
Enzyme Prodrug Therapy. Molecules 2021, 26,
5976.
[19] Zawadzki S., Martín‑Serrano A., Okła E. et al,
Synthesis and biophysical evaluation of carbosilane
dendrimers as therapeutic siRNA Carriers, Scientifc
Reports, 2024, 14, 1615.
[20] Khaitov M., Nikonova A., Shilovskiy I. et al.
Silencing of SARS-CoV-2 with modified siRNA-
peptide dendrimer formulation, Allergy. 2021; 76,
2840-2854.
[21] Denkewalter, R.G.; Kolc, J.; Lukasavage, W.J.
Macromolecular Highly Branched Homogeneous
Compound Based on Lysine Units. United States
Patent, US4289872A, 1981.
[22] Aharoni, S.M.; Crosby III, C.R.; Walsh, E.K.
Size and solution properties of globular tert-
butyloxycarbonyl-poly(α,ϵ-L-lysine).
Macromolecules 1982, 15, 1093–1098.
[23] Vlasov, G. et al. Lysine Dendrimers and Their
Starburst Polymer Derivatives: Possible Application
for DNA Compaction and in vitro Delivery of
Genetic Constructs. Russian Journal of Bioorganic
Chemistry 2004, 30, 15–24.
[24] Vlasov, G.; at al Dendrimers Based on a-
Amino Acids: Synthesis and Hydrodynamic
Characteristics. Doklady Physical Chemistry 2004,
399, 366–368.
[25] Markelov, D.A.; Falkovich, S.G. Ilyash, at al.
Molecular dynamics simulation of spin–lattice
NMR relaxation in poly-l-lysine dendrimers: a
manifestation of the semiflexibility effect. Phys.
Chem. Chem. Phys. 2015, 17, 3214–3226.
[26] Roberts, B.P.; Scanlon, M.J.; Krippner, G.Y.;
Chalmers, D.K. Molecular Dynamics of Poly(l-
lysine) Dendrimers with Naphthalene Disulfonate
Caps. Macromolecules 2009, 42, 2775–2783.
[27] Neelov, I.; Markelov, D.; Falkovich et al S.;
Mathematical simulation of lysine dendrimers.
Temperature dependencies. Polymer Science, Ser. C
2013, 55, 154–161.
[28] Neelov, I.; Falkovich, S.; Markelov, D.; et al
Dendrimer in Biological Applications, London,
RSC, 2013, 99–114.
[29] Darinskii A.A., Gotlib, Y.Y., Lyulin, A.V. et
al. Vysokomolek. Soed., Computer simulation of
local dynamics of a polymer chain in the orienting
field of the LC type, 1991, Vysokomolekularnye
Soedineniya. Seriya А 33, 1211-1220.
[30] Tam, J. Synthetic peptide vaccine design:
Synthesis and properties of a high-density multiple
antigenic peptide system. Proc. Natl.Acad. Sci. USA
1988, 85, 5409–5413.
[31] Rao, C.; Tam, J. Synthesis of peptide
dendrimer. J. Am. Chem. Soc. 1994, 116, 6975–
6976
[32] Darbre, T.; Reymond, J.L. Peptide dendrimers
as artificial enzymes, receptors, and drug-delivery
agents. Acc. Chem. Res. 2006, 39, 925–934.
[33] Choi, J.S.; Nam, K.; Park, J.y.; Kim, J.B.; Lee,
J.K.; Park, J.S. Enhanced Transfection Efficiency of
PAMAM Dendrimer by Surface Modification with
L-Arginine. J. Control. Release 2004, 99, 445-456.
[34] Luo, K.; Li, C.; Li, L.; She, W.; Wang, G.; Gu,
Z. Arginine functionalized peptide dendrimers as
potential gene delivery vehicles. Biomaterials 2012,
33, 4917-4927.
[35] Aldawsari, H.; Raj, B.S.; Edrada-Ebel, R.;
Blatchford, D.R.; Tate, R.J.; Tetley, L.; Dufès, C.
Enhanced gene expression in tumors after
intravenous administration of arginine-, lysine- and
leucine-bearing polyethylenimine polyplex.
Nanomed. Nanotechnol. Biol. Med. 2011, 7, 615–
623.
[36] Okuda, T.; Sugiyama, A.; Niidome, T.; Aoyagi,
H. Characters of dendritic poly(L-Arhlysine)
analogs with the terminal lysines replaced with
arginines and histidines as gene carriers in vitro.
Biomaterials 2004,49925, 537–544.
[37] Lee, H.; Choi, J.S. Larson R.G. Molecular
Dynamics Studies of the Size and Internal Structure
of the PAMAM Dendrimer Grafted with Arginine
and Histidine. Macromolecules 2011, 44, 8681–
8686
[38] Sheikhi Mehrabadi, F.; Zeng, H.; Johnson, M.;
Schlesener, C.; Guan, Z.; Haag, R. Multivalent
dendritic polyglycerolamine with arginine and
histidine end groups for efficient siRNA
transfection. Beilstein J. Org. Chem. 2015, 11, 763–
772.
[39] Santos, A.; Veiga, F.; Figueiras, A. Dendrimers
as Pharmaceutical Excipients: Synthesis, Properties,
Toxicity, and Biomedical Applications. Materials
2020, 13, 65.
[40] Sheveleva, N.N.; Markelov, D.A.; Vovk, M.A.;
et al. NMR studies of excluded volume interactions
in peptide dendrimers. Scientific Reports 2018, 8,
8916.
[41] Sheveleva, N.N.; Markelov, D.A.; Vovk, M.A.
et al. Lysine-based dendrimer with double arginine
residues. RSC Advances 2019, 9, 18018–18026.
[42] Sheveleva, N.N.; Markelov, D.A.; Vovk et al
Stable Deuterium Labeling of Histidine-Rich
Lysine-Based Dendrimers. Molecules 2019, 24,
2481
[43] Gorzkiewicz, M.; Konopka, M.; Janaszewska,
at al. Application of new lysine-based peptide
dendrimers D3K2 and D3G2 for gene delivery:
Specific cytotoxicity to cancer cells and transfection
in vitro. Bioorg. Chem. 2020, 95, 103504.
MOLECULAR SCIENCES AND APPLICATIONS
DOI: 10.37394/232023.2024.4.11
Sofia E. Mikhtaniuk, Emil I. Fatullaev,
Igor M. Neelov, Oleg V. Shavykin