
Student perceptions on the effectiveness of collaborative problem-based
learning using online pair programming tools

MAIRA KOTSOVOULOU

Information Technology Department
The American College of Greece

Gravias 6, Agia Paraskevi
GREECE

VASSILIA STEFANOU

Management Information Systems
The American College of Greece

Gravias 6, Agia Paraskevi
GREECE

Abstract: - This paper describes a qualitative study of how undergraduate students majoring in Information
Technology perceive the effectiveness and evaluate the learning experience of pair-programming. The
phenomenographic research approach was used to analyze student interviews and revealed 4 categories of
descriptions: Effective Problem Solving, Participation, Enjoyment and Coding. Pair-programming as a teaching
methodology was commonly perceived as a positive experience. The resulting outcome space maps a logical
hierarchy of students’ conceptions of reality (categories of description). Findings of this research identify the
factors that affect student engagement in a problem-solving process and can be used as a guiding principle on
how to improve students’ learning experience of computer programming.

Key-Words: pair-programming; problem-based learning; qualitative; phenomenography; information
technology education; collaboration

1 Introduction

Traditionally, projects in undergraduate
computer programming courses require students
either to work exclusively on an individual basis or
to take on smaller independent tasks as members of
a team. There are a number of cases where students
although are given an individual programming task
to solve in class, they tend to ask their peers for
“how-to” and “where-to-start” clues or to ask help
in their debugging process. When assigned group
projects most of my students prefer to work together
rather than to split their project on smaller parts.
Pair work seems to increase student level of
confidence especially in introductory programming
courses. The above observations gave me the
incentive to initiate this study with an emphasis on
peer synergy, distributed pair programming and
collaborative learning.

Collaborative and cooperative learning concepts
have been used almost interchangeably in most

computer related studies. Cooperative learning has
been defined as a collection of teaching techniques
in which students work small groups to complete
learning activities. Each student is responsible for
his/her own learning but is assessed based on the
group's performance. (Miller & Peterson 1980;
Slavin & Madden 1989; D. W. Johnson et al. 2000)

McConnell (2000, p.26) summarizes the benefits
of cooperative learning as:

a) helping to clarify ideas and concepts through
discussion,

b) developing critical thinking,
c) providing opportunities for learners to share

information and ideas,
d) developing communication skills,
e) providing a context where the learners can

take control of their own learning in a social
context,

f) providing validation of individuals’ ideas and
ways of thinking through conversation (verbalising),

g) offering multiple perspectives (cognitive

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 15 Volume 1, 2021

restructuring), and
h) promoting constructive argument (conceptual

conflict resolution).

Collaborative learning on the other hand is more

of a personal philosophy rather than a set of
activities and predefined structures. According to
Bruffee “Collaborative learning provides the kind
of social context, the kind of community, in which
normal discourse occurs: a community of
knowledgeable peers” (Bruffee 1984).

Both concepts are based on the constructivist
theory where learning takes place through social
interactions but there are many conceptual
differences between cooperative and collaborative
learning based on purpose, structure, student-teacher
relationships and prescriptiveness of activities.
Cooperative learning activities are highly structured
and prescribed by the teacher. Each student is
accountable to the group and to self.

Assessment is based on group work.
Collaborative learning activities are not closely
prescribed and group roles and structure is not strict.
Students engage with “more capable others” who
provide assistance. Emphasis is on learning rather
on completion of a specific project. (Oxford & Dean
1997; Matthews et al. 1995; Panitz 1997).

Although the cooperative method seems more
appropriate to characterize pair programming, most
researchers refer to pair programming as a
collaborative activity. In the context of this study
on-line editor-sharing collaboration tools are used to
enable distributed pair programming. Despite the
conceptual and philosophical differences between
collaborative and cooperative learning, this paper
focuses on “working together” to accomplish a
“common project” by using collaborative on-line
tools.

