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Abstract: - The extremes of summer daily maximum temperature was analyzed using the generalized Pareto 
distribution (GPD) to the Bisho weather station data, Eastern Cape Province, South Africa. Since the extreme 
events are naturally scarce it is expected that the use of a Bayesian inference may improve the efficiency of the 
parameters estimates of the distribution compared to the maximum likelihood method. Therefore, the Bayesian 
approach was also applied in the paper using the Markov Chain Monte Carlo for the generalized Pareto 
distribution. The expected improvement in efficiency is not fully achieved in this study using the non-
informative and informative priors. However, the effects of informative prior constructed from historical data 
depends on the distance. 
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1 Introduction 
 
The extreme temperature events can cause 
significant effects on agriculture, such as crop 
drought and damage, health effects and power 
outages. All of these effects would lead to the 
economic loss [7]. The aim of this paper is to study 
the extreme of summer daily maximum temperature 
by applying the generalized Pareto Distribution 
(GPD) to the Bisho weather station data. Bisho is 
the capital city of the Eastern Cape Province, South 
Africa. The GPD is the distribution of the sample of 
excesses above a high threshold and it is commonly 
referred to as the peak-over-threshold (POT) method 
([15], [5]). The POT method has been extensively 
used in finance and insurance (e.g., [11]), hydrology 
(e.g., [8]), precipitation (e.g., [9]) and extreme 
waves and wave parameters (e.g., [13]) just to 
mention a few. There are two statistical approaches 
for an extreme value analysis that might be used 
namely, frequentist and Bayesian ([3], [4], [6]). 
 
The rest of the paper is organized as follows. The 
data used and methodology for the analyses are 
introduced in Section 2. The results are discussed in 
Section 3 and some concluding remarks and 
recommendations for future studies are given in 
Section 4. 
 
 
 

2 Methodology 
 
2.1 Extreme value distributions 
 
The generalized extreme value (GEV) distribution 
and the generalized Pareto Distribution (GPD) are 
two commonly used distributions for modeling 
extremal events. To model the extreme values using 
the GEV a series of N  independent 
observations N, y, , yy 21 , first blocked into m  

blocks of size n  with n  reasonably large and 
hence mnN  . For weather data the block size is 
usually one year, i.e. 365n days. Then from each 
block the maxima or extreme value, 

miM i ,,2 ,1 ,  , is selected and this form a series 

of m  annual maxima data to which the GEV 
distribution family can be fitted. The extreme value 
analysis using GEV by block-maxima method is 
often wasteful of data, in particular when more data 
on the extremes are available, leading to large 
uncertainties on return level estimates. Unlike the 
block-maxima method, the POT method provides a 
more efficient use of data. In the POT method, first 
a threshold is chosen and all the data above the 
threshold are being considered and thus more than 
one event per year could be included in the analysis. 
From a statistical point, since the method includes 
more data points for extreme event into the model it 
would result in more precise estimate of the 
parameters [5]. 
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Suppose , , yy 21  is a sequence of IID with a 
continuous distribution (.)F . Suppose that 

 nn yyyM ,,, 21   and y  denote an arbitrary term 

of the sequence and that (.)F  satisfies the condition 
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for some sequences of normalizing constants 
}0{ na  and Rbn  , as n . The function G  is 

a non-degenerate distribution function. If the results 
in (1) hold, the distribution F  is said to be in the 
domain of attraction of the extreme value 
distribution G . Then G  belongs to family of 
distributions that can be summarized by the GEV 
distribution and has the distribution function 
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where }0/)(1:{   yy  and  , 0  and 

  are location, scale and shape parameters, 

respectively. Then, for suitably large u , the 
distribution function of )( uy   condition on uy  , 

i.e. )|( uyuyP  , can be approximated by the 
GPD, which has a distribution function of the form 
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where 0*  y  and )(*   u  [15]. The 
number of observations that exceeds the threshold 

uy   is referred to as the exceedances. Note that 

 , 0  and   are location, scale and shape 
parameters, respectively as defined in expression 
(2). That is, if )( yG  is the approximating 
distribution of block maxima, then there is a 
corresponding approximate distribution for 
threshold exceedances from within the generalized 
Pareto family with shape parameter   equal to that 
of the GEV distribution but the scale parameter 

