
doi.org/10.1007/s00521-014-1753-3
[3]. Vaurio, L., Karantzoulis, S., & Barr, W. B.
(2017). The impact of epilepsy on quality of
life. Changes in the Brain: Impact on Daily Life,
167-187. DOI: 10.1007/978-0-387-98188-8_8
[4]. Kapoor, B., Nagpal, B., Jain, P. K., Abraham,
A., & Gabralla, L. A. (2022). Epileptic seizure
prediction based on hybrid seek optimization
tuned ensemble classifier using EEG
signals. Sensors, 23(1), 423.
doi.org/10.3390/s23010423
[5]. Schroeder, G. M., Diehl, B., Chowdhury, F. A.,
Duncan, J. S., de Tisi, J., Trevelyan, A. J., ... &
Wang, Y. (2020). Seizure pathways change on
circadian and slower timescales in individual
patients with focal epilepsy. Proceedings of the
National Academy of Sciences, 117(20), 11048-
11058. doi: 10.1073/pnas.1922084117.
[6]. Mlinar, S., Petek, D., Cotič, Ž., Mencin Čeplak,
M., & Zaletel, M. (2016). Persons with
epilepsy: between social inclusion and
marginalisation. Behavioural Neurology, 2016.
doi: 10.1155/2016/2018509
[7]. Assi, E. B., Nguyen, D. K., Rihana, S., &
Sawan, M. (2017). Towards accurate prediction
of epileptic seizures: A review. Biomedical
Signal Processing and Control, 34, 144-157.
https://doi.org/10.1016/j.bspc.2017.02.001
[8]. Rogowski, Z., Gath, I., & Bental, E. (1981). On
the prediction of epileptic seizures. Biological
cybernetics, 42(1), 9-15.
doi.org/10.1007/BF00335153
[9]. Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-
Dujaili, A., Duan, Y., Al-Shamma, O., ... &
Farhan, L. (2021). Review of deep learning:
Concepts, CNN architectures, challenges,
applications, future directions. Journal of big
Data, 8, 1-74. doi.org/10.1186/s40537-021-
00444-8
[10]. Nafea, M. S., & Ismail, Z. H. (2022).
Supervised machine learning and deep learning
techniques for epileptic seizure recognition
using EEG signals—A systematic literature
review. Bioengineering, 9(12), 781.
doi.org/10.3390/bioengineering9120781
[11]. Sarker, I. H. (2021). Deep learning: a
comprehensive overview on techniques,
taxonomy, applications and research
directions. SN Computer Science, 2(6), 420.
doi: 10.1007/s42979-021-00815-1.
[12]. Bandarabadi, M., Rasekhi, J., Teixeira, C.
A., Karami, M. R., & Dourado, A. (2015). On
the proper selection of preictal period for
seizure prediction. Epilepsy & Behavior, 46,
158-166. doi: 10.1016/j.yebeh.2015.03.010
[13]. Daoud, H., & Bayoumi, M. A. (2019).
Efficient epileptic seizure prediction based on
deep learning. IEEE transactions on biomedical
circuits and systems, 13(5), 804-813. Daoud, H.,
& Bayoumi, M. A. (2019). Efficient epileptic
seizure prediction based on deep learning. IEEE
transactions on biomedical circuits and
systems, 13(5), 804-813.
[14]. Wei, X., Zhou, L., Zhang, Z., Chen, Z., &
Zhou, Y. (2019). Early prediction of epileptic
seizures using a long-term recurrent
convolutional network. Journal of neuroscience
methods, 327, 108395. doi:
10.1016/j.jneumeth.2019.108395
[15]. Singh, K., & Malhotra, J. (2022). Two-layer
LSTM network-based prediction of epileptic
seizures using EEG spectral features. Complex
& Intelligent Systems, 8(3), 2405-2418.
doi.org/10.1007/s40747-021-00627-z
[16]. Ouichka, O., Echtioui, A., & Hamam, H.
(2022). Deep learning models for predicting
epileptic seizures using iEEG
signals. Electronics, 11(4), 605.
doi.org/10.3390/ electronics11040605
[17]. Yan, J., Li, J., Xu, H., Yu, Y., & Xu, T.
(2022). Seizure prediction based on transformer
using scalp electroencephalogram. Applied
Sciences, 12(9), 4158.
doi.org/10.3390/app12094158
[18]. Xu, X., Zhang, Y., Zhang, R., & Xu, T.
(2023). Patient-specific method for predicting
epileptic seizures based on DRSN-
GRU. Biomedical Signal Processing and
Control, 81, 104449.
doi.org/10.1016/j.bspc.2022.104449
[19]. Wu, X., Yang, Z., Zhang, T., Zhang, L., &
Qiao, L. (2023). An end-to-end seizure
prediction approach using long short-term
memory network. Frontiers in Human
Neuroscience, 17, 1187794.
doi.org/10.3389/fnhum.2023.1187794
[20]. Medvedovsky, M., Taulu, S., Gaily, E.,
Metsähonkala, E. L., Mäkelä, J. P., Ekstein, D.,
... & Paetau, R. (2012). Sensitivity and
specificity of seizure‐onset zone estimation by
ictal magnetoencephalography. Epilepsia, 53(9),
1649-1657. doi: 10.1111/j.1528-
1167.2012.03574.x
[21]. Ren, Z., Han, X., & Wang, B. (2022). The
performance evaluation of the state-of-the-art
EEG-based seizure prediction models. Frontiers
in Neurology, 13, 1016224.
doi.org/10.3389/fneur.2022.1016224
[22]. Leal, A., Curty, J., Lopes, F., Pinto, M. F.,
Oliveira, A., Sales, F., ... & Teixeira, C. A.
MOLECULAR SCIENCES AND APPLICATIONS
DOI: 10.37394/232023.2024.4.7
Ola M. Assim, Ahlam F. Mahmood