
The use of statistic complexity for security and performance  analysis in 
autonomic component ensembles. 

ARCHIL PRANGISHVILI, IRAKLY RODONAIA,  OTAR SHONIA,  TENGIZ BAKHTADZE 
Faculty of  Informatics 

Georgian Technical University 
77 Kostava Str.,Tbilisi 

GEORGIA 

Abstract:-The paper proposes a new technique for detecting malware threats in autonomic component 
ensembles. The technique  is  based on the statistic complexity metrics, which relate objects to random 
variables and (unlike other complexity measures considering objects as individual symbol strings) are ensemble 
based. This  transforms the classic problem of assessing the complexity of an object into the realm of statistics. 
The proposed  technique  requires  implementation of the process X (which generates  ‘healthy’ flows 
containing  no  malware threats) and objects   generated  by the actual (possible infected) process Y. The 
component flows files are used as objects of the processes X and Y. The result of the proposed procedure gives 
us the distribution  of  probabilities  of malware infection  among autonomic components. The possibility to use 
the results obtained to perform quantitative probabilistic verification and analysis of ASEs using  the 
probabilistic model checking tool PRISM is demonstrated. 
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1 Introduction 
The problem of  anomaly detection in autonomic 

component ensembles was considered in [1,2], 
where  the following problem was set. A singleton 
application currently runs on one of the VMs at an 
Datacenter.  During the session the application 
experiences consistently high CPU load. This 
increase may be caused either by legitimate traffic 
overload or by coordinated  DDOS attacks  
launched against the PaaS provider. The latter might 
be wrongly assumed to be legitimate requests and 
resources would be scaled up to handle them. This 
would result in an increase in the cost of running the 
application (because provider will be charged by 
these extra resources) as well as in violation of SLA 
(due to increased response times). Hence, it is 
necessary to distinguish between these two cases, 
the earlier this distinction is made, the higher is the 
degree of protection of the application from failure 
and poor performance.To provide this protection, 
the following security measures were suggested. 
The traffic flows through the VMi had  to be 
analyzed using  statistic  complexity metrics. During 
the session the constant monitoring of the metric (by 
the special probe implemented in the separate  
module), along with measure of CPU load and 
available  memory size, was being executed. If the 
traffic satisfied some pre-formulated criteria 

(indicated that there exist serious DDOS attack 
threats) then  the application rapidly migrated to 
some other VMj.  

The techhnique  described in [1, 2] implemented  
Kolmogorov complexity metrics to  reveal possible 
malware attacks  and  had to deal  only with DDOS 
attacks. Despite its usefulness,  Kolmogorov 
complexity does not capture the intuitive notion of 
complexity very well. For example, random strings 
without any regularities, say, strings that are 
constructed bitwise by repeated tosses of a fair coin, 
have very large Kolmogorov complexity. However, 
those strings are not “complex” from an intuitive 
point of view — those strings are completely 
random and do not carry any interesting structure at 
all. Many approaches have been suggested to define 
some complexity measure that is closer to the 
intuitive notion of complexity and overcomes the 
difficulties of Kolmogorov complexity.  For 
example, Kolmogorov complexity is based on 
algorithmic information theory considering objects 
as individual symbol strings, whereas the measures 
effective measure complexity (EMC), excess 
entropy, predictive information, etc., relate objects 
to random variables and are ensemble (that is, set of 
interrelated objects –symbol strings)  based. 

The  Kolmogorov complexity measures  M  
assigns a complexity value to each individual object  
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x′  under  consideration.  Let’s denote it as  
( )MC x′ . It is assumed that x′  corresponds to a 

string sequence of a certain length and its 
components assume values from a certain domain. 
In [3]  statistic complexity that is not only different 
to all other complexity measures introduced so far, 
but also connects directly to statistics, specifically, 
to statistical inference, was introduced. More 
precisely, a complexity measure with the following 
properties is introduced. First, the measure is 
bivariate comparing two objects, corresponding to 
pattern generating processes, on the basis of the  
normalized compression distance (NCD)[4] with 
each other: 

( ) min{ }( , )
max{ ( ), ( )}

C xy C(x),C(y)NCD x y
C x C y

−
=  ,    

where  C(x)  denotes the compression size of string 
x and C(xy) the compression size of the 
concatenated stings x and y. 

