling. The 
changes between the variant ( '

2S ) and invariant (
2S ) 

sample space can be analyzed as follows: 
 
 

'( | ) ( | ) 0.51 0.45 0.06

'( | ) ( | ) 0.49 0.55 0.06

'( | ) ( | ) 0.60 0.55 0.05

'( | ) ( | ) 0.40 0.45 0.05

P W B PW B

P B B P B B

P B W P B W

P W W PW W

ìï - = - =ïíï - = - = -ïî
ìï - = - =ïíï - = - = -ïî

 

 

     The results indicate that conditional probabilities 
in the variant and invariant sample spaces may be 
significantly different due to the increment or 
decrement of coupled influences. 
 
2.2 The Complement Operator on the 
Context of Probability 
 

     Theorem 2. The complement of probability of an 
event a A S   in U, ( )P a , is determined by the 

probability of all events in S excluding only that of 
a, i.e.: 

( ) 1 ( )P a P a

                         (3) 
 
 

     Proof. Theorem 2 can be proven according to 
Definition 10 in Part I as follows:   
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 and ,

( ) ( | )

| | | \ | | | | |
       

| | | | | | | |

       1 ( )

a A S a A S

P a P A a A S a A S

A S A S A

S S S S

P a

    

     

   

 

            (4) 

 

 

     Example 4. On the basis of Example 4 in Part I, 
the complement of probability in the sample space 

   
2
1 { 0.46, 0.22, 0.22, 0.10}S HH HT TH TT= = = = =  can be 

determined according to Theorem 2 as follows: 
 
 
 

( ) 1 ( ) 1 0.46 0.54

( ) 1 ( ) 1 0.22 0.78

P HH P HH

P TH P TH

    

    
 

 
 
 

     Corollary 1. The double complements of the 
general probability of an event a A S   in U, ( )P a , 

results in an involution to the same probability, i.e.: 
 
 
 

( ) 1 ( ) 1 (1 ( )) ( )P a P a P a P a                 (5) 
 
 
2.3 The Multiplication Operator on 
Disjunctive Probabilities 
 
 

      Theorem 3. The multiplication of probabilities 
of disjunctive events a and b in the sample space S 
in U, ( )P a b , is determined by the product of the 

probabilities of ( ) and ( | )P a P b a  given 

 and 'a A S b B S    , i.e.:  
 
 

 

( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME-dependent :  

      0

)   Invariant , related ,  and independent :  

      ( ) ( )

) Variant ', unrelated , and indepen

P a b P A B P a P b a

i S R D S R D

ii S R D S R D

P a P b

iii S R

  

 

 





  

dent :  '

( ) ( )
      ( ) '( ) ( ) ,   ( )

1 ( ) | |

) Variant ', related  and dependent :  '

( ) ( ) ( )
     ( ) ''( ) ( ) ,   ( )

1 ( ) | |

i
i

i
i

i

D S R D

P b P a
P a P b P a P a

P a A

iv S R D S R D

P b P b P b
P a P b P a P b

P b B







  
   

 
   


                                     (6) 

 
     Proof. Theorem 3 can be proven according to 
Definition 10 in Part I and Theorem 1 as follows:     
 

 

 

, , , and b ',

| \ || | | |
  ( ) ( ) ,

| | | | | \ |

               ( ) ( | )

i
i

i

a b a A S B S

B aA B A
P a b P A B a A

S S S a

P a P b a

    


      



 

)    ' ( , ME),

       0

)   '

i S S A B A B

ii S S A B A

         

       



    

,

    ( ) ( )

) '

B

P a P b

iii S S A B A        ,

( ) ( )
      ( ) ( ) '( ),   ( )

1 ( ) | |

) ',

( ) ( ) ( )
     ( ) ( ) ''( ),  ( )

1 ( ) | |

i
i

i
i

i

B

P b P a
P a P a P b P a

P a A

iv S S A B A B

P b P b P b
P a P a P b P b

P b B









   


       
   



    (7) 

 
 
 
 