Collaborative programming is not a new term. In
the book “The Psychology of Programming”,
Weinberg (1971) explored the collaborative view of
programming. Pair programming is a programming
style in which two programmers physically work
side-by-side, using the same computer to work on a
common computer program. The process involves
all the typical stages of software development,
ranging from analysis and design to coding and
testing, but differs radically in the way the process is
actually implemented. In pair programming, one
person is the designated “driver” and has control of
the keyboard, the mouse and the pencil (for the
analysis and the design phase). The “driver” is
tasked with typing the actual code, drawing the
actual designs, and generally executing hands-on
tasks. The second person, the “navigator”,

continuously observes the work. The “navigator”
has a number or tasks to accomplish. One of them is
to monitor the tasks at-hand, as well as the overall
process, and actively watch for problems (syntax
errors, flaws in logic, omissions, etc). Other
important tasks include considering alternatives,
iteratively evaluating design and implementation
decisions and looking up additional resources on a
per-need basis. In the pair programming paradigm,
it is very important that the two partners
communicate on a constant basis, while exposing
and explaining entire thinking processes to each
other. (Williams 1999; Nosek 1998; Williams et al.
2000).

Kent Beck, the primary developer of the idea of
eXtreme Programming, employs pair programming
in his software development methodology. After
years of research on agile programming
methodologies, Beck has reached the conclusion
that two programmers working together are more
productive than two programmers working alone
and produce twice as many solutions to a problem.
This affords them a greater pool of solutions from
which they can choose the best one and thus create a
higher quality product with less bugs. (Beck 1999;
Fowler et al. 2001)

Beck also stresses the importance of pairs
rotating their roles at regular intervals, because each
role assumes a different level of abstraction. (Beck
1999). This allows both pair members to bring their
individual skillsets and levels of insight to each
discrete role.

In pair programming, both members of the team
collaborate constantly to create a common solution
and produce a working computer program. In the
process one help the other with the thinking,
constructing and debugging procedure. The result of
this common effort is a teamwork product upon
which they are mutually evaluated.

Past research (both anecdotal by professional
practitioners and empirical) has shown that two
programmers sharing the same computer and
working collaboratively on the same design,
algorithm, code, or test can perform substantially
better than the two working alone as far as speed,
functionality and quality are concerned.

Empirical studies on the effectiveness of pair-
programming in undergraduate level programming
courses have shown that students are more
confident, they enjoy programming more and
ultimately produce higher quality code. (McDowell
et al. 2003; Slaten et al. 2005; Williams et al. 2000)

The pair programming paradigm can be extended
to allow for virtual proximity in lieu of the physical
proximity which would typically constitute the

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 16 Volume 1, 2021

paradigm’s basis. With “distributed” pair
programming, team members continue to work on
the same design and coding phases simultaneously,
however online collaboration and communication
tools are heavily employed. This enables them to
share the same editor and environment while sitting
at their own computers (though possibly even at
different locations), and videoconference to
collaborate and exchange ideas in real time.

Research indicates that distributed pair
programming (DPP) or virtual pair programming
(VPP) produces comparable software to that
developed using side-by-side pair programming
(Baheti & Williams 2002; Baheti et al. 2002).

While my study is a qualitative study aiming to
record the variations in student perceptions of pair
programming, most related research found on pair
programming evaluates its impact on student
performance in programming courses based on final
exam scores, on student confidence and enjoyment
of the programming process, on personal
satisfaction, on the quality of the work produced as
well as on the persistence in the computer science
major in a quantitative way. (Lai 2011; McDowell
et al. 2003; Mendes et al. 2005)

William and Kessler (2001) reported that 95% of
the students felt confident when pair programming
and 84% enjoyed this experience more.

In a study using a different perspective, (Thomas
et al. 2003) attempted to categorize students into
three distinct attitudes towards programming: code-
warriors, code-a-phoebes and in-betweens. They
then teamed up students of differing attitude
categories to engage in collaborative (pair)
programming. Results showed that students with
less self-confidence seemed to enjoy pair
programming the most, while stronger programmers
seemed to appreciate it the least. Students with the
same level of confidence, when paired with students
of similar attitude, performed their best.

McDowell (2003) also supported that students
working together with a partner will learn more than
individual students struggling on their own.
(McDowell & Hanks 2003)

As far as time saving and efficiency are
concerned, research on pair programming has
shown that a shared pool of knowledge between
peers helps them handle problems better and faster
than students working alone. (Williams et al. 2000)

Negative effects of pair programming have also
been reported in related literature. Vanhanen and
Lassenious argued that pair programming results in
better design, but less functionality and programs of
lower quality, and that groups exhibit lower
productivity, especially when new teams were

formed (Vanhanen & Lassenius 2005). Stephens &
Rosenberg (2003), while building their case against
extreme programming, observed that a phenomenon
encountered often is that one team member does all
the work while the other often passively just
observes.