Second, this measure provides the quantification 
of an error that could have encountered by 
comparing samples of finite size from the 
underlying processes. Hence, the statistic 
complexity provides a statistical quantification of 
the statement ‘X is similarly complex as Y ’. This 
implies that a fundamental complexity measure 
needs to be bivariate, C(X, Y), instead of univariate 
comparing two processes X and Y. 

Next, the desirable property of any complexity 
measure is : a complexity measure should quantify 
the  uncertainty of the complexity value. As 
motivation for this property we just want to mention 
that there is a crucial difference between an 
observed object x′ and its generating process X. If 
the complexity of X should be assessed, based on 
the observation x′  only, this assessment may be 
erroneous. This error may stem from the limited 
(finite) size of observations. Also, the possibility of 
measurement errors would be another source of  
wrong  assessment. 

Based on these considerations, the statistic 
complexity measure, suggested in [3],  is defined by 
the following procedure: 

1. Estimate the empirical distribution function  
ˆ

XXF  of the normalized compression 
distance from  n1 ,  

11
1, },|),({ n

ii
n

XX XxxxxNCDxS =′′′′′′==  , 
from objects x′  and  x′′  of size  m  
generated  by process  X      (here ‘ ’ 
means ‘is generated by X’) 

2. Estimate the empirical distribution function  
ˆ

XYF  of the normalized compression 

distance from  n2 , 
22
1, },|),({ n

ii
n

YX YyXxyxNCDyS =′′′′== 

 from objects x′  and  y′  of size  m  
generated  by two different processes  X  
and  Y    

3. Determine  , ,
ˆ ˆsup ( ) ( )x X X X YT F x F x= −   

and  ( )p Prob T t= ≤  

4. Define 1 2

1 2, ,( , | , , , , ):
S

n n
X X X YC S S X Y m n n p=     

as  statistic  complexity 
This procedure corresponds to a two-sided, two-

sample Kolmogorov- Smirnov (KS) test  based on 
the normalized compression distance [4] obtaining 
distances among observed objects. 

The statistic complexity corresponds to the p-
value of the underlying null hypotheses, 

XYXX FFH =:0 , and, hence, assumes values in 
[0,1].  The null hypothesis is a statement about the 
null distribution of the test statistic   

, ,
ˆ ˆsup ( ) ( )x X X X YT F x F x= − , and  because the 

distribution functions are based on the normalized 
compression distances among objects  x′  and  x′′ , 
drawn from the processes X and Y, this leads to a 
statement about the distribution of normalized 
compression distances. Hence, verbally, H0 can be 
phrased as “on  average, the compression distance of 
objects from  X to objects from Y equals the 
compression distance of objects only taken from X”.  
If the alternative hypothesis, 1 : XX XYH F F≠  is true, 
this equality does no longer hold implying 
differences in the underlying processes X and Y, 
leading to differences in the NCDs 

Applied to the problem of finding malware 
threats in the flows between autonomic components 
CPi [1, 2], the above procedure  will look as follows. 
For each autonomic component  (AC) of the 
autonomic-component ensembles (ACEs) the 
processes  X and  Y  are  considered as the processes 
generating objects  represented in the form of 
strings. The strings, in turn, represent traffic flows  
through these  autonomic components. The specific  
ways of how flows are transformed into strings are 
considered later in the paper. The process X 
(‘training  process’) is the process generating flows 
in the conditions when there are no malware threats. 
So, objects (strings) generated by the process X  are 
‘healthy’ (they do not contain any patterns of 
malware). These strings have to be generated 
preliminary (before actual workload  on an  
autonomic components ensemble). Some fraction  
of objects (string) have to be generated for situation 
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with unusual (but not malicious) behavior. For 
randomly taken pairs x′ and x ′′ (the amount of 
such pairs is n1) of the generated strings the metric 
NCD( x′ , x ′′ ) is calculated .  The size of samples  
n1   has to be sufficient to account for  various 
possible situations  and conditions that may occur  
in the specific autonomic ensemble under 
consideration. Then the empirical distribution 
function  ˆ

XXF is being built and stored  to the 
specific place .   

