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Abstract: This article aims to present the application of probability modelling and simulations based on quantile 
function of extreme insured losses in the world natural catastrophes based on data in time period 1970-2014, 
published in Swiss Re Sigma No2/2015. Quantile function provides an appropriate and flexible approach to the 
probability modelling needed to obtain well-fitted tails. We are specifically interested in modelling and 
simulations the tails of loss distributions. In a number of applications of quantile functions in insurance and 
reinsurance risk management interest focuses particularly on the extreme observations in the upper tail of 
probability distribution. Fortunately it is possible to simulate the observations in one tail of distribution without 
simulating the central values. This advantage will be used for estimate a few extreme high insured losses in the 
world's natural catastrophes in future. 
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1 Introduction 
The enormous impact of catastrophic events on our 
society is deep and long. Not only we need to 
investigate the causes of such events and develop 
plans to protect against them, but also we will have 
to resolve the resulting huge financial loss. 

The occurrences of catastrophic events are 
becoming more frequent (Fig.1) and also grow 
indemnity of insurance and reinsurance companies 
at these events.  

 

 
Fig.1 Number of catastrophic events, 1970-2014 
Source: Swiss re economic Research&Consulting  

 
From these facts it follows the need of 

knowledge the probability models for prediction of 
consequences of catastrophe events and thus select 

the best options to cover risks and correct setting 
premiums or reinsurance. 

Developments of the financial consequences of 
disasters have a major impact on the global 
insurance market and forcing the insurance and 
reinsurance companies to seek for new approaches 
and ways to cover these risks. Raises the concern 
that the capacity of the world's insurance and 
reinsurance markets in the future will not be 
sufficient to cover these risks and aims to seek 
alternative options for their transfer. 

In the modelling of extreme losses statistical 
methods are commonly used for inference from 
historical data. Different approaches had been 
proposed for certain circumstances, for example 
Extreme Value Theory, Excess over Threshold 
Method and other [4], [6]. We will present method 
for modelling and simulation based quantile 
function [1], [3], [5], [9].  

 
 

2 Problem Formulation 
Suppose losses are the independent, identically 
distributed (iid) random variables ,..., 21 XX , with 
common cumulative distribution function (CDF) 

( ) ( )XF x P X x= ≤ , where 0>x   (1) 
The Quantile Function, QF, denoted as ( )pQ , 

expresses the p-quantile px  as a function of p: 
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( )px Q p= , which is the value of x for which

( ) ( )p pp P X x F x= ≤ =  [1], [3]. 
The definitions of the QF and the CDF can by 

written for any pairs of values ( ),x p  as ( )x Q p=  
and ( )p F x= . These functions are simple inverses 
of each other, provided that they are both 
continuous increasing functions. Thus, we can also 
write ( ) ( )pFpQ 1−=  and ( ) ( )xQxF 1−= . 

We denoted a set of ordered sampling data of 
losses by 

( ) ( ) ( ) ( ) ( )nnr xxxxx ,,...,,...,, 121 − . 
The corresponding random variables are being 
denoted by 

( ) ( ) ( ) ( ) ( )nnr XXXXX ,,...,,...,, 121 − . 

Thus ( )nX  for example is the random variable 
representing the largest observation of the sample of 
n observations. The n random variables are referred 
as the n order statistics. These statistics play a major 
role in modelling with quantile distribution ( )pQ .  

Consider first the distribution of the largest 
observations on ( )nX  with distribution function 

denoted ( ) ( ) ( )nn pxF = . By [1], [5], [7], [9] the 
probability 

( ) ( ) ( ) ( )( )xXPpxF nnn ≤==  
is also probability that all n independent 
observations on X are less than or equal to this value 
x, which for each one is p. By the multiplication law 
of probability  

( )
n

n pp =  so ( )
n

npp 1=  and ( ) ( )
n

nppxF /1== . 
Inverting ( )xF , to get the quantile function, we have 

( ) ( )( ) ( )( )n
nnn pQpQ /1=   (2) 

So the quantile function of the largest 
observation is thus found from the original quantile 
function in very simple of calculation. 

For the general r-th order statistic ( )rX  by so 
called The order statistics distribution rule [1] we 
get the result: If a sample of n observations from 
a distribution with quantile function ( )pQ  is 
ordered, then the quantile function of the 
distribution of the r-th order statistic is given by 

( ) ( )( ) ( )( )( )1,, +−= rnrpBETAINVQpQ rrr (3) 
BETAINV ( )⋅ is a standard function in packages 

such as Excel. Thus, the quantiles of the order 
statistics can be evaluated directly from the 
distribution ( )pQ  of the data.  

