
References:
[1] World Health Organization (WHO) - Top 10 Causes
of Death: https://www.who.int/news-room/fact-
sheets/detail/the-top-10-causes-of-death. Retrieved
(2024).
[2] World Health Organization (WHO) –
Noncommunicable Diseases:
https://www.who.int/news-room/fact-
sheets/detail/noncommunicable-diseases. Retrieved
(2024).
[3] Ekpar, F. E. A Comprehensive Artificial
Intelligence-Driven Healthcare System, European
Journal of Electrical Engineering and Computer
Science, 8(3), Article 617. (2024).
[4] Islam, N. M., Hassan, M., Hossain, M. K.,
Alam, M. G. R., Uddin, M. Z., Soylu, A. Vision
transformer and explainable transfer learning
models for autodetection of kidney cyst, stone
and tumor from CT-radiography, Scientific
Reports, 12: 11440. (2022).
[5] Nomura, A., Noguchi, M., Kometani, M.,
Furukawa, K., Yoneda, T. Artificial Intelligence
in Current Diabetes Management and
Prediction, Curr Diab Rep. 21(12):61 (2021).
[6] Kumar, Y., Koul, A., Singla, R., Ijaz, M. F.
Artificial intelligence in disease diagnosis: a
systematic literature review, synthesizing
framework and future research agenda, Journal
of Ambient Intelligence and Humanized
Computing 14:8459–8486 (2023).
[7] Ansari, S., Shafi, I., Ansari, A., Ahmad, J.,
Shah, S. I. Diagnosis of liver disease induced by
hepatitis virus using artificial neural network,
IEEE Int Multitopic.
https://doi.org/10.1109/INMIC.2011.6151515
(2011).
[8] Guo, H., Cao, S., Zhou, C., Wu, X., Zou, Y.
Predicting Essential Genes of Alzheimer
Disease based on Module Partition and Gravity-
like Method in Heterogeneous Network, WSEAS
Transactions on Applied and Theoretical
Mechanics, Vol. 17, pp. 158-165. (2022).
[9] Battineni, G., Sagaro, G. G., Chinatalapudi, N.,
Amenta, F. Applications of machine learning
predictive models in the chronic disease
diagnosis, J Personal Med.
https://doi.org/10.3390/jpm10020021 (2020).
[10] Abdar, M., Yen, N., Hung, J. Improving the
diagnosis of liver disease using multilayer
perceptron neural network and boosted decision
tree, J Med Biol Eng 38:953–965 (2018).
[11] Chaikijurajai, T., Laffin, L., Tang, W. Artificial
intelligence and hypertension: recent advances
and future outlook, Am J Hypertens 33:967–974
(2020).
[12] Fujita, S., Hagiwara, A., Otsuka, Y., Hori, M.,
Takei, N., Hwang, K. P., Irie, R., Andica, C.,
Kamagata, K., Akashi, T., Kumamaru, K. K.,
Suzuki, M., Wada, A., Abe, O., Aoki, S. Deep
Learning Approach for Generating MRA
Images From 3D Quantitative Synthetic MRI
Without Additional Scans, Invest Radiol
55:249–256 (2020).
[13] Ahuja, R., Sharma, S. C. Exploring Feature
Selection and Classification Algorithms for
Cardiac Arrythmia Disease Prediction, WSEAS
Transactions on Biology and Biomedicine, Vol.
19, pp. 168-175. (2022).
[14] Juarez-Chambi, R. M., Kut, C., Rico-Jimenez, J.
J., Chaichana, L. K., Xi, J., Campos-Delgado,
D. U., Rodriguez, F. J., Quinones-Hinojosa, A.,
Li, X., Jo, J. A. AI-Assisted In Situ Detection of
Human Glioma Infiltration Using a Novel
Computational Method for Optical Coherence
Tomography, Clin Cancer Res 25(21):6329–
6338 (2019).
[15] Nashif, S., Raihan, R., Islam, R., Imam, M. H.
Heart Disease Detection by Using Machine
Learning Algorithms and a Real-Time
Cardiovascular Health Monitoring System,
World Journal of Engineering and Technology
Vol 6, No. 4 (2018).
[16] Chen, P. H. C., Gadepalli, K., MacDonald, R.,
Liu, Kadowaki, S., Nagpal, K., Kohlberger, T.,
Dean, J., Corrado, G. S., Hipp, J. D., Mermel,
C. H., Stumpe, M. C. An augmented reality
microscope with real time artificial intelligence
integration for cancer diagnosis, Nat Med
25:1453–1457 (2019).
[17] Gouda, W., Yasin, R. COVID-19 disease: CT
Pneumonia Analysis prototype by using
artificial intelligence, predicting the disease
severity, Egypt J Radiol Nucl Med 51(1):196
(2020).
[18] Han, Y., Han, Z., Wu, J., Yu, Y., Gao, S., Hua,
D., Yang, A. Artificial Intelligence
Recommendation System of Cancer
Rehabilitation Scheme Based on IoT
Technology, IEEE Access 8:44924–44935
(2020).
[19] Zeynu, S., Patil, S. Prediction of Chronic
Kidney Disease Using Data Mining Feature
Selection and Ensemble Method, WSEAS
Transactions on Information Science and
Applications, Vol. 15, pp. 168-176. (2018).
[20] Chui, C. S., Lee, N. P., Adeoye, J., Thomson,
P., Choi, S. W. Machine learning and treatment
MOLECULAR SCIENCES AND APPLICATIONS
DOI: 10.37394/232023.2024.4.13