When the ensemble starts actual operation 
(receives workload), the process Y (‘production 
process’) generates objects (strings)  y′ ,  which  
represent  actual  current traffic between ensemble’s 
components. Some of these  objects  may contain 
malware patterns. The sample of the size n2  of 
objects  x′  (generated preliminary by the ‘training 
process’ X  ) and objects  y′  is being created and 
the metric  NCD ( x′ , y′ ) is calculated for each 
pair.  Then   the empirical distribution function  

XYF̂ is being built. Now , by applying the steps 3 
and 4 of  the above procedure,  the values of the 
statistic complexity for each autonomic component  
can be  computed. 
However,  it is well known that  the p-value is not 
the probability that the null hypothesis is true, nor is 
it the probability that  the  alternative hypothesis is 
false. To calculate the probability that the null-
hypothesis is true, given some data we have 
collected, we need to use Bayes’ formula. Cohen [9] 
shows how the posterior probability of the null-
hypothesis, given a statistically significant result 
(the data), can be calculated based on a formula that 
is a poor man’s Bayesian updating function. Instead 
of creating distributions around parameters, his 
approach simply uses the p-value of a test (which is 
related to the observed data), the power of the study, 
and the prior probability the null-hypothesis is true, 
to calculate the posterior probability H0 is true, 
given the observed data. Before we look at the 
formula, some definitions: 
P(H0) is the prior probability (P) the null hypothesis 
(H0) is true. 
P(H1) is the probability (P) the alternative 
hypothesis (H1) is true. Since we’ll be considering 
only a single alternative hypothesis here, either the 
null hypothesis or the alternative hypothesis is true, 
and thus P(H1) = 1- P(H0). We will use 1-P(H0) in 
the formula below. 

P(T|H0) is the probability (P) of the data T, which 
was obtained by the KS procedure 

             , ,
ˆ ˆsup ( ) ( )x X X X YT F x F x= −  

 given that the null hypothesis (H0) is true. In 
Cohen’s approach, this is the p-value of a study.  
P(D|-H0) is the probability of the data (a significant 
result), given that H0 is not true, or when the P(T|-
H0) is the probability of the data (a significant 
alternative hypothesis is true. This is the statistical 
power of a study. 
P(H0|T) is the probability of the null-hypothesis, 
given the data. This is our posterior belief in the 
null-hypothesis, after the data has been collected. 
According to Cohen [9], it’s what we really want to 
know. People often mistake the p-value as the 
probability the null-hypothesis is true.                                    

0 0
0

0 0 0 0

( | H ) (H )(H | )
( | H ) (H ) ( | H )(1 (H ))

P T PP T
P T P P T P

=
+ − −

In the numerator, we calculate the probability that 
we observed a significant p-value when the null 
hypothesis is true, and divide it by the total 
probability of finding a significant p-value when 
either the null-hypothesis is true or the alternative 
hypothesis is true. The formula shows that the lower 
the p-value in the numerator, and the higher the 
power, the lower the probability of the null-
hypothesis, given the significant result you have 
observed. 
Assuming H0 and H1 are a-priori equally likely, the 
formula simplifies  to:    

 
                                                     
(provided that the level of significance  α   is    0.01 
(less than one in a hundred chance of being wrong); 
here we have chosen  this low threshold value 
(usually it is 0.05)  in order to emphasize the 
importance of guaranteed  revealing of malware 
threats) 

Therefore,  the obtained numerical value of the 
statistic complexity can be interpreted in the 
following sense: in the current conditions the  flows 
of packets  through the given autonomic component 
cannot be regarded as complex flows ( with the 
probability equal to 1-P(H0|D ). That is,  the flows 
may contain some patterns (indicating  the possible 
presence of some malware threats) with the 
probability Pinfect = 1-P(H0|D). In our approach we 
assume  that the probability Pinfect ≥ 0.6  

It should be pointed out that in production 
conditions (when the ensemble is under actual 
workload) the sample size  n2  cannot be determined  
in advance. This size depends on actual working 

0
0.99(H | )

0.99 2
P D

Type error rate
=

+

PROOF 
DOI: 10.37394/232020.2022.2.8

Archil Prangishvili, Irakly Rodonaia, 
Otar Shonia, Tengiz Bakhtadze

E-ISSN: 2732-9941 61 Volume 2, 2022



conditions: traffic intensity, frequency of creation of 
objects (strings), actual hardware indices (CPU load, 
available memory, etc.). As a rule, the number  n2   is 
less than the number n1. This  fact can somewhat 
decrease the precision of the metric, but it requires 
additional technical consideration.  In general, the 
statistic complexity has the very desirable property 
that the power reaches asymptotically 1 when  

∞→1n
 

and ∞→2n . This means, for infinite 
many observations the error of the test to falsely 
accept the null hypotheses when in fact the 
alternative is true becomes zero. Formally, this 
property can be stated as 0→p  for ∞→1n

 
and  

∞→2n . 
Finally, note that despite the fact that statistic 

complexity is a statistical test, it  borrows  part of its 
strength from the NCD  and, respectively,  
Kolmogorov complexity on which this is based on. 
Hence, it unites various properties from very 
different concepts. 