Last but not least, Shull et al doubt all the
empirical studies that attempt to measure the
effectiveness of pair programming by saying that
the question “are two heads better than one?” is not
precise enough to be measured. Additionally, they
argue that the effectiveness of pair programming
depends on the expertise of the programmers
involved and the complexity of the given
programming task. (E. F. Shull et al. 2007)

2 Methodology

This phenomenographic study aims to explore

the variations in student experiences when using
pair programming to solve a programming problem.
In order to expose students to pair programming and
create an opportunity for them to describe their
experiences, volunteers were required to choose
their own partner and work collaboratively on
developing a software program, using a plug-in for
Eclipse that enables screen sharing. Upon
conclusion of their projects, I collected results using
semi-structured interviews, which were then
analyzed phenomenographically.

Since my inquiry was qualitative in nature and
my intent was to explore the different ways in which
students experience pair programming and thus gain
insight on the phenomenon studied,
phenomenography was deemed as being the most
appropriate research approach. According to Martin
(1995), phenomenography is a research approach
that "aims to reveal the qualitatively different ways
in which something is experienced" (Martin 1995, p.
166).

Saljo (2007), analyzing Martin’s interpretation of
phenomenographic research, claims that: “The
prime interest of phenomenographic research… is
in finding and de limiting the variation in ways of
experiencing reality. It is assumed that there is a
limited number of ways of experiencing reality and
the description of variations in this respect is the
main aim of phenomenography and what makes it a
worthwhile exercise. Since ways of experiencing
obviously have to be accounted for in language, the
phenomenographer describes his object of inquiry
by means of what is referred to as categories of
description”

The findings of this study show the range of

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 17 Volume 1, 2021

differences in student perceptions regarding pair
programming’s effectiveness and applicability.

2.1 Participants
Ten undergraduate college students volunteered

to take part in the study, signed a concept form (see
Appendix 1) and agreed their participation to remain
anonymous. The group consisted of six male and
four female students, all of whom had successfully
completed two Java programming courses prior to
the study. All students were attending a small
college in Greece at the time, and all were majoring
in Computer Information Systems.

It was made clear to the students that the purpose
of this study was not to evaluate their performance
and knowledge in Java, but rather to document their
feelings and experiences with pair programming,
collaborative problem-based learning and their
possible effectiveness on accomplishing a common
target.

2.2 Research Design
Initially, I contacted twenty of my last semester

students, who had successfully completed the
second Java programming course (Object Oriented
Programming), presented them with the nature and
goals of the study at hand and inquired as to their
willingness to participate. Ten of them answered
positively.

Then, I conducted an informative session on the
concepts of pair programming and the software
tools and technologies required. The informative
session took place at winter session break of 2012,
during which students had no classes to attend.
Participants were given a brief 15 to 20 minute
presentation of pair programming (the presentation
was based on Williams and Kessler's paper "All I
Really Need to Know About Pair Programming I
Learned in Kindergarten”) (Williams et al. 2000)
and they were instructed on how to use the
communications perspective (part of the Eclipse
Communication Framework). DocShare
(org.eclipse.ecf.docshare) is an Eclipse
Communication Framework plugin which
implements real-time shared editing. and enables
multiple team members to share the editor, share the
run-time environment and utilize common
debuggers. The source code resides on one team
member’s computer (in accordance with the typical
pair programming metaphor in which the driver
“has” the code), while other members can jointly
type-in. If members of a team want to work alone at
some point, the source code can be uploaded to a
repository and shared among team members using a

version control system. In the same informative
session, participants were then asked to pair up at
their own discretion in order to form five final
groups. All participant groups received a common
programming assignment and were given a one-
week deadline to submit completed work for
purposes of evaluation and feedback. The
assignment consisted of requiring students to
implement a missing Java method in an otherwise
fully functional card playing game. The purpose of
the java method was to evaluate each player’s hand
and algorithmically determine the winner. Source
code for the rest of the program was to be provided
and guaranteed as to be working correctly. The level
of difficulty of the programming assignment was
purposely medium, so that participants would not be
frustrated or overwhelmed by the technical
challenges of the task at hand and could focus
instead on the collaborative aspect and on how they
can work together to solve a problem.