)(*   u  for any given threshold u . The 
distribution function in expression (3) for 0  is 

interpreted by taking the limit   approaching zero, 
that is 
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*

exp1)(lim         





 y

y
yH


 

an exponential distribution with parameter *1  . 
The GPD usually expressed as a two parameter 
distribution in the form 
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where ),0[ y  for 0  and )/*,0[ y  for  

0  [12]. By differentiating the GPD in 

expression (4) with respect to y  the density 
distribution is given by 
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where ),0[ y  for 0  and )/*,0[ y  for  

0 . If m, y, , yy 21  are the m  exceedances of a 

threshold u , then the log of joint likelihood function 
associated with  m, y, , yy 21  is given by 
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The maximum likelihood estimators (MLEs) of the 

parameters   and * , say ̂  and *̂ , for example 

when 0 , are obtained by maximizing the log of 

joint likelihood function in (5) with respect to   

and * . In practice the maximization is done by 
numerically iteration, e.g. using a quasi-Newton 
method. The standard errors of the MLEs can be 
approximated asymptotically using the inverse of 
the information matrix [1]. The goodness-of-fit of 
the GPD model can be examined by the probability 
and quantile plots. 
 
2.1.1 Return level estimation for GPD 
The focus of extreme weather events analysis 
usually lies not on estimates of the GPD parameters 
rather on application of the fitted model to estimate 
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other quantities. Suppose py  be the p  year return 

level, i.e. it is the value occurring on average once 
in every p  years. The formula for py can be 

derived from GEV theory for large n  and applying 
a Taylor series expansion, and is given by 
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The maximum likelihood estimate of the return 

level py  can be obtained using the MLEs of ̂  and 

*̂ , whereas )Pr( uY   is estimated by the sample 

proportion of observations exceeding a threshold u . 
The standard errors for the return level estimate are 
obtained by means of the delta method [18]. 
 
2.2 Bayesian analysis of extreme values for 
GEV distribution 
 
Since extreme data by their nature are scarce, the 
addition of other sources of information through a 
prior distribution may improve the statistical 
inference on extremes. Furthermore, unlike the 
maximum likelihood method a Bayesian analysis of 
extreme values is not dependent on the regularity 
assumptions required by the asymptotic theory of 
maximum likelihood [2]. The basic theory of 
Bayesian analysis of extreme values is well 
established and is presented in a number of excellent 
articles and texts such as those by [4] and [2]. Here 
we will focus on its application using the 
generalized Pareto distribution. 
 
As in the likelihood approach, suppose the daily 
temperature maxima  nn yyyM ,,, 21   and y   
denote an arbitrary term of the sequence and that 

(.)F  satisfies the condition in expression (1) and 
their distribution fall within a GPD family given in 
expression (3). However, the parameters   and   
are now treated as random variables for which we 
specify prior distributions. The specification of 
priors enables us to supplement the information 
provided by the data. For this study, the joint prior 
density was chosen to be 
 
                   )()(),(   fff   

where *)log(  , (.)f  and (.)f  are marginal 

priors of   and  , respectively. Then the posterior 
density has the form 
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where )|*,( yL   is the likelihood using the GPD 

given earlier with *  replaced by e . Generally, in 
a Bayesian analysis, vectors of simulated values 
from the marginal posterior distributions of the GPD 
parameters are obtained. Then, for example, a 
realization from the posterior distribution of any 
specified  /1 -year return level y  is obtained by 

substituting the simulated samples of *  and   
into equation (6) [3], from which summary statistics 
can then be obtained. 
 