 
2  Application of statistic complexity to 
autonomic components ensembles. 

In the proposed approach  to anomaly detection in 
autonomic component ensembles, an  attempt  to 
deal with wide range of malware threats  has been 
made (unlike the techhniques described above and in 
[1, 2], which  had to deal  only with DDOS attacks).  

In autonomic cloud computing datacenters can 
be considered  as autonomic-component ensembles 
(ACEs)  and be represented by constructions of  
SCEL (Software Component Ensemble Language), 
a kernel language for programming autonomic 
computing systems [1, 5, 6] ). Each (virtual) 
machine is running one instance of the Cloud 
Platform called Cloud Platform instance (CPi).Each 
CPi is considered to be a service component. 
Multiple CPs communicate over the Internet (IP 
ptotocol), thus forming a cloud and within this cloud 
one or more service component  ensembles. The 
notions of autonomic components (ACs) and 
autonomic-component ensembles (ACEs) [5,6] have 
been put forward as a means to structure a system 
into well understood, independent and distributed 
building blocks that interact in specified ways. 

The process part of a component  (Fig.1) is split 
into an autonomic manager controlling execution of 
a managed element. The autonomic manager 
monitors the state of the component, as well as the 
execution context, and identifies relevant changes 
that may affect the achievement of its goals or the 
fulfillment of its requirements. It also plans 
adaptations in order to meet the new functional or 
non-functional requirements, executes them, and 

monitors that its goals are achieved, possibly without 
any interruption. A managed element can be seen as 
an empty “executor" which retrieves from the 
knowledge repository the process implementing a 
required functionality id and bounds it to a process 
variable Z, sends the retrieved process for execution 
and waits until it terminates. Also actual parameters 
for the process to be executed can be stored as 
knowledge items and retrieved by the executor (or 
by the process itself) when needed. 

 Items containing processes or parameters can be 
thought of as awareness data. Autonomic managers 
can add/remove/replace these data from the 
knowledge repositories thus implementing the 
adaptation logic and therefore changing the managed 
element's behavior. The autonomic manager can also 
add a new service or even remove an existing one. 

 

 

Fig.1 Functional description of a component 

In our  approach    the notions  of   netflows, their 
informational-theoretical metrics and components’  
autonomic manager are essentially leveraged. A 
network  flow can be defined in many ways. In a 
general sense, a flow is a series of packets with some 
attribute(s) in common. Each packet that is 
forwarded within a router or switch is examined for a 
set of IP packet attributes. These attributes are the IP 
packet identity or fingerprint of the packet and 
determine if the packet is unique or similar to other 
packets. All packets with the same source/destination 
IP address, source/destination ports, protocol 
interface, and class of service are grouped into a flow 
and then packets and bytes are labeled. This 
methodology of fingerprinting or determining a flow 
is scalable because a large amount of network 
information is condensed into a database of netflow 
information called the netflow cache. 
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A netflow-enabled device (netflow exporter: 
router or switch) (see the Fig.2) sends to the netflow 
collector  single flow as soon as the relative 
connection expires.This can happen when 1) when 
TCP connection reaches the end of the byte stream 
(FIN flag or RST flag) are set; 2) when a flow is idle 
for a specific timeout; 3) if a connection exceeds 
long live terms (30 minutes by default). Packets 
captured by the netflow  collector  are stored to a 
flow storage . In our approach the duration of each 
flow’s  formation time is unknown in advance and 
actually is defined by relevant collectors  on the 
basis of the selected  connection expiration time 
criteria. 

Flows accumulated at the flow storage, are then 
subdivided into component flows. That is, flows 
which have the component’s IP address as a 
destination address are grouped and sent to the 
corresponding component (more exactly, to the 
autonomic manager of  a component - these flows 
are marked with blue arrows on the Fig.2). 

After receiving their destined flows, the   

 
Fig.2 Interaction between netflow devices and 

autonomic components 
component’s autonomic manager can start the 
processing in order to reveal the abnormal behavior 
of flows in accordance with the following  
technique. 

