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Abstract:  The paper is intended to provide the quasi-static and dynamic analysis of beam with fractional order viscoelastic 
material model, which was derived from integer order description using the Boltzmann superposition principle. The results 
were obtained for a fractional Zener model by the techniques of Laplace transform and binomial series. An example proves 
the accuracy of the solution for a simply-supported beam subjected to a uniform distributed load. Theoretical and numerical 
solutions can be easily extending to the complex structures configurations. 
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1. Introduction 
 
Engineering design of the past thirty years are 
frequently present the structures with viscoelastic 
components due to their ability to dampen out the 
vibrations. The metals at elevated temperatures, 
rubbers, polymers that have the characteristic of both 
elastic solids as well as viscous solids are examples 
of viscoelastic materials. There are remarkable 
theoretical studies on these materials of Cristescu 
[7], Mainardi and Spada [7], Flugge [10], Freundlich 
[10]-[11], Reddy [13], Kennedy [14]. These are 
complemented by the works dealing with the 
analysis of viscoelastic structures from both 
mathematical and engineering points of views: [1], 
[8], [16], [17], [20] - [22]. 
            Using the Euler-Bernoulli beam theory, we 
present in our paper the governing equation for a 
simply supported viscoelastic beam under a uniform 
distributed load, [19]. This equation is accompanied 
by a constitutive law presented in a hereditary 
integral form. Then, extending the procedures of the 
classical Zener model with the denomination of 
Standard Linear Solid (SLS) to a fractional Zener 
model. In order to obtain the quasi-static exact 
solution (i.e. the solution ignoring inertia effects), 
we will use the correspondence principle for 
classical Zener model [15], [22]. This principle 
relates mathematically the solution of a linear, 
viscoelastic boundary value problem to an analogous 
problem of an elastic body of the same geometry and 
under the same initial boundary conditions. Mention 
that not all problems can be solved by this principle, 
but only those for which the boundary conditions do 
not vary with the time.  Applying the principle of  

d’Alembert, this structure will be analyzed in the 
dynamic case with a mixed algorithm that is based 
on the Galerkin’s method for the spatial domain and 
then, the Laplace transform and binomial series 
expansion for the time domain. 
              Numerical results for both quasi-static and 
dynamic analysis are presented for classical model 
and fractional model, [2], [4], [10], [15]. The first 
rheological model will be accompanied of the 
comparative studies made with the help of graphical 
representations. 
 
2. Beam governing equation 
 
The differential equation of the transverse 
oscillations of a beam, which is subjected to 
uniformly distributed forces p , is obtained from the 
dynamic equilibrium of an element having the length 
dx. If all the forces acting on the beam element are 
projected on the axis Oz, we find: 
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where T is the shearing force and qi are the inertial 
force. Accordance with the d’Alembert’s principle, 
(2) becomes 
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                                                                                  Fig. 1 

 
 
with the following notations: ρ - density of 
material; S – cross sectional area; w - transverse 
displacement of the beam and t – time.   
Let us now consider the moments in relation to 
section x + dx:  
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and approximating (dx)2 ≈ 0, is obtained 
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and (2) becomes the differential equation: 
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Next, we will study the deformation of the beam 
element. The strain on the fiber cd of the deformed 
element is tensile (positive) and the strain on the 
fiber ab is compressive (negative). Because the 
strain is continuous throughout the cross section, 
will exist an axis where the strain is zero. This is 
named neutral axis and is rs in the Fig. 2. 
If line mn there is at a distance z from the neutral 
axis, then the strain corresponding to mn is defined 
as: 
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where ρ is the curvature radius of the neutral axis 
and θ is the angle subtended by the deformed 
element.  

 
                                              
 

 
 
 

 
 
                                    Fig. 2 
 
The sections ac and bd remain plane and normal 
on the deformed axis rs of the beam after 
deformation, according to Bernoulli's hypothesis. 
In differential geometry, the expression of the 
curvature radius is the following: 
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Practical applications show that  
x

w



  is very 

small with respect to unity and so we can 
consider 
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Introducing (9) in (7), we get 
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Let us consider a constitutive law in the hereditary 
integral form, [21]: 
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where G is the relaxation modulus for the beam 
material, G(0) = E (elasticity modulus) and σ the 
stress corresponding to the strain ε. 

 

   
Fig. 3 

 
 

The bending moment M at the beam cross section 
x may be expressed in terms of stress in the form 
of an integral: 
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and using (11) this becomes: 
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where I  is the moment of inertia of the section S 

with respect to the axis Oy. 
Thus, after substitution of M in (6), we obtain the 
following integro - differential equation:  
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Solving of equation (13) will lead to the finding of 
the transverse displacements for any boundary and 
initial conditions given for the viscoelastic beam 
subjected to a uniformly distributed loading p. 

 
 
2. Rheological model  
 
The stretching - relaxation process is analyzed using 
a Poynting model that contains two spring elements 
and one damping and consists in a serial connection 
of a spring and a Kelvin - Voigt model (Fig. 4). 
Now, formulating equilibrium and taking the 
kinematics of the rheological model into account, 
we get the following equalities: 
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where k1, k2 are the elastic modulus of the springs 
and η is the coefficient of viscosity of the dashpot 

                                  Fig. 4 
 
These equations (15) lead to the differential 
equation                             
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where σ and ε depend on the time t. 
Let us consider that the material of beam is in its 
relaxation phase, so, under constant strain ε = ε0 
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the stress will decrease. In this case, the equation 
(17) becomes 
 
               02121  kkkk                     (18) 
 
For the condition: σ (0) = k1 ε0, the solution σ of 
equation (18) will be of the form 
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where the relaxation time is 
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Using the definition of the relaxation modulus 
G(t), we have in this case: 
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that is a function that depends on the beam 
material.    
 