Because of lack of expert information on rainfall 
extremes for the Bisho weather station, we have 
formulated the informative prior information for the 
Bayesian analysis from the maximum temperature 
characteristics of two weather stations, namely East 
London and Queenstown in the same province [3]. 
However, these prior information from external 
sources might not be adequately elicited directly in 
terms of the GPD parameters, for example if the 
marginal prior distributions for each parameter were 
available, it may not be clear how to build their joint 
prior distribution. Therefore, to avoid the 
independent priors approach [16] we have used [15] 
approach where the prior information on the 
parameters is elicited in terms of extreme quantiles 
rather than the extreme value model parameters 
themselves. 
 
The evd [19], evdbayes [20], extRemes [10] and 
ismev [21] packages of R [17] were used for the data 
analyses and the results are presented in the 
following section. 
 
 

3 Results and Discussion 
 
3.1 Modelling extreme temperature using 
POT method and MLE 
 
To analyse extreme maximum temperature using the 
POT method, first a threshold value 0u  is 
determined and then the GPD is fitted to the 
temperature values above 0u . The threshold value 
of 27°C has been chosen using the mean excess plot 
approach. The adequacy of the chosen threshold of 

0u  can be checked using the plots of the ML 
estimates for the shape and modified scale 
parameters against a number of different thresholds.  
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Table 1 ML estimates and associated 95\% confidence intervals (CI) of scale and shape parameters of GPD 
model fitted to summer maximum daily temperature. 
 
Parameter 

All exceedances Declustered 
Estimate (se) 95% CI Estimate (se) 95% CI 

*  
  

4.255 (0.134)    
-0.254 (0.018) 

(3.992, 4.518) 
(-0.289, -0.219)  

5.467 (0.214)   
-0.346 (0.019) 

(5.048, 5.886) 
(-0.384, -0.309) 

 
If the GPD is a reasonable model for the 
exceedances of a threshold 0u , then the estimates of 
the shape and modified scale parameters should be 
approximately constant to all threshold greater than 

0u  (Coles, 2001). The plots of ML estimates of the 
shape and modified scale parameters versus 
threshold values for the summer daily maximum 
temperatures show that the selected threshold 27°C 
is adequate, as the estimates of the shape and 
modified scale parameters are approximately 
constant for thresholds greater than 27°C (plots are 
not given here). 
 
On daily climate data such as maximum temperature 
it is possible that high values occur on clusters of 
consecutive days. This clustering induces temporal 
dependence in the observations and invalidates the 
independence assumption used to formulate the log-
likelihood in equation (5). Furthermore, ignoring the 
dependence and applying the POT approach as if the 
data are independent will still leads to unbiased 
estimators but the estimators have standard errors 
that are small (Kearns and Pagan, 1997). The most 
commonly adopted approach to overcome this 
problem is declustering of the exceedances of the 
threshold to produce approximately independent 
data (see Coles, 2001, p 98-100). The results in 

Table 1 are the ML estimates for the scale and the 
shape parameters along with the associated 95% 
confidence intervals, from fitting the GPD to all 
threshold exceedances, i.e. ignoring temporal 
dependence, and using declustering with run length 
2 and threshold 27°C. 
 
The diagnostic plots, particularly probability and 
quantile plots, are approximately linear showing that 
the GPD models with threshold 27°C is adequate for 
the summer daily maximum temperatures at the 
Bisho weather station (see Fig. 1). The results in 
Table 1 show that when the analysis is done to 
declustered data, the GPD shape parameter   

underestimated and the scale parameter *  is 
overestimated, relative to the analysis which uses all 
threshold exceedances. The width of confidence 
intervals for the parameters using declustered data 
are slightly wider than that of all exceedances data 
results. Therefore, as expected, fitting GPD model 
to all exceedances when there is temporal 
dependence will result in underestimation of the 
standard error of the parameter estimates. 
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Fig. 1 Diagnostic plots of GPD for the summer daily maximum temperatures. 
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3.1.1 Return level estimation for GPD 
 
The estimated return levels, using the ML method, 
for different return periods with 95% profile 
likelihood confidence intervals (CIs) are given in 
Table 2. It can be seen from Table 2 that the return 
levels for summer maximum daily temperatures 

increase slowly for higher return periods and further 
the intervals are increasingly wider as the return 
period is increasing. Note also that the return level 
estimates in the declustered data analysis are 
consistently greater for all three return periods 
compared to all exceedances data analysis estimates. 