Application for collecting and processing 
NetFlow statistics are defined  below (Figure 3): 

Once the collector populates the raw file, the file 
is passed on to the second component in the system, 
which is called an aggregator. The aggregator 
receives the file from the collector and processes it 
using predefined information from the database. The 
data thus processed (aggregated) is stored in the 
database. 

 
Fig. 3: Components of the NetFlow system for 

analysis of the statistics 
The user interface is a web application that enables 
us to obtain information on the status of the 
network, based on the data aggregated in the 
database. If it is necessary to get more detailed 
information about a specific communication, the 
user may open the relevant raw file via the web and 
filter it according to the desired criteria. The 
location of the device collecting NetFlow statistics 
depends on the architecture of the network itself. 
The amount of NetFlow information exported by 
network devices is directly dependent on the amount 
of traffic passing through that device (exporter). 
Experience has shown that the amount of NetFlow 
traffic does not exceed 1% of the total amount of 
traffic through the network, so the “distance” 
between the server (collector) and the network 
device exporting the data (exporter) is not relevant. 
The accessibility and the security of the server are 
the more important parameters 

 In the proposed approach the different files with 
the particular titles (relevant to the concrete SCPi‘s 
IP addresses ) to store component flows  are used. 
For example, for the component flow  to the SCPi 
with IP address 172.16.1.86,  occurred on  
2014/03/16 at 15:00,  the files with titles  
F’171.16.1.86’-2014-03-10-15-00.bin  and  the 
F’171.16.1.86’-2014-03-10-15-00.zip  will be 
created. 

If we look at known threats in data networks 
from point of unwanted traffic, we can separate the 
following groups [7]:  
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1. Denial of service attacks.  
2. Port scans and remote vulnerability 
searching and virus spread.  
3. P2P files exchange networks.  
4. Email spam and web popup.  
5. Open resources misuse (open DNS, open 
mail relay, open proxy, Trojan horse, etc.) 

In our approach we observe the traffic flow 
attributes provided by “The Network Intrusion 
Dataset”   of the provided by the “Information 
Exploration Shootout (IES)” project. The dataset 
consists of four files, the first is believed to be free 
of attacks and the rest contain attacks that were 
simulated and stored, each file containing instances 
of a single different attack behavior  [8, 11]: 
• Source/destination IP address and port number 

To measure changes in IP address and port 
number space we observe a value of Shannon 
entropy related to these attributes (entropy is used to 
capture the degree of dispersal or concentration of 
the distributions for traffic attributes). Entropy 
values are calculated for separate component flows  
files (obtained by using the utility  nfdump,) . 
Different  AMs (Autonomic Manager) use various 
time periods length (see connection expiration time 
criteria above). The following network variables are 
used for each  component flows  files: entropy of 
source IP address,  entropy of destination IP 
address, entropy of destination port number, entropy 
of source port number . Duration  attributes of  each 
component flow time are different and depend on 
the traffic conditions and selected  connection 
expiration time criteria 
• Number of bytes and packets 

These values are: bytes received by a host,  bytes 
sent by a host, packets received by a host, packets 
sent by a host. Again, duration  attributes of each 
component flow files  are different 
• TCP flags 

The attribute TCP_FLAG - a  difference between 
number of SYN packets sent and RST and FIN 
packets received - is measured in the proposed 
approach. In normal conditions, in long time 
observation we should get the mean value of 
TCP_FLAG near zero. Intrusive actions like system 
scanning, DoS attacks, may cause the temporal 
distortion of the mean value of TCP_FLAG 
• Duration of the connection 

During various types of attacks, this value will 
be affected and so an anomaly may be detected. For 
example, worm infection will generate a large 
number of connections with similar duration. We 
simply use the  value of connections’ duration  
attribute contained in the given component flow file.    
• Communication Patterns 

Fan-in is the number of nodes that originate data 
exchange with the current CPi, while Fan-out is the 
number of  hosts to which CPi initiates 
conversations. The above patterns are invariant 
during most time of normal system activity or 
change in a predictive way. But while attack appears 
they will change significantly. 

As one can see,  the component flows files 
contain  the same volume of information (they 
contain the same amount of attributes  of the same 
size). Hence, we can assume that the  size m of  a 
component flow file represents the  object  (in terms  
of the statistic complexity  procedure)  of size m.  In 
general, component flows files are regarded as 
objects                               generated by the process 
X (‘training process’) and  , , .............,y y y′ ′′ ′′′  
objects generated  by the process Y (‘production 
process’).  