Although my research design might appear

experimental

2.3 Data Collection
At the end of the study, student opinions were

collected via semi-structured interviews. In all, two
sets of interviews were performed. In the first set,
each student was interviewed separately, while, in
the second set, students were interviewed as work
groups. Ten individual interviews and 5 group
interviews took place. Each student was assigned a
participant number, so that anonymity would be
kept. At some point in the group interviews,
students were also asked to discuss ideas underlying
collaborative programming and then discuss how
closely their own experiences were aligned with that
understanding. All interviews were recorded and
subsequently transcribed.

2.4 Validity
As Saijo (1997) stresses in his paper “Talk as

Data and Practice: A Critical Look at
Phenomenographic Inquiry and the Appeal to
Experience”, there are many alternative ways of
interpreting the data collected from oral interviews
given by participants in a study. Thus the
categories/conceptions derived from my study can
only be considered as subjective and based on my
own constructions of meaning, influenced by my
personal experiences as a human being. If the same
interviews were performed and/or analyzed by
another researcher, there is a considerable
probability that the derived conceptions could be

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 18 Volume 1, 2021

different.
In order to assure validity of the outcome space, I

asked a colleague to verify that my derived
categories could be inferred from the transcribed
interviews. If there were more time available for this
project, I would have asked two or more colleagues
to derive their own categories of conceptions from
the transcribed interviews and examined how
closely their interpretations coincided with my own.

3 Conceptual Framework
My research is based on the social constructivist

philosophical view. Social constructivism gives
emphasis on the use of peer collaboration and
problem-based learning as an instructional method
(Prawat & Folden 1994), whereas the constructivist
approach advocates that teaching and learning
should involve hands-on activities and practical
sessions through which knowledge can be built. In
the same context, Lave and Wenger (1991) stress
the importance of collaboration among learners and
the exchange of ideas within and even across
communities of practice.

Collaborative learning has been found to have a
positive impact on enhancing the ability to work
collaboratively with others, on self-esteem and
achievement. (D. W. Johnson et al. 2000; Stevens &
Slavin 1995). Learning with others is a social
process in which students observe their peers as to
how they approach problems and find solutions,
encourage each other, and, by verbalizing their
thoughts, make the process of understanding the
situation at hand easier.

Problem-based learning is based on Dewey’s
philosophical view that practical experience plays a
major role in learning (Dewey 1938). Problem-
based learning involves contextualizing learning
given a “real-world” problem that requires a
solution. Students work in small groups to solve a
problem provided by their teacher. Problem-based
instruction aims to promote students’ critical
thinking, enhance their problem-solving skills, and
prepare them for their future practice or professional
endeavors. Programming at the professional level
requires individuals to work in teams, collaborate
and share knowledge to ensure the success of all
those involved. Such real world programming
requires extensive communication and collaboration
with customers, end users, system analysts, database
designers, network architects and many other
specialties.

4 Findings

One important assumption of this study was that
all participants had the same academic preparation
required to accomplish the assigned programming
task and that all had similar grades in the completed
courses. All student volunteers found the study
interesting both in theory and in practice and were
more than willing to participate. The unit of analysis
was students’ conceptions about the effectiveness of
pair programming in the areas of enjoyment, quality
of work produced and self-confidence.

The result of this study, as with any
phenomenographic study, was to form different
categories of conceptions found in the meanings of
participant interviews and the relationships among
them. According to Marton, categories of
description form a "way of describing a way of
experiencing something” (Marton, 1995. p175)

After analyzing the interviews in this study, 4
qualitatively distinct conceptions of the
effectiveness of collaborative programming through
pair-programming were identified, reflecting the
students’ experiences of the pair programming
process. The aim was to form a hierarchy of
logically related conceptions of the different ways
students experienced the task. It should be stressed,
however, that all interviews showed more than one
of these conceptions – thus, a web of multiple
interrelations, rather than a strict hierarchy, was
actually observed in this study. I placed the derived
conceptions in three categories: Problem Solving,
Participation and Coding.