     Example 5. Given an invariant sample space 
 1 { 0.68, 0.32}S H T= = =  as modeled in Example 2 in 

Part I, i.e., '
1 1S S , the following disjunctive 

probabilities for two consecutive tosses of the 
uneven coin can be derived by a probability 
multiplication according to Theorem 3(ii): 
 
 

( ) ( ) ( ) 0.68 0.32 0.22

( ) ( ) ( ) 0.68 0.68 0.46

( ) ( ) ( ) 0.32 0.68 0.22

( ) ( ) ( ) 0.32 0.32 0.10

P H T P H P T

P H H P H P H

P T H P T P H

P T T P T P T

    
    
    
    

 

 
 
 
         

     Example 6. Given a variant sample space 
5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
= =

= Î = Î =  as 

modeled in Example 3 in Part I, i.e., '
2 2S S , the 

following  probability multiplications for two 
consecutive draws of the uneven balls in the bag can 
be obtained according to Theorem 3(iii) or 3(iv), 
respectively: 
 

 

 

( ) ( )
( ) ( ) '( ) , ( ) 0.09

1 ( )
0.68 0.32 0.22

            0.24
1 0.09 0.91

( ) ( )
( ) ( ) '( ) , ( ) 0.11

1 ( )
0.32 0.68 0.22

            0.25
1 0.11 0.89

( )
( ) ( ) ''( ) ( )

i
i

i
i

P B PW
P B W P B P W P w

P w

PW P B
PW B PW P B P b

P b

P B P
P B B P B P B P B

´ = = =
-

·
= = =

-

´ = = =
-

·
= = =

-
-

´ = =  

 

( )
, ( ) 0.11

1 ( )
0.68(0.68 0.11) 0.39

            0.44
1 0.11 0.89

( ) ( )
( ) ( ) ''( ) ( ) , ( ) 0.09

1 ( )
0.32(0.32 0.09) 0.07

             0.08
1 0.09 0.91

i
i

i

i
i

b
P b

P b

PW P w
PW W PW P W PW P w

P bw

=
-

-
= = =

-
-

´ = = =
-

-
= = =

-
 
 

     Corollary 2. The revisited Bayes’ law of 
probability can be rigorously derived based on 
Theorem 3 as follows: 
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, , ,  ',  and ' ,

  ( ) ( ) ( | ),  

a b a A S b B S S S

P a b P a P b a A B A

     

   
               ( ) ( )

               ( ) ( | )

               ( )

( | ) ( | )
,  '

( ) ( )
 

B

P a P b

P b P a b

P b a

P b a P a b
S S A B A

P b P a



 

    


 B B 

( | ) ( | )
,  Otherwise

( ) ( )

A

P b a P a b

P b P a




 


                                                (8) 
 
 
 

     Corollary 2 and Theorem 3 indicate that Bayes’ 
law in classic probability theory is a special case of 
general  probability multiplication, which may only 
hold iff ' |S S A B A BB    , i.e., when the 

conditions for invariant sample space and related but 
independent events are satisfied.        
 
 
2.4 The Division Operator on Composite 
Probabilities 
 
 

The algebraic operation of probability division is an 
inverse operation of probability multiplication, 
which is not defined in traditional probability 
theory.     
 
     Theorem 4. The division of probability of an 
event b by that of another event a in the sample 
space S in U, ( / )P b a , is determined by the ratio of 

their probabilities where  and 'a A S b B S     i.e.: 
 

  

     

 

| | ( )
( / ) ( ) ,  0 ( ) ( )

| | ( )

)    Invariant , unrelated , and ME dependent :  

    0

)   Invariant , related ,  and independent :  

( )
     

( )

) Variant ', unrelate

B P b
P b a P P a P b

A P a

i S R D S R D

ii S R D S R D

P b

P a

iii S

  

 

 





 

d , and independent :  '

'( )
     

( )

)Variant ', related  and dependent :  '

''( )
    

( )

R D S R D

P b

P a

iv S R D S R D

P b

P a









  





 




                                         (9) 
 
 
 