As it was described, the proposed  procedure 
requires  implementation of the ‘training  process’  
X   (which generates ‘healthy’ flows containing  no  
malware threats) before  starting  real ‘production‘ 
(real-time) process Y. In order to decrease 
overheads, this  process is  executed  just once  with  
as large value of the sample size   n1  as it is 
possible. The obtained results (the empirical 
distribution function  ˆ

XYF ) is stored to each CPi 
which can run applications subsequently. When 
applications  are executed on the CPs, the objects 

, , .............,y y y′ ′′ ′′′ (corresponding component 
flows files) are created and the empirical 
distribution functions   ˆ

XYF     are calculated on each 
CPi .  Then, according to the steps 3 an4 of the 
procedure, the value of statistic complexity for each 
autonomic component is calculated. 

The result of the proposed procedure gives us the 
distribution  of  probabilities  of malware infection  
among autonomic components of the  datacenter. 

As it was said above the probability  Pinfect ≥ 0.6  
can be practically regarded as a serious malware 
threat. In this condition the  immediate migration of 
the application  from the VM (where  the 
application  is being run currently) to another VM 
(which is to be selected by using the ensemble’s 
components autonomic managers’ knowledge base 
and issuing the special SCEL statement qry) is 
required.The corresponding procedure of SCEL 
language is described  below.  

The traffic flows through the node (CPi) has is 
being  analyzed using the statistic  complexity 
metrics. If the probability  Pinfect , associated with the 
statistic complexity, becomes equal or more than 
0.6. the application has to migrate from the CPi 

, , ,.........x x x′ ′′ ′′′
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where it was running to another CPi (which may 
belong to the same ensemble or other ensemble). A 

new CPi must be found according to some 

requirements: probability Pinfect  and  CPU load must 
be rather low, integrated hardware index (which 

includes such indicators as processor speed, 

available memory, available disk space, number of 

cores, etc) must correspond to the application 

resource requirements (they are published in the 

interface of the CPi where the application is 
running). If the required CPi is found, the 

application has to migrate there as soon as possible  

and stop its running on the “old” CPi. The process 
formally can be described in SCEL statements. We 

assume that, other than id, the interfaces     and      

provide the attributes “ComplexityLevel”, 
“CPULoad” and “Memory” stores a context 

information, updated by the underlying 

infrastructure (usually, from the firewalls, gateways 

or special probes) and are 

The CPi where the application is running is the 

SCEL component: I[K,П,AM[ME]]. The autonomic 

manager AM is defined as follows: 

  AM       PComplexityMonitor [PCPULoad [PmigrateCP]] 
PComplexityMonitor    qry(“ComplexityLevel”, “high”) @ self. 

get(“ComplexityHigh”, false) @self. 

put((“ComplexityHigh”, true) @self. 

qru(“ComplexityLevel”,”low”)@self. 

get(“ComplexityHigh”,true)@self. 

put(“ComplexityHigh”,false)@self.PComplexityMonitor 

PCPULoad         qry(“CPUloadLevel”,“low”)@ self. 

get(“CPULow”, false) @self. 

put((“CPULow”, true) @self. 

qru(“CPUloadLevel”,”high”)@self. 

get(“CPULow”,true)@self. 

put(“CPULow”,false)@self. PCPULoad 

PMigrateCP i     qry(“Cloud service”, ?X)@ self 

get(“Cloud service_args”, ?sessionId, ?memoryValue, 

?CPUValue) @self. 

 /* retrieving from the knowledge repository the process 

/*implementing  a required functionality  id and 

/*bounding it to a process variable X  */ 

/* searching an item   c   among components belonging 

/*to the ensemble identified by predicate Ω */ 

*qry(“CPiId”, ?c) @Ω .   

/* storing actual parameters  of the process  to be 

/*executed /*in the found component c : moving from 

/*“old” VM to /*newlu found VM  */ 

put(“Cloud service”, ?sessionId, ?memoryValue, 

?CPUValue)@c  

get(“Cloud service”, “sessionId”, “terminated”) @self.  