4.1 Category: “Problem Solving”
Conception 1. Collaborative (pair) programming

as an efficient way of experimenting with
alternative solutions to a problem (to find the best).
In conception 1, students focused on how pair
programming helped them identify alternative
solutions to the programming problem at hand and
provided them with effective means of bringing
multiple resources (“human minds”) to problem
solving. Again students were more confident that
their chosen solution was the best. The focus of this
conception is on quality and development, and the
students’ perceptions vary from less frustration to
confidence.

An interview extract of student conceptions that
characterize this category include that of
interviewee 8, who focuses on confidence on the
solution and speed of development.

Interviewee 8: …I liked pair-programming,
because each time I got stuck, John was there to
contribute with his ideas. Brainstorming with your
team member during software development can
really contribute to finding better solutions, faster

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 19 Volume 1, 2021

than working alone…
Interviewee 3 stresses that although

programming is rather frustrating, pair programming
reduces the frustration and thus enhances confidence
that the solution is correct.

Interviewee 3: …I used to program with my
peers in the past, to complete programming
assignments because it made the task less
frustrating, but I always thought that I was not
supposed to… This project helped me realize the
reason I liked it in the past: Two brains are better
than one!!!!

4.2 Category: “Participation”
Conception 2: Collaborative (pair) programming

as enhancing positive competition and motivation
between team members in order to produce a
solution to a problem at hand.

In conception 2, students argued that pair
programming helped them stay dedicated to the task
at hand. Proximity (whether physical or virtual),
real-time communication, and common focus
fostered “friendly” (even unspoken) competition
between pair members seeking to actively contribute
to their joint success. For example, when one
partner would find a solution to a problem, the other
was eager (even subconsciously) to do so next.
Students also stated that pair programming
promoted a team spirit, generating a desire to
produce a better product than the other groups. The
focus of this conception was participation and
collaboration.

The following 2 quotes support the conception of
increase motivation to find a solution:

Interviewee 10: When my partner found a bug, I
really wanted to find the next one to prove I was as
clever…

Interviewee 2: When it comes to debugging, two
sets of eyes are better than one. What I could not
see, my friend did and vice versa.

Whereas the next quotes show the variation
inside the conception that pair programming
increases motivation from completing to task to
reaching a personal best.

Interviewer 9: I wanted our team program to be
the best… We did more than the required tasks and
we liked it.

Interviewer 5: When I was tired, the fact that
another person was working with me kept me
going…

Conception 3: Collaborative (pair) programming
as being “fun”

In conception 3, students argued that pair
programming was more engaging and fun than
working alone. To varying extents, the underlying

social aspect of pair programming, insofar as it does
not constitute a distraction, seem to provide a more
relaxing, enjoyable, and ultimately constructive
work environment. Student experiences vary from
been relaxed, to feeling confident and having fun.

Interviewee 6: It was the first time I enjoyed
programming. I was relaxed (maybe because there
were no grades involved) and programming with a
friend, chatting and joking when we were stuck
helped me code better…

Interviewee 8: I found it fun to pair-program
especially when my friend and I were working
together at night from the confines of our own
rooms and w e had Sk ype open so we could
communicate as if we were in the same room….

Interviewee 2: I love programming because I
love solving problems. Solving a pr oblem with a
friend lets me feel more confident and share the
happiness of accomplishing a task… It’s even better
when we find together a solution to a problem…

4.3 Category: “Coding”
Conception 4: Collaborative (pair) programming

as a forcing/driving factor to write better-structured
and well-documented code.

In conception four, students focus on how the
presence of a peer who watched and actively
contributed to their code motivated them to adopt
better coding styles and stricter coding habits
(meaningful variable names, indentation, comments,
structure, less “kludges”), so that their peers could
understood what they were doing and were able to
contribute more effectively. Student experiences
from this conception vary from using name
standards and using indentation to fully
documenting their code. The focus of this
conception is structure.

An example from an interview to support this
conception is the following:

Interviewee 1: It was the first time in my
programming experience that the variable names I
used were not x, y and z. Each time we had to create
a variable, we spent time exchanging ideas on how
the variable would be named best!

The above student focuses on the coding style
and naming standards, whereas Interviewee 5
stresses that code documentation helped his group
collaborate effectively.