It will expand this result to the fractional calculus 
using the Mittag - Leffler functions, [15]: 
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that for ν = 1 reduce to exp (- t /τ).  
In the case 0 < ν <1, the differential equation (16) 
becomes: 
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The relaxation modulus will be now of the form: 
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where E ν (0) = 1. 
 
                                                    
4. Mixed method for solving integro – 
differential equation (14) 
 
To solve the equation (14) associated with the 
boundary and initial conditions, we express the 
transverse deflection w by an expansion of the form 
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where φj(x) is the j th shape function and aj(t) is the 
corresponding time-dependent amplitude. For the 
spatial domain will be used the Galerkin’s method 
and then, the techniques of the Laplace transform 
for the time domain. The shape functions are chosen 
to be linearly independent, orthonormal  
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and must satisfy all boundary condition for the 
convergence of Galerkin’s method. 
Although wn satisfies the boundary conditions, it 
generally, does not satisfy equation (14). If the 
expansion (26) is substituted into (14) will result 
the residual function 
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Let us now consider the shape functions of the 
form 
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The Galerkin’s method requires that the residual to 
be orthogonal to each of the chosen shape 
functions, so 
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Using the Laplace transform techniques and the 
initial conditions 
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the functions aj(t) are determined independent of 
one another. Finally, an approximate value of the 
transverse deflection w(x,t) will be found by (26). 
 
 
5. Numerical example 
 
Let us consider a simply supported beam under the 
uniform distributed load p  = 4 N/m, which is 
applied as a creep load at t = 0 (the load is applied 
suddenly at t = 0 and then help constant). The length 
of the beam is l = 4 m, width b = 0.08 m and height     
h = 0.23 m. These input data lead to the moment of 
inertia of the rectangular section: 

53 10812/  bhI m4. The material is taken to 
have the density of 1200 kg/m3. For this example, 
we employ the three – parameter solid model (SLS 
model) with the relaxation modulus expressed by 
(19) - (20) [15], [17], where  
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  η = 2.74∙108  N-sec/ m2                                      
      

Classical quasi - static analysis 

 
For ν = 1, the relaxation modulus will be  
 

24.2/77 1084.71096.1)( tetG  N/m2   (32) 
                                     
with t in seconds. To get the creep compliance 
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Finally, the creep compliance that corresponds to 
the relaxation modulus (32), will be of the form: 
 

     2.1177 10408.01051.0)(
t

etD


        (33)                  
    
The solving of the problem (30) - (31) will be 
accompanied by the appropriate boundary 
conditions for the simply supported beams: 
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In the quasi-static case the inertial forces are 
ignored. An exact solution for the creep loading 
applied at t = 0 can be computed using the 
correspondence principle. We get the transverse 
displacements of the following form: 
 
 
                      )()(),( tDxwtxw                      (35) 
                                                        

PROOF 
DOI: 10.37394/232020.2022.2.2 Olga Martin

E-ISSN: 2732-9941 9 Volume 2, 2022



where D(t) is given in (33) and w  is the solution 
for a similar elastic structure that has the modulus 
of elasticity E = 1, [19]:     
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Classical dynamic analysis 

 

For above input data, the equations (30) become: 
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We remark from the form of (37) that aj(t) are zero 
for even values of  j. Hence, only odd values of j 
need to be considered in the finding of the 
Galerkin’s solution. These equations will have 
exact solutions determined with the techniques of 
Laplace transform. Since the initial conditions on w 
and its derivatives are zero, then, and the conditions 
on aj and its derivatives are also zero. If Aj(p) is 
Laplace transform ( 

L  ) of aj(t) and we use the 
Multiplication Theorem, we get 
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Using the Newton iterative formula, we find a root 
of a polynomial that there is into parenthesis: p1 = 
0.091. Then, the partial fraction decomposition will 
lead to the solution aj(t) of (37). Finally, the 
transverse displacements w are approximated by 
(26) and for n = 9. 

The Fig. 5 shows how the classical dynamic results 
oscillate around of the quasi-static results for the 
midpoint transverse deflection (x = 2 m). It may be 
noted that the amplitude of vibration decreases with 
increasing time, due to the presence of the 
viscoelastic damping.  In general, the amplitude of 
the oscillations depends upon the material density, 
the rate at which the loading is applied and the 
amount of the viscoelastic damping. 
 

 

 
                                    

                                                 Fig. 5 
 

 

Fractional dynamic model 

 

Using the relaxation modulus (25) in the equation 
(30), we get 
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Appealing to the theory of Laplace transform, 
equation (40) becomes: 
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and from (32), we get 
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We notice that for ν = 1 we have (39). 
 
To obtain the original function that 
corresponds to (43), we write Cj(s) for             
β = 0.45 in the following form: 
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which was used equality 
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is binomial coefficient.  Still obtain 
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Applying the inverse Laplace transformation 
formula: 
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Similarly, we find for  
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Finally, the transverse deflection is equal to 
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6. Conclusions 
 
In this paper is presented an efficient method for 
numerical simulation of a quasi-static and dynamic 
response of viscoelastic beam both classical Zener 
model and for fractional Zener model.  The 
proposed method can be easily extended to the 
complex viscoelastic structures calculus. 
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