     Proof. Theorem 4 can be proven according to 
Definition 10 in Part I as well as Theorems 1 and 
Theorem 3 as follows:     

   

   

       

, , ,  and ',

| |
  ( / ) (| | / | |)

| |

| | / | |
              ,  0 | | | |

| | / | |

( )
              ,  0 ( ) ( )

( )

)   ' ( , ME),

| | / | | ( ) 0
    

| | / | | ( ) ( )

a b a A S b B S

B
P b a P B A

A

B S
A B

A S

P b
P a P b

P a

i S S A B A B

B S P b

A S P a P a

    

 

  

  

       

 



0,  ( )

)  '

A B

ii S S A B A

  

       ,

| | / | | ( )
     

| | / | | ( )

) '

B

B S P b

A S P a

iii S S A B A



       ,

| | / | ' | '( ) 1 ( )
     ,  

| | / | | ( ) ( ) 1 ( )

) ' ',

( ) ( )| ' | / | ' | "( ) 1
     ,  

| | / | | ( ) ( ) 1 ( )

i
i

i
i

i

B

B S P b P b
a A

A S P a P a P a

iv S S A B A B

P b P bB S P b
b B

A S P a P a P b














  


       


    
 (10) 

 

 

     Example 7. In the invariant sample space 

1 { 0.68,  0.32}S H T= = =  as modeled in Example 2 in 

Part I, the events head (H) and tail (T) are mutually 
exclusive in a single toss of the unfair coin. 
Therefore, the following probability divisions of 
unrelated events can be obtained according to 
Theorem 4(i), respectively: 
 
 

( / ) 0

( / ) 0

P H T

P T H




 

 
 

     Example 8. Redo Example 5 with none-
mutually-exclusive events in 

1 { 0.68,  0.32}S H T= = = , 

the following  probability divisions between those of 
two consecutive tosses and the first toss can be 
obtained according to Theorem 4(ii), respectively, as 
follows: 
 

( ) 0.22
( / ) 0.32

( ) 0.68

( ) 0.22
( / ) 0.69

( ) 0.32

( ) 0.46
( / ) 0.68

( ) 0.68

( ) 0.10
( / ) 0.31

( ) 0.32

P HT
P HT H

P H

P TH
P TH T

P T

P HH
P HH H

P H

P TT
P TT T

P T

  

  

  

  

 

 
 

     It is noteworthy that, according to Theorem 4(ii), 
the event of the divisor must not be mutually 
exclusive to that of the dividend. Otherwise, 
Theorem 4(i) should be applied such as in the cases 
of   ( / ) 0, ( / ) 0, ( / ) 0,P HH T P TT H P HT T    and 

( / ) 0P TH H   in the given context.  
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     Example 9. Given a variant sample space 
   

2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW= = = = =  as 

modeled in Example 5 in Part I, i.e., 2' 2
2 2S S , the 

following  probability divisions between two draws 
of the uneven balls in the bag can be obtained 
according to Theorem 4(iii) or 4(iv), respectively: 
 

'( ) 0.28
( / ) 0.51

( ) 0.55
'( ) 0.27

( / ) 0.60
( ) 0.45

"( ) 0.27
( / ) 0.49

( ) 0.55
"( ) 0.18

( / ) 0.40
( ) 0.45

P BW
P BW B

P B
P WB

PWB W
PW
P BB

P BB B
P B
P WW

PWW W
PW

= = =

= = =

= = =

= = =

 

 

     The results obtained in Example 9 can be 
verified by applying the multiplication rules given 
in Eq. 9(iii) and 9(iv) as shown in the following 
example. This approach is particularly useful when 
the product probability is unknown.        
     Example 10. Redo Example 9 in 

2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW= = = = =

 according to Eq. 9(iii) and 9(iv) obtaining the same 
results as follows: 
 

( ) 0.45 0.45
( / ) '( ) 0.51

1 ( ) 1 0.11 0.89
( ) 0.55 0.55

( / ) '( ) 0.60
1 ( ) 1 0.09 0.91
( ) ( ) 0.55 0.11 0.44

( / ) "( ) 0.49
1 ( ) 1 0.11 0.89

( ) ( ) 0.45 0.
( / ) "( )