 
Table 2 Return levels and 95\% CIs (in °C) for maximum daily temperatures using GPD. 
 
 

Temperature 
Return 

Period (years) 
Analysis based on 

All exceedances Declustered 
Maximum 10 

50 
100 

26.231 (25.888, 26.574)   
32.633 (32.196, 33.070) 
34.601 (34.129, 35.073)   

30.528 (30.044, 31.012)  
35.965 (35.461,36.469) 
37.487 (36.968,38.006) 

 
 
3.2 Bayesian modelling of extreme 
maximum temperature data using non-
informative and informative priors 
 
The Markov Chain Monte Carlo (MCMC) method 
was applied to the summer daily maximum 
temperature data. The GPD scale parameter was re-
parameterised as *)ˆlog(  to retain the positivity of 
this parameter. Different starting points were used to 
check that the chains had converged to the correct 
place and all the chains are converged well. The 
following two independent non-informative priors 
were used 

)10000,0(~*))(log( Nf   and )100,0(~)( Nf   
 
for the two parameters of the generalized Pareto 
distribution, where, for example, )10000,0(N  
denotes a Gaussian distribution with mean 0 and 
variance 10000. The large variances of the 
distributions impose flat-priors. The posterior means 
and standard deviations of these parameters are 

given in Table 3. The posterior means and standard 
deviations are close to the MLEs of the GPD 
parameters except for the declustered data where 
there a significant improvement in the standard 
deviation of the scale parameter. It is expected for 
flat-priors that posterior means would be close to the 
MLEs because they add little information to the 
likelihood. For the informative priors, the expert 
priors were formulated using the historical summer 
daily maximum temperature data of the East 
London and Queenstown weather stations from the 
same province. The posterior means for the scale 
parameter of GPD from the informative priors are 
greater than that of the posterior means of non-
informative priors except for the declustered data of 
East London weather station whereas the shape 
parameters are underestimated in both East London 
and Queenstown cases (Table 3). Furthermore, only 
the precision of the scale and shape parameters for 
all exceedances data was improved by informative 
prior constructed using the East London data. 
 

 
Table 3 Posterior means (standard errors) for the GPD parameters. 
 
 
Prior 

All exceedances Declustered 
*̂  ̂  *̂  ̂  

Non-informative 
Informative 
  East London 
  Queenstown 

4.243 (0.133) 
 
4.731 (0.103) 
4.743 (0.189) 

-0.249 (0.019) 
 
-0.283 (0.017) 
-0.282 (0.020) 

4.255 (0.134) 
 
2.568 (0.142) 
5.808 (0.271) 

-0.254 (0.018) 
 
-0.412 (0.034) 
-0.363 (0.022) 

 
 
To investigate the effects of the non-informative and 
informative priors on the return levels we have 
produced the posterior densities plots. The plots 
were done by substituting the vectors of 

observations from the marginal posterior 

distributions of *̂  and ̂  in equation (6), for 

10  . This procedure was carried out for 
5.0 ,1.0  and 01.0 to obtain the posterior 
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distributions of the 10-, 50- and 100-year return 
levels. Fig. 2 shows plots of the posterior densities 
of the 10-, 50- and 100-year return levels for the 
informative priors and non-informative priors of all 
exceedances data. It can be seen from the plots that 
the informative priors based on the East London has 
had effect on the densities of the return levels but 
those of Queenstown and non-informative priors 
have had little effect. A similar effect was found for 
the declustered data. This might suggest that the 
effect of informative priors constructed using 
historical data of other weather stations depend of 
the distance between the weather stations. The 
distance between Bisho weather station and East 
London weather station is about 55 kms whereas for 

the Queenstown weather station the distance is 
about 149 kms. The posterior densities of the 10- 
and 50-year return levels are symmetric whereas for 
the 100-year return levels densities are slightly 
skewed to the right. These skewness might reflect 
the uncertainty within the model for establishing 
upper limits of the return levels relative to lower  
limits for longer return periods (Coles and Tawn, 
2005). Hence, the posterior medians would be more 
suitable estimates for the return levels than the 
posterior means, particularly for the 100-year return 
level. The posterior medians and 95% credibility 
intervals of the maximum temperature are given in 
Table 4. 
 