By the Uniform transformation rule (Gilchrist) 
if U has a uniform distribution then the variable X, 

where ( )uQx =  has a distribution with quantile 
function ( )pQ . Thus data and distributions can be 
visualized as g enerated from the uniform 
distribution by transformation ( )⋅Q , where ( )pQ  is 
the quantile function. 

The uniform transformation rule shows that the 
values of x from any distribution with quantile 
function ( )pQ  can be simulated as  

( ) niuQx ii ,...,2 ,1     , ==  
where nuuu ,...,, 21  are simulated from uniform 
distribution on t he interval [0, 1]. The non-
decreasing nature of ( )Q  ensures the proper 
ordering of the x. 

The quantile function thus provides the natural 
way to simulate values for those distributions for 
which it is an explicit function of p. 
 
2.1 Simulation of extremes 
Quantile function allows simulating the 
observations in the upper tail of distribution without 
simulating the central values.  

Consider the right-hand tail. The distribution of 
the largest observation has been shown to be ( )npQ 1 . 
Thus by [1], [5], [9] the largest observation can be 
simulated as ( ) ( )( )nn uQx = , where ( )

n
nn vu 1=  and 

nv  is a random number from interval [0, 1]. If we 
now generate a set of transformed variables by  

 

( )
1 n
nnu v=  

( ) ( ) ( )

1
1

11
n

nn nu v u−
−− = ⋅    (4) 

( ) ( ) ( )

1
2

22 1
n

nn nu v u−
−− −= ⋅  

  
 

where the iv , ,...2,1, −−= nnni  are simply 
simulated set of independent random uniform 
variables, not ordered in any way. It will be seen 
from their definitions that iu , ,...2,1, −−= nnni  
form a decreasing series of values and ( ) ( )ii uu <−1 . 

In fact, values ( )iu  form an ordering sequence 

from a uniform distribution. Notice that once ( )nu  is 
obtained, the relations have the general form  

( ) ( ) ( )1

1

+⋅= m
m

mm uvu , ,...2,1, −−= nnnm  

The order statistics for the largest observations 
on X are then simulated by  
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( ) ( )( )nn uQx =  

( ) ( )( )11 −− = nn uQx     (5) 

( ) ( )( )22 −− = nn uQx  

  
 

In most simulation studies m samples of n 
observations are generated and the sample analyzes 
repeated m times to give an overall view of their 
behavior. A technique that is sometimes used as an 
alternative to such simulation called a profile. Such 
a set of ideal observations could be provided by the 
median rankits,  ,rM  nr ...,,2,1= . 
 
2.2 Pareto distribution   

Modelling of the tail of the loss distributions in 
general insurance is one of the problem areas, where 
obtaining a good fit to the extreme tails is of major 
importance. Thus is of particular relevance in non-
proportional reinsurance if we are required to 
choose or price a high-excess layer [2], [8], [12]. 

The Pareto distribution is often used as a model 
for insurance losses needed to obtain well-fitted 
tails. 

  The Pareto cumulative distribution function of 
the losses Xa that exceed known threshold a is [7], 
[8], [10]: 

( ) 1 ,
b

a
aF x p x a
x

 = = − ≥ 
 

       (6) 

The quantile function QF we can derive by 
inverting this CDF in the form 

( )1/( )
1 b

aQ p
p

=
−

    (7) 

The parameter b is the Pareto parameter and we 
need it estimate it, the most often by maximum 
likelihood method in the form [7], [9] 

,

1
ln

n
a i

i

n
X
a=

 
 
 

∑
    (8) 

 
3 Problem Solution 
The publication [11], Swiss Re Sigma No2/2015 in 
Table 10, page 41, provides data about the 40 most 
costly insurance losses (1970- 2015). These data are 
the basis for our analysis. These values are ranging 
from 3410 to 78638 million USD in 2014 prices. 

We want to verify whether the 2-parameter 
Pareto distribution defined by (6) fits the data 
adequately by selecting Goodness-of-Fit Tests [1], 
[2], [9]. The first step is parameters estimation by 
maximum likelihood method [2], [8], [12]. The 

estimated parameters of the fitted distribution are 
shown in Table 1. In our parameters markers by (6) 
or (7) est a = 3410 and est b = 1.04777.  

 
Table 1 Parameters of Fitted Distribution 

Pareto (2-Parameter) 
shape = 1.04777 
lower threshold = 3410.0 

Source: Output from Statgraphics Centurion XV  
 
The Table 2 shows the results of test run to 

determine whether the most costly insured losses 
can be adequately fit by a 2-parameter Pareto 
distribution (6).   