1 ( )

i

i

i

i

i

i

PW
P BW B P W

P b
P B

PWB W P B
P w

P B P w
P BB B P B

P b
PW P w

PWW W P W
P w

= = = = =
- -

= = = = =
- -

- -
= = = = =

- -
- -

= = =
-

09 0.36
0.40

1 0.09 0.91
= =

-
 

     In probability theory, it is often interested in 
predicating the odds of random outcomes about the 
ratio of the probabilities of an event’s success and 
failure.  
     Definition 1. An odd, ( )e , is a ratio between 
probabilities of an event e and its complement, or 
that of its success 

es  and failure 
ef , i.e.: 

 

    
, , ,

( )( ) ( )
  ( )

1 ( ) ( )( )

e e

e

e

e s f E S

P sP e P e
e

P e P fP e

  

  




             (11) 

 

     It is noteworthy that the value of odds is a 
nonnegative real number, i.e., ( ) 0e  , which may 

be great than 1.0 according to Definition 1. 
 

2.5 The Addition Operator on Conjunctive 
Probabilities 
 

     Theorem 5. The addition of probabilities of two 
conjunctive events a or b in the sample space S in U, 

( )P a b , is determined by the sum of the 

probabilities of ( ) and ( )P a P b  excluding that of the 

intersection ( )P a b given  and 'a A S b B S    , i.e.: 
 
 

 

( ) ( ) ( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME-dependent :  

      ( ) ( )

)   Invariant , related ,  and independent :  

      ( ) ( ) ( ) ( )

) Variant 

P a b P A B P a P b P a P b a

i S R D S R D

P a P b

ii S R D S R D

P a P b P a P b

iii

     

 


 
 



  

', unrelated , and independent :  '

      ( ) ( ) ( ) '( )

) Variant ', related  and dependent :  '

      ( ) ( ) ( ) ''( )

S R D S R D

P a P b P a P b

iv S R D S R D

P a P b P a P b









 
  

 
  

                                      (12)    
 

     Proof. Theorem 5 can be proven according to 
Definition 10 in Part I and Theorem 1 as follows:     
 

 

 

, , , and b ',

| |
  ( ) ( )

| |

| | | | | |
               

| | | | | |

               ( ) ( ) ( ) ( | )

)   ' ( , ME),

      ( ) ( )

)  '

a b a A S B S

A B
P a b P A B

S

A B A B

S S S

P a P b P a P b a

i S S A B A B

P a P b

ii S S A B A

    


   


  

  

         


       



,

      ( ) ( ) ( ) ( )

) '

B

P a P b P a P b

iii S S A B A

 

       

           

          

,

( ) ( ) ( )
      ( ) ( ) ,  ( )

1 ( ) | |

( ) ( ) ( ) '( )

) ',

( ) ( ) ( )
      ( ) ( ) ( ) ,  ( )

1 ( ) | |

( ) ( ) ( ) ''( )

i
i

i
i

i

B

P a P b P a
P a P b P a

P a A

P a P b P a P b

iv S S A B A B

P b P b P b
P a P b P a P b

P b B

P a P b P a P b











  


   


       
    


  



  (13) 

 

     Example 11. Suppose a system encompasses two 
components C1 and C2 with estimated failure rates 
as F1 = 0.7 and F2 = 0.3, respectively, in an invariant 
sample space. The conjunctive probabilities for a 
system failure of either C1 or C2 can be determined 
according to Theorem 5(ii) as follows: 
 

 
 

 
 

     Example 12. Reuse the individual probabilities 
obtained in Example 2 in Part I in the invariant 
sample space 

1 { 0.68, 0.32}S H T= = = . The following 

additions of conjunctive probabilities for expecting 
some mixed head and tail of an unfair coin in two 
tosses can be derived according to Theorem 5(i): 

1 2 1 2 1 2( ) ( ) ( ) ( ) ( )