 /* removing the process from the    knowledge 

/*repository of ‘old’ CPi */ 

 get(“Cloud service”, “sessionId”, X) @self.nil 

 /* eliminating the process in ‘old’ CPi */ 

Here the predicate           is determined as follows: 

           ( I  ) =( I ComplexityLevel=”High”) 
∧ (I.CPULoad <75)∧ (  I .Memory>=500) ) 

and is used for group-oriented communication in the 

action  qry(“CPiId”, ?c) @. This  predicate                    
defines the ensemble of components which publish 

in their interfaces attributes “ComplexityLevel”, 

“CPULoad” and” Memory”along with relevant 

values. We assume that these  attributes are 

provided by the interface of each component and 
obtain dynamically updated values from 
corresponding  probes (sensors) as a result of 

constant monitoring (sensing) of the computing 

environment. We assume also that the attribute 
“ComplexityLevel” gives an  indication in the range 

[0:1] of the statistic complexity level  of data flow 

through the ensemble, the attribute “CPULoad” – in 
the range [0:100], the attribute “Memory” – in the 

range [0:1000]. In this context the meaning of the 

predicate         is as follows: find a component CPi 

(or components) where the  “ComplexityLevel” is 

high (that is,  a value of the stastistic complexity 

that refers to the Pinfect ≥ 0.6), “CPULoad” is less than 

75  and  available memory index “Memory” is more 

than 500. 

Independently of the service component  on which  
the cloud service is being executed  ( “old ‘ CPi or 

newly found “receiver of migrated service” CPi) the  

SCEL statements which describe the process Ps  

executed by the managed element  ME are as 

follows: 
Ps       get (“Cloud service”, ?sessionId, ?memoryValue, 

?CPUValue)@self. 

get(“CPUload”, ?L) @self.  

/* L is  a current CPUload of the component 

get(“memory”, ?M) @self. 

/* M  is a current allocated memory  

put(“CPUload”, (L+ CPUValue))@self. 

put(“memory”, (M- memoryValue ))@self.    

Ps [X(sessionId, memoryValue, CPUValue)]    

 /* the new process (additionally  to the already 

running process Ps), having actual parameters 

sessionId, memoryValue, CPUValue, starts  */  

The run-time  Java implementation of the SCEL 

formal code (expressed in jResp  environment)  has 

been developed. The main classes of jResp, 

corresponding to the above SCEL code, are as 

follows:  ServiceComponent,  CloudService, 
ServiceCaller, RequestHandler, OfferAgent . The 

scenario,   described above, is realized by means of 

jResp classes Scenario and Main ( the structure of 
datacenter): 

 It should be pointed out that detection of 

malware threats and consequent migration are being 
executed in real-time scale and thus minimize 

damage from possible malware threats. This also   

contributes to maintaining the required  SLA. 

Ω

Ω

Ω
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The time of migration must be taken into account 
when determining the response time. In general, 
streams of requests generated by each client 
(application) may be decomposed into a number of 
different VMs. In case of more than one VM serving 
the ith client, requests are assigned probabilistically.  
The response time of a VM (placed on server j)  is 
computed according to the Pollaczek-Khinchin 
formula (M/G/1 queueing system) : 

.  
where  x - average service time for a client 
(application),  σ - standard deviation for average  
 
service time,                     - coefficient of variation  
of the service time ,  λ- arrival rate of a client 
(application), μ – service rate of a client, 

/ 1xρ λ λ η= = <  - server utilization 
A VM unit is defined as the basic unit of virtual 
resource, which is associated with a set of physical 
resources such as CPU time, main memory, storage 
space, electricity etc. In real cloud systems, any 
virtual resource a customer can apply should be a 
multiple of the VM unit.  

 Migrating a VM between servers causes a 
downtime in the client’s application. Duration of the 
downtime is related to the migration technique used 
in the datacenter. The downtime  also is the function 
of the link speed and VM memory size. 

Let’s assume that an application  i  had to 
migrate  ni  times during its execution cycle.   We 
introduce the following notations: 
ni   - amount  of migration of the i-th application 
during its execution cycle; 
mk  - the number (index)  of VM (CP) on which the 
application runs in k-th migration period; 

ipSC - probability of migration (equal to Pinfect, 
computed in  the procedure of determining   statistic 
complexity described above) obtained for  the i-th 
application running on the  p-th VM in the given 
time period 

ijR - - response time for the application  i   running 
on the j-th VM in the given period 
Then the formula (1) must be updated  by adding the 
term representing  the  expected  downtime of the 
VMij: 

1

1

1

( ( ( )) )
i

k k k

im i

n

im im im
k

R if n

SC R DT LinkSpeed otherwise
=

 =



∗ +

∑

As numerous simulation experiments executed with 
the use of the simulation systems CloudSim and 
OPNET Modeler show, the obtained estimation of 

response times is much closer to the actual response 
times (observed in real operational conditions) and 
thereby contributes to maintaining the required SLA 

 
3. Quantitative verification based on the 
statistic complexity estimate. 

Model checking  represents a formal technique 
for verifying whether a system satisfies its 
specification.The technique involves building a  
mathematically-based model of the system 
behaviour, and checking that system properties 
specified formally in a temporal logic hold within 
this model.The result is based on an exhaustive 
analysis of the state space of the considered model - 
a characteristic that sets model checking apart from 
complementary techniques such as testing and 
simulation. 