Interviewee 5: We actually documented our code
using comments… and not because it was a
requirement but to be able to collaborate more
efficiently. Sometimes we made fun of it... but, at the
end, we were able to remember and understand
everything we had written…

Logical relationships between the 4 conceptions

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 20 Volume 1, 2021

describing student experiences of distributed pair

programming are shown in the outcome space. Each
conception subsumes those in a nested circle of the
outcome space, which depicts how thinking about
pair programming varies qualitatively between and
within students. The outcome space is a system of
logically interrelated alternative forms of
conceptions and their varying internal structures.
(Renstrom et al. 1990; Marton & Pong 2005)

Figure 1: the outcome space

The interrelated categories depict the

qualitatively different ways by which students
understand pair programming. In the inner level
“coding” the focus is narrow and detailed whereas
in the second category “participation” the focus is
on student collaboration to achieve their common
goal. Student conceptions vary from making the
program work to actually having fun on the process.
Most of the students that shared this conception also
adopted the coding standards for their development.
Finally, the most inclusive category “problem
solving” subsumes the presence of participation, and
coding all at a level at which students will perform
on their best. Not only the will solve the problem
but they will also search for the best possible
solution.

4 Limitations
The fact that students volunteered to participate

in this study, and that they have all historically
demonstrated good academic performances, make
my sample non-representative of the general
population. Additionally, the fact that each member
had the option to choose his/her team member made
the collaboration easier. The “feel good” factor of
pair compatibility as described by (Muller 2004)
plays an important role in the performance of the
team. When incompatible partners pair program
together, they typically dislike the process. (Winkler

& Biffl, 2006)
Another factor that conceivably may have had an

impact on the students’ perceptions of the process
was that students were not to be evaluated on the
successful completion of the program. This
contributed to making the whole programming task
less result-oriented and thus less demanding or
stressful. Additionally, the amount of work required
to complete the assignment was rather limited
compared to typical course projects. Finally,
students were on winter break, without any course
load, so finding common time to collaborate was not
as difficult as it would have been in normal semester
situations.

Finding common time to collaborate has been
reported in related research as a severe drawback of
pair programming (Sanders, 2001)

4 Conclusions and future research
As an information technology educator with an

emphasis on teaching programming at different
levels (introductory, intermediate and advanced),
one of the many challenges I face is to make the
process of programming as interesting and fun as
possible and at the same time prepare my students
for the real-world software development
environment. With the outburst of Internet
technologies, it’s imperative that we familiarize our
students with different ways of using the Internet
other than visiting social networking sites.

This study, within the limits discussed above,
showed that is possible to use Distributed Pair
Programming to satisfy the requirements of
coursework assessment and keep students motivated
and satisfied by the process. These results could
form the basis for future research; by combining the
above-perceived benefits with the time it took
students to complete the assignments and the quality
of the work produced.

References:
[1] Baheti, P. & Williams, L., Exploring pair

programming in distributed object-oriented team

projects. Educator’s Workshop, 2002.

[2] Baheti, P., Gehringer, E. & Stotts, D., Exploring the

efficacy of distributed pair programming. In Extreme

Programming and Agile Methods — XP/Agile Universe.

Springer Berlin / Heidelberg, 2002, pp. 387-410.

[3] Beck, K., Extreme programming explained: Embrace

Change. Reading, MA: Addison, 32(10), 1999, pp.70-77.

[4] Bruffee, K., Collaborative Learning and the

'Conversation of Mankind'; College English, 46(7),

1984, pp.635-652.

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 21 Volume 1, 2021

[5] Dewey, J., Experience and Education: the 60th

Anniversary Edition 1998th ed., West Lafayette, Ind. :

Kappa Delta Pi., 1938.

[6] Fowler, E.M., Beck, K. & Cunningham, W., Aim,

Fire. Ieee Software, (September/October), 2001, pp.87-

89.

[7] Johnson, D.W., Johnson, R.T. & Stanne, M.B.,

Cooperative learning methods: A meta-analysis.

Minneapolis, MN: University of Minnesota, 2000.

[8] Lai, H., An experimental research of the pair

programming in java programming course. International

Conference on e-Education, Entertainment and e-

Management. 2011, pp. 257-260.