                0.7 0.3 0.7 0.3

                1.0 0.21 0.79

P F F P F P F P F P F   
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( ) ( ) ( ) ( ) ( )

                    0.24 0.24 0 0.48

( ) ( ) ( ) ( ) ( )

                    0.36 0.16 0 0.52

P HT TH P HT P TH P HT P TH

P HH TT P HH P TT P HH P TT

   
   

   
   

 

 
 
 
 

     Example 13. Consider the variant sample space 
2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW= = = = = as 

modeled in Example 5 in Part I where no ball will 
be returned into the bag after a draw. The following 
probability additions between two conjunctive 
draws of the uneven balls in the bag can be obtained 
according to Theorem 5(iii) or 5(iv), respectively: 
 
 
 
 

( ) ( )
( ) ( ) ( )

1 ( )
0.55 0.45 0.25

              0.55 0.45 1 0.72
1 0.11 0.89
( ) ( )

( ) ( ) ( )
1 ( )

0.45 0.55 0.25
              1 1 0.73

1 0.09 0.91
( )( ( ) ( )

( ) ( ) ( )

i

i

i

P B PW
P B W P B PW

P w

PW P B
PW B PW P B

P w

P B P B P b
P B B P B P B

+ = + -
-
·

= + - = - =
-

+ = + -
-

·
= - = - =

-
-

+ = + -
)

1 ( )
0.55(0.55 0.11) 0.24

             1.1 1.1 0.83
1 0.11 0.89

( )( ( ) ( ))
( ) ( ) ( )

1 ( )
0.45(0.45 0.09) 0.16

               0.9 0.9 0.72
1 0.09 0.91

i

i

i

P b

P W PW P w
PW W PW PW

P w

-
-

= - = - =
-

-
+ = + -

-
-

= - = - =
-

 

 
 

2.6 The Subtraction Operator on 
Decompositive Probabilities 
 

The algebraic operation of probability subtraction is 
an inverse operation of probability addition, which 
is not defined in traditional probability theory.     
 
 

     Theorem 6. The subtraction of related 
probability of an event b from that of a in the 
sample spaces S in U, ( )P a b , is determined by 

the probability of event a excluding that of b given 
 and 'a A S b B S    , i.e.: 

 

 

 

( ) ( ) ( ) ( | )

)    Invariant , unrelated , and ME dependent :  

      ( )

)   Invariant , related ,  and independent :  

      ( ) ( ) ( ) ( ) ( )

) Variant ', unrelated

P a b P a P a P b a

i S R D S R D

P a

ii S R D S R D

P a P a P b P a P b

iii S

 

 

 

 




   

 , and independent :  '

      ( ) ( ) '( ) ( ) '( )

) Variant ', related  and dependent :  '

      ( ) ( ) ''( ) ( ) ''( )

R D S R D

P a P a P b P a P b

iv S R D S R D

P a P a P b P a P b









 
  
  


 
where ( ) 1 ( )P b P b  .                                           (14) 

     Proof. Theorem 6 can be proven according to 
Definition 10 in Part I and Theorem 1 as follows: 
 
 

  

     

 

, , , and ',

| \ |
  ( ) ( \ )

| |

| | | |
               

| | | |

               ( ) ( | )

)   ' ( , ME),

    ( )

)  '

a b a A S b B S

A B
P a b P A B

S

A A B

S S

P a P b a

i S S A B A B

P a

ii S S A B A

    

  


 

 

        

       



,

     ( ) ( ) ( ) ( )(1 ( )) ( ) ( )

) '

B

P a P a P b P a P b P a P b

iii S S A B A

   

        ,

( ) ( )
      ( ) ,  

1 ( )

( ) ( )
             ( )(1 ) ( )(1 '( ))

1 ( )

             ( ) '( )

)  ' ,

( ) ( )
       ( ) ( ) ,  

1 ( )

( ) ( )
              ( )(1

i
i

i

i
i

i

i

B

P a P b
P a a A

P a

P a P b
P a P a P b

P a

P a P b

iv S S A B A B

P b P b
P a P a b B

P b

P b P b
P a

 


   



       


 