Since the smallest P-value = 0.858776 amongst 
the tests performed is greater than or equal to 0.05 
we cannot reject the idea that losses comes from a 2-
parameter Pareto distribution with 95% confidence. 
 

Table 2 Results of Kolmogorov-Smirnov Test 
 Pareto (2-Parameter) 
DPLUS 0.0576431 
DMINUS 0.0955203 
DN 0.0955203 
P-Value 0.858776 

Source: Output from Statgraphics Centurion XV  
 
 

We can also by Quantile plot and Quantile-
Quantile or Q-Q plot assess visually how well the 2-
parameter Pareto distribution with parameters 
(Table 1) fits the data. 
 

 
Fig.2 Quantile plot 
Source: Output from Statgraphics Centurion XV  
 

The Quantile Plot (Fig.2) shows the fraction of 
observations at or below x, together with the 
cumulative distribution function of the fitted 
distribution. To create the plot, the data are sorted 
from smallest to largest and plotted at the 
coordinates. Ideally, the points will lie close to the 
line for the fitted distribution, as i s the case in the 
plot above.  
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 Fig.3 Quantile-Quantile plot 
Source: Output from Statgraphics Centurion XV 

 
The Quantile-Quantile plot (Fig.3) shows the 

fraction of observations at or below x plotted versus 
the equivalent percentiles of the fitted distribution. 
The fitted Pareto distribution has been used to 
define the x-axis. The fact that the points lie close to 
the diagonal line confirms the fact that the Pareto 
distribution provides good fit for the data. 

Table 3 Quantiles of fitted Pareto distribution 
Lower Tail Area (<=) Pareto (2-Parameter) 

0.50 6607.83 
0.75 12804.5 
0.90 30701.5 
0.95 59492.8 
0.99 276417 

Source: Output from Statgraphics Centurion XV  
 
The Table 3 contains the selected quantiles of 

Pareto distribution, which is well fitted model for 
the most costly insured catastrophe losses.   

If will not change conditions of the occurrence 
of these events on the globe, will not change even 
their distribution. Then 50% of the most costly 
insurance losses will exceed 6607.83 million USD, 
10% will exceed 30701.5 million USD, 1% will 
exceed 276417 million USD.  

Knowing the probability model and its 
parameters, we can use quantile function (7) and by 
simulation procedure described in 2.1 we can find 
five the highest values at 40 most costly insurance 
losses.  

 
Table 4 Process of simulation Q(u) 

v n v^1/n u Q(u) 
0.13549 40 0.964494 0.951257 60956.83 
0.33132 39 0.972073 0.924691 40243.93 
0.25384 38 0.971348 0.891923 28507.97 
0.99347 37 0.970585 0.891765 28468.24 
0.18092 36 0.969781 0.850404 20903.36 
Source: Own calculation by (4) and (5)  

 

The steps of simulation presents Table 4 a nd 
possible the highest five values (in million USD) in 
the world natural catastrophes we can find in the last 
column denoted as Q(u). So the highest simulated 
loss is 82 421.36 million USD, the second highest is  
48123.9 million USD etc. 

Two last columns in Table 5 show the bounda-
ries for each order statistic. For example the highest 
possible insured loss is with probability 0.95 from  
24 991.87 million USD to 18 066 831.58 million 
USD and 0.5% of losses may even exceed the value 
of 18 066 831.58 million USD.  

Visualized results of the simulation process we 
can see at Fig.4. 
 
Table 5 Quantiles of selected order statistics 
Q(BETAINV(0.5)) Q(BETAINV(0.995)) Q(BETAINV(0.005)) 

164 921.29 18 066 831.58 24 991.87 
70 901.33 993 661.54 18 346.01 
45 453.34 318 235.24 15 002.34 
33 581.25 163 674.11 12 884.65 
26 690.92 103 499.70 11 390.54 

Source: Own calculation by (3)  
 

 
Fig.4 Graphical result of simulation of 5 t he 

largest most costly insurance losses 
 
 

 
Fig.5 Graphical result of simulation of 4 t he 

largest most costly insurance losses 
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4 Conclusion 
The results of the analysis based on data of extreme 
insured losses in the world natural catastrophes in 
time period 1970-2014 are alarming.  

Are justified concerns that the capacity of the 
world's insurance and reinsurance markets in the 
future will not be sufficient to cover these risks. It is 
high time for humanity to start emphatically remove 
the causes of the occurrence of catastrophes and 
their consequences. 
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