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Abstract: - The Stokes nonlinear waves associated  with the  nonlinear problem of a free boundary with peaks  
in incompressible heavy fluid are studied in 2D. In the early works of the author by using the conformal 
mapping method this problem was reduced to the nonlinear integral equation with the weakly singular kernel. 
In this paper one parameter of the mapping is chosen sufficiently small and the equation is linearized. The 
approximate solution of the linearized equation is obtained. The profile of the free boundary is plotted  by 
means of Maple-12.  
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1 Introduction 
In the incompressible heavy fluid nonlinear 
peaked waves are originated  under certain 
conditions[1-5, 8, 9]. These waves are known as 
Stokes waves.  Here we investigate the 
nonlinear integral equation associated with this 
phenomena .This equation was obtained by the 
author [see 4, 5] by means of the conformal 
mapping method from the initial problem which 
will be stated below. As three parameters of the 
mapping can be chosen arbitrarily, we choose 
one parameter sufficiently small. The nonlinear 
integral equation is simplified and the 
approximate solution is obtained. This solution 
represents peaked symmetric Stokes wave. The 
profile of the wave is constructed by using 
Maple. The approximate solution of this 
equation depending on some parameters is 
obtained. The profile of symmetric wave is 
constructed. 

 
 

2 Problem Formulation 

In the coordinate system Oxy  of the Euclidian 
space ,2R  the initial problem is stated as follows 
[7] 

PROBLEM ST. Find the periodic 
curve )(: xyy =Γ   such that , if f   is a conformal 
mapping of the area  { })(0 xytD <<=   on the 
strip { } ∞=±∞=<< )(,,0 fconstqqψ ,  then 
the following condition holds  

  ,,)('
2
1 2 constAAgyzf ==+                      (1)                               

where )(' zf , iyxz += ,  is a complex potential, 
ϕ  is a speed potential, ψ  is a stream function, 

)(' zf   is a complex speed, A   and q  are the 
definite constants, g  is a gravity acceleration. 

  Here we assume, that the bottom of the reservoir is 
planar and filled with incompressible heavy fluid, 
the wave  moves with the constant speed c. We 
choose the mobile coordinate system moving with 
the wave, with the axis oy  passing through the 
maximum point of the wave and the axis ox  
passing along the bottom. We consider the Problem 
ST for the symmetric periodic waves with the period 
ω  in case of ,...2,1,0,0)(' ±±==+ nniqf ω i.e. 
the Stokes waves [1-9]. The case 0)(' ≠zf  was 
considered by different authors [1, 2, 3, 7, 9]. 
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 By means of the conformal mapping method in the 
previous works of the author   [4,5] Problem ST was 
transformed to the following nonlinear integral 
equation with the weakly singular kernel 

     

,),()(ln
3
2)('ln)('

4
3

)(

0 11 dttKtutztzg
u

a
ξ

π

ξ

∫ 



 −−

=
(2)                    

where 

    

[ ].,0

,lnln2),( 22

22

2222

2222

a
t

ta
tbab

tbb
tK

∈

−
−

+
−+−

−+−
=

ξ
ξ

ξ
ξ

 ,),()( 1
11 ηξζζζ izz +== −   is a conformal 

mapping of one period OABC    of the area  D  on 
the rectangle 1111 CBAO   of the complex plane ζ                         
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where ba,   are the definite constants, a  is 
sufficiently small. 

 Having found the solution of the equation (2) the 
profile of Stokes wave will be given by  [5] 
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Our purpose is to find the approximate solution 
of the equation (2) and to construct profile of Stokes 
wave.  
 
 
3 Problem Solution 

In [5] it is proved that the function )(ξu   could 
be represented in the form 
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where )(0 ξu  is bounded  function of the class 
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By using (4) the equation (2) can be rewritten in 
the form 
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Taking into the account the formula 
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the equation (5) takes the form 
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We represent the right hand side of (6) in the 
form 
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and use the approximation 
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then from (6) we obtain 
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Hence, for the definition of ;,...,1,0, niCi = from 
(7) we obtain the system of algebraic equations 
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(8) is the system of algebraic equations with respect 
to ;,...,1,0, niCi = Having found iC  by using (7) 
we can construct the graph of (3) by means of 
Maple 12 . 

Below the graphic of (3) is plotted for the 
parameters ;1;1;10;1 3 ==== − nMab (Fig.1). 

 

Fig. 1. The graph of 
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of the Stokes wave.  
 

NOTE . In the work [4] the Problem ST is reduced 
to the nonlinear integral equation with the 
Weierstrass kernel. In the work of the author [6] the 
solutions of this equation are obtained in the 
linearized case. 

 
 
4 Conclusion 
  The approximate solution of the nonlinear 
integral equation (2) is given by (7), where the 
constants ;,...,1,0, niCi =  are the solutions of the 
system of the algebraic equations (8). The 
function given by the formula (7) represents 
periodic symmetric Stokes wave with peaks. 
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