  ) ( )(1 ''( ))
1 ( )

              ( ) ''( )

i

P a P b
P b

P a P b






















  








  (15) 

 
 
 
 
 
 

     Example 14. Given the invariant sample space 

1 { 0.68, 0.32}S H T= = =  as modeled in Example 2 in 

Part I, the following probability subtraction 
operations on the unfair coin can be derived 
according to Theorem 6(i) and 6(ii), respectively: 
 
 

 

1 1 1

1 1 1

( ) ( ) ( ) 0.68 0 0.68    // 

( ) ( ) ( ) 0.32 0 0.32     // 

( ) ( ) ( ) 1 (1 0.68) 0.32  // 

( ) ( ) ( ) 1 (1 0.32) 0.68    // 

( ) ( ) 0

( ) ( ) 0

P H T P H P HT ME

P T H P T P TH ME

P S H P S P H H S

P S T P S P T T S

P H H P

P T T P

     
     

      

      
   
   

 

 
 
 
 
 

     Example 15. Consider the variant sample spaces 
5 10

2
1 6

{ ( | ) 0.11,  ( | ) 0.09}i i i i
i i

S P b b B P w w WR R
= =

= Î = Î =  

and 2 '
2 { 0.28, 0.27, 0.27, 0.18}S BW WB BB WW= = = = = , 

respectively, as modeled in Examples 3 and 5 in Part 
I. The following probability subtraction operations 
on the uneven balls in the bag can be solved 
according to Theorem 6(iii), respectively: 
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( )
( ) ( ) '( ) ( )(1 )

1 ( )

0.45
             0.55(1 ) 0.55 • 0.49 0.27

1 0.11
( )

( ) ( ) '( ) ( )(1 )
1 ( )

0.55
             0.45(1 ) 0.45 • 0.40 0.18

1 0.09
( )

( ) ( ) "( ) ( )(1
1

PW
P B W P B P W P B

P b
i

P B
PW B PW P B PW

P w
i

PW
P BB W P BB P W P BB

P

- = = -
-

= - = =
-

- = = -
-

= - = =
-

- = = -
-

)
( )

0.45
               0.27(1 ) 0.27 • 0.49 0.13

1 0.11
( )

( ) ( ) "( ) ( )(1 )
1 ( )

0.55
                0.18(1 ) 0.18 • 0.40 0.07

1 0.09

b
i

P B
PWW B PWW P B PWW

P w
i

= - = =
-

- = = -
-

= - = =
-

 

 
 

     Example 16. Given the same layout as that of 
Example 15, the following probability subtraction 

operations on the uneven balls in the bag can be 
solved according to Theorem 6(iv), respectively: 
 
 

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.55 0.11

                0.28(1 ) 0.28 0.51 0.14
1 0.11

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.45 0.09

                 0.27(1 ) 0.27 0.60 0.1
1 0.09

i

i

i

i

P B P b
P BW B P BW P B P BW

P b

PW P w
PWB W PWB P W PWB

P w

-
- = = -

-
-

= - = · =
-

-
- = = -

-
-

= - = · =
-

 

6

( ) ( )
( ) ( ) "( ) ( )(1 )

1 ( )
0.55 0.11

               0.27(1 ) 0.27 0.51 0.14
1 0.11

( ) ( )
( ) ( ) '( ) ( )(1 )

1 ( )
0.45 0.09

                  0.18(1 0.18 0.60 0.
1 0.09

i

i

i

i

P B P b
P BB B P BB P B P BB

P b

PW P w
PWW W PWW P W PWW

P w

-
- = = -

-
-

= - = · =
-

-
- = = -

-
-

= - = · =
-

11

 

 
 

Table 2. Algebraic Rules of Probability Algebra 
 

No. Rule 
 

Invariant sample space  
 ( ' )S S

 