Quantitative verification techniques [10] are  
implemented within PRISM , a probabilistic model 
checker, which provides direct support for discrete-
time Markov chains (DTMCs), Markov decision 
processes (MDPs) and continuous- time Markov 
chains  (CTMCs). PRISM puts particular emphasis 
on quantitative properties. For example, PCTL (and 
CSL) allow expression of logical statements such as 
“the probability of eventual system failure is less 
than p", denoted P<p [ F fail ]. In PRISM, it is more 
typical to simply ask “what is the probability of 
eventual system failure?", expressed as P=? [ F fail]. 
The property specification language also allows 
numerical values such as these to be combined  in 
arithmetic expressions, allowing more complex 
measures to be expressed. 

 Proceeding from the distribution of migration 
probabilities for all ACs (equal to Pinfrct , computed 
for each AC and based on the procedure of 
determining statistic  complexity described above), 
parameters of applications  being performed by each 
AC (such as service times, response times 
(including migration times), etc. ) which are being 
computed and stored in the repositories of 
corresponding autonomic managers of an AC) we 
can perform quantitative probabilistic analysis of 
security, availability  and performance of ASEs. 
The probability that the system is in a particular 
state of interest, either at a specific time instant 
(transient) or in the long-run (steady-state) can be 
expressed using the P and S operators, respectively. 
Consider, for example, an  ACE whose state can be 
classified as either “operational" or “ failed" and 
assume that oper is a Boolean variable whose 
value is true if system is operational. Alternatively, 
oper could be a more complex expression over state 

2 1
1 1 2

Cx xR νρ
ρ ρ

−
= +

− −

2
2C

xν
σ

=
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variables expressing this fact. The following 
properties describe the availability of the system: 

• P=? [ F[t;t] oper ] – “the instantaneous 
availability of  the system, i.e. the 
probability that it is operational at time 
instant t"; 

• S=? [ oper ] – “the long-run availability of  
       the system, i.e. the steady-state probability  
      that it is operational". 

 In particular, the use of PRISM and data obtained 
by implementation of the above techniques allows 
us to define  and obtain answers for the following 
types of questions: 

• P=? [ F[0;600] migrate ACi ] – “the probability 
that component  ACi  will  migrate within 
10 minutes” 

• P={“responseTime”}=? [RS ACi > RS_SLA] 
– “the probability that response time of the 
component ACi will be more than the 
response time required by SLA term” 

 
4. Conclusions 
 
In the paper we presented a new technique for 
detecting malware threats in autonomic component 
ensembles. The technique  is  based on the statistic 
complexity metrics. Unlike  the Kolmogorov 
complexity,  which  is based on algorithmic 
information theory considering objects as individual 
symbol strings, the statistic complexity relate 
objects to random variables and are ensemble based.  
It is a bivariate measure that compares two objects, 
corresponding to pattern generating processes, on 
the basis of the normalized compression distance 
with each other. Besides, this measure  provides the 
quantification of an error that could have been 
encountered by comparing samples of finite size 
from the underlying processes. The approach  
transforms the classic problem of assessing the 
complexity of an object into the realm of statistics. 
The statistic complexity  is applied  to the problem 
of detecting malware threats in  autonomic 
component ensembles. The proposed  procedure 
requires  implementation of the ‘training  process’  
X   (which generates  ‘healthy’ flows containing  no  
malware threats) and objects   generated  by the 
actual (possible infected) process Y (‘production 
process’). The component flows files are used as 
objects of the processes X and Y. The result of the 
proposed procedure provides the distribution  of  
probabilities  of malware infection  among 
autonomic components of the  datacenter. The 
proposed procedure of detecting malware threats 
and consequent migration are being executed in 

real-time. This also   contributes to maintaining the 
required  SLA. The possibility to use the results 
obtained to perform quantitative probabilistic 
verification and analysis of ASEs using  the 
probabilistic model checking tool PRISM is 
demonstrated. 
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