 
10−year return period 50−year return period 100−year return period 

 
30.8     31.2    31.6    32.0 

q0.1 

 

 
35.0  35.5  36.0  36.5 37.0 

q0.5 
 

37.0  37.5   38.0  38.5 

q0.01 
 

Fig. 2 Posterior densities for the 10-, 50- and 100-year return levels using all exceedences data, an informative prior (East 
London in blue and Queenstown in black) and a non-informative prior (in red). 
 
 
Table 4 Posterior medians (95% credibility intervals) for the 10-, 50- and 100-year return levels (in mm) of the 
annual maximum rainfall using non-informative and informative priors. 
 
 

Priors 
Return period (years) 

10 50 100 

Non-informative 
Informative 
     East London 
     Queenstown 

31.372 (31.150, 31.599) 
 
31.375 (31.205, 31.542)  
 31.398(31.167, 31.639)  

35.912(35.560, 36.289) 
 
35.891 (35.639, 36.161) 
35.932(35.573, 36.304) 

37.322 (36.928, 37.756) 
 
37.291 (37.010, 37.587) 
37.331 (36.943, 37.747) 

 
It can be seen from Table 4 that the median return 
levels for summer daily maximum temperature 
increase for higher return periods and also the 
credibility intervals are increasingly wider as the 
return periods are increasing. Furthermore, using the 
East London prior one would expected, for example, 
that the summer daily maximum temperature at 
Bisho will exceed 31.375°C once every 10 years, 
35.891°C once every 50 years and 37.291°C every 
100 years. 
 
 

4 Conclusion 
 
In this paper, we have conducted extreme value 
analysis using the generalized Pareto (GP) 
distribution for modelling summer daily maximum 
temperature data at the Bisho weather station, 
Eastern Cape province, South Africa by the ML and 
the Bayesian approaches. The MLEs of the model 
parameters have then been used to obtain the MLEs 
of the 10-, 50- and 100-year return levels. The 
Bayesian approach was used by simulating data 
from the posterior distributions of the GPD 
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parameters by the MCMC method. Both the non-
informative and the informative priors are imposed. 
The results obtained with the two priors were 
compared with the maximum likelihood results and 
also each other. The posterior means of the GPD 
parameters and their standard deviations obtained 
using the non-informative priors are close to the 
MLEs of the parameters for all exceedences case. 
The effect of the informative priors used in the 
analysis on the posterior means and standard 
deviations depend on the distance between the 
weather station used for the construction of 
informative prior and the weather station where the 
GPD model is fitted. That is, the shorter the distance 
the more closer the values of the posterior means of  
 
the GPD parameters to ML estimates and 
furthermore the standard deviations of the GPD 
parameters estimates get smaller. This reduction in 
the standard error reflects the decrease in 
uncertainty due to the informative priors. However, 
for the declustered case different observations were 
made, for example unlike the all exceedences case, 

the standard deviation of the posterior mean of 
shape parameter for the informative prior 
constructed using the East London data is greater 
than that of the informative prior constructed using 
the Queenstown data. The return level results show 
that the median return levels for summer daily 
maximum temperature will increase as the length of 
return period increases. 
 
In general, the expected benefit of the Bayesian 
analysis is the improvement in precision of the 
parameter estimates over the MLEs, however in this 
study this is not fully achieved for the declustered 
data using the informative priors. The results of this 
study indicate that the effect of informative prior on 
the precision of parameter estimates depend on 
distance between stations. Therefore, the findings of 
the study could be improved using a spatial 
modeling and work is currently in progress to 
address this and will be reported elsewhere. 
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