Variant 
sample space 

 
( ' )S S  Unrelated events 

( )A B    
Related events 

( )A B    

1 Commutative ( | ) ( | )P b a P a b     

( ) ( )P a b P b a    = 

( / ) ( / )P a b P b a   

( ) ( )P a b P b a    = 

( ) ( )P a b P b a     

2 Associative ( | ( | )) (( | ) | )P a b c P a b c     

( ( )) (( ) )P a b c P a b c      = 

( / ( / )) (( / ) / )P a b c P a b c   

( ( )) (( ) )P a b c P a b c      = 

( ( )) (( ) )P a b c P a b c       

3 Distributive ( ( )) (( ) ( ))P a b c P a b a c       =   

( ( )) (( ) ( ))P a b c P a b a c       = 

(( ) / ) (( / ) ( / )),  ( ) 0P b c a P b a c a P a     = 

(( ) / ) (( / ) ( / )),  ( ) 0P b c a P b a c a P a     = 

4 Transitive ( ) ( ) ( ) ( ) ( ) ( )P a P b P b P c P a P c      = = 

5 Complement 

 

( ) 1 ( ),        ( ) ( ) 1

( ) 1,                   ( ) 0

( ) 0,                  ( ) 1

P a P a P a P a

P S P

P S P

   
  

  

    

6 Involution ( ) ( )P a P a    

7 Idempotent 

 

( ) ( ),    ( ) ( )

( / ) 1,          ( ) 0

P a a P a P a a P a

P a a P a a

   
  

   

8 Identity  

     

1

( ) ( ),              ( ) 0

( / ) ( ),               ( / ) ( )

( ) 1,                    ( ) ( )

( ) ( ) ( ), ( / ) 0     

( ) ( ),              ( ) 0

P a S P a P a

P a S P a P S a P a

P a S P a P a

P S a P S P a P a

P a P a P a
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     Corollary 3. The complement of probability on 
an event a A S   in U, ( )P a , is a special case of 

probability subtraction, i.e.: 
 
 

( ) 1 ( )

       ( ) ( ) ( ),  

P a P a

P S P a P S a a E S

 
     

      (16) 

 
3. The Formal Properties and Rules of  
     the Extended Probability Theory 
 
The mathematical model of general probability, the 
framework of the revisited probability theory, and 
the formal operators of probability algebra as 
developed in Sections 2 and Part I of the paper 
enable rigorous analyses of the nature, properties, 
and rules of probabilities as well as their algebraic 
operations. A set of 36 algebraic properties and 
rules of the extended probability operations is 
summarized in Table 2 
     Basic rules of probability algebra in the universe 
of discourse of probability U can be expressed in 

categories of the commutative, associative, 
distributive, transitive, complement, involution, 
idempotent, and identity rules. It is noteworthy that 
it is unnecessary that each of the probability 
operators obeys all the general algebraic rules. Each 
algebraic rule on probability multiplication, 
division, addition, subtraction, conditional, and 
complement operations can be proven by applying 
related definitions and arithmetic principles. The 
algebraic rules of the probability theory may be 
applied to derive and simply complex probability 
operations in formal probability manipulations and 
uncertainty reasoning by both humans and cognitive 
systems. The framework of the revisited probability 
theory reveals that classic probability theory is a 
special case and subsystem of the revisited 
probability theory in terms of both mathematical 
models and probability operations. 
 
 

4. Conclusion 
As the second part of the revisited probability 
theory, a general theory of probability has been 
rigorously introduced as an extension of the classic 
probability to deal with complicated variant sample 
spaces as well as complex event relations and 
dependencies. The revisited probability theory has 
been formally described as a framework of 
hyperstructures of dynamic probability and their 
algebraic operations. Mathematical models and 
formal operators of the general probability 
framework have enabled rigorous analyses of the 

nature, properties, and rules of probability theories 
and their algebraic operations. It has been found that 
the conditional probability played a centric role in 
the framework of probability theories in order to 
solve the highly coupled cyclic-definition problems 
in traditional probability theories. It has been proven 
that Bayes’ law may be revisited and validated 
based on the properties of the variant sample spaces 
as revealed in this paper. This work has also led to a 
theory of fuzzy probability that further extends the 
general probability theory to fuzzy probability 
spaces and fuzzy algebraic operations. 
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