[9] Marton, F. & Pong, W.Y., On the unit of description

in phenomenography. Higher Education Research &

Development, 24(4), 2005, pp.335-348.

[10] Matthews, R., Cooper, J. & Davidson, N., Building

bridges between cooperative and collaborative learning.

Change: The Magazine of Higher Learning, 27(4), 1995,

pp.35-40.

[11] McDowell, C. & Hanks, B., Experimenting with

pair programming in the classroom. ACM SIGCSE

Bulletin, 2003, pp.60-64.

[12] McDowell, C., Werner, L. & Bullock, H., The

Impact of Pair Programming on Student Performance,

Perception and Persistence. Proceedings of the 25th

International Conference on Software Engineering.

Washington, USA: IEEE Computer Society, 2003, pp.

602-607.

[13] Mendes, E., Al-fakhri, L.B. & Luxton-reilly, A,

Investigating Pair-Programming in a 2nd-year Software

Development and Design Computer Science Course.

Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science

education. 2003. NY, USA: ACM.

[14] Miller, K. & Peterson, R., Creating a positive

climate:Cooperative learning. Safe and Responsive

Schools. 1980.

[15] Muller, M., An empirical study about the feelgood

factor in pair programming. International Symposium on

Software Metrics, 1980.

[16] Nosek, J.T., The case for collaborative

programming. Communications of the ACM, 41(3),

1998, pp.105–108.

[17] Oxford, R.L. & Dean, E., Cooperative Learning,

Collaborative Learning, and Interaction: Three

Communicative Strands in the Language Classroom. The

Modern Language Journal, 81(4), 1997, pp.443–456.

[18] Panitz, T., Collaborative versus cooperative

learning: A comparison of the two concepts which will

help us understand the underlying nature of interactive

learning. Cooperative Learning and College Teaching,

1997, pp.1-15.

[19] Prawat, R.S. & Folden, R.E.,. Philisophical

Perspectives on Constructivist Views of Learning.

Educational Phychology, 29(1), 1994 pp.37-48.

[20] Renstrom, L., Andersson, B. & Marton, F.,

Students’ Conceptions of Matter. Journal of Educational

Psychology, 82(3),1990, pp.555- 569.

[21] Sanders, D., Student perceptions of the suitability of

extreme and pair programming. Proceedings of XP

Universe, 2001.

[22] Shull, E.F. et al., Are two head better than one? On

the Effectiveness of Pair Programming. IEEE Software,

2007, pp.7-10.

[23] Slaten, K.M. et al.,Undergraduate student

perceptions of pair programming and agile software

methodologies: Verifying a model of social interaction.

Agile Conference, Proceedings, IEEE, 2005, pp. 323–

330.

[24] Slavin, R.E. & Madden, N.A., Cooperative learning

models for the 3 R’s. Educational Leadership, 47(4),

1989, pp.22-28.

[25] Stephens, M. & Rosenberg, D., Extreme

programming refactored : the case against XP, Berkeley,

California: APress, 2003

[26] Stevens, R.J. & Slavin, R.E., The Cooperative

Elementary School : Effects on Students’ Achievement,

Attitudes, and Social Relations. American Educational

Research Journal, 32(2), 1995. pp.321–351.

[27] Thomas, L., Ratcliffe, M. & Robertson, A., Code

warriors and code-a-phobes: a study in attitude and pair

programming. ACM SIGCSE Bulletin, 35(1), 2003,

pp.363–367

[28] Vanhanen, J. & Lassenius, C., Effects of Pair

Programming at the Development Team Level : An

Experiment. Empirical Software Engineering, 2005,

pp.336-345.

[29] Williams, L., But, Isn’t That Cheating? 29th

ASEE/IEEE Frontiers in Education Conference. 1999,

pp. 26-27.

[30] Williams, L. et al., Strengthening the case for pair

programming. Software, IEEE, 17(4), 2000, pp.19–25.

[31] Winkler, D. & Biffl, S., An empirical study on

design quality improvement from best-practice

inspection and pair programming. Product- Focused

Software Process Improvement, 2006. pp.319–333

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

PROOF
DOI: 10.37394/232020.2021.1.3 Maira Kotsovoulou, Vassilia Stefanou

E-ISSN: 2732-9941 22 Volume 